DCM Bandits: Learning to Rank with Multiple Clicks

A. Proofs

Lemma 1. Let x,y € [0, 1)X satisfy x > y. Then
K K
Viz)-V(y) < Zxk - Zyk
k=1 k=1
Proof. Letx = (21,...,2x) and

K K K
:Zxk—v(x):Zxk—l Hl—ﬂik]-
k=1 k=1 k=1

Our claim can be proved by showing that d(z) > 0 and # d( ) >0, forany x € [0, 1]¥ and i € [K]. First, we show that
d(x) > 0 by induction on K. The claim holds trivially for 'K = 1. For any K > 2,

K—-1 K—-1 K—-1

:Z$k—[1—H(1—$k) +£CK—£EKH(1—1’k)20,
k=1 k=1 k=1
>0

K—1
where Z T — l H (1 =) 1 > 0 holds by our induction hypothesis. Second, we note that
k=1

81(1(:5) =1-JJ@—ax) >o0.

ki

This concludes our proof. m

Lemma 2. Let 2,y € [0, pmax] satisfy x > y. Then

K K
a [Zwk — Zyk <V(z)-V(y),
k=1 k=1
where o = (1 — prax) XL
Proof. Letx = (x1,...,xK) and
K K K
d(l‘) = V(Z‘) - OKZ.%‘]C =1- H(l - xk) - (1 _pmax)K_l ka .
k=1 k=1 k=1

Our claim can be proved by showing that d(x) > 0 and d( ) >0, forany = € [0, pmax|* and i € [K]. First, we show
that d(x) > 0 by induction on K. The claim holds thlally for K = 1. For any K > 2,

K-1
d(x):]-* H(]-*xk) ( pmax 1Z$k+IK H ].*CL'k 7$K(17pmax)K7120’
k=1
>0
K-1 K-1 K-1
where 1 — H (1 —21) — (1 = prax) 71 Z xj, > 0 holds because 1 — H (1 —zp) — (1 = prmax) 72 Z x> 0,
k=1 k=1 k=1

which holds by our induction hypothesis; and the remainder is non-negative because 1 — x; > 1 — pyax for aI;y k € [K].
Second, note that

0
5—d(@) = JTO =) = (1= pmax) ™ > 0.
v ki

This concludes our proof. m
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Lemma 3. Let x € [0, 1]X and x' be the permutation of x whose entries are in decreasing order, ', > ... > .. Let the
entries of ¢ € [0,1]% be in decreasing order. Then

K K
Vieoz)=V(ieoz) < chmﬁc — Z CRTE -
k=1 k=1
Proof. Note that our claim is equivalent to proving
K K K K
1— H(l — cpxy) — [1 — H(l — ckxk)] < ch:ﬁﬁc — chxk.
k=1 k=1 k=1 k=1

If x = x’, our claim holds trivially. If z # 2/, there must exist indices ¢ and j such that i < j and z; < z;. Let X be the
same vector as x where entries z; and x; are exchanged, Z; = x; and Z; = x;. Since i < j, ¢; > ¢;. Let

X_i’_j = H (1 — Ck.’Ek) .
k#i,j

Then

5 (1 =cz)(1 = ¢jay) — (1 — @) (1 — ¢;35))

1= ] - cpaf) - ll -IJa- Ckxk)]

k=1 k=1

X,
X (1= cimi)(1 = ¢yzy) — (1 = i) (1 = ¢jq))
Xij(—cixi — cjoj + cixj + ¢jx;)

X

~ilei —¢i)(xj — i)
(ci —¢)(zj — 21)

= cixj —+ le’i — C;T; — le'j

IA

ciT; + Cj.f?j — CiX; — CjT;
K K
= chi'k - chxk,
k=1 k=1
where the inequality is by our assumption that (¢; — ¢;)(z; — x;) > 0. If Z = 2/, we are finished. Otherwise, we repeat

the above argument until z = /. m

Lemmad. Let x,y € [0,1]% satisfy x > y. Lety € [0,1]. Then
V(vz) = V(yy) 24V(z) - V(y)].

Proof. Note that our claim is equivalent to proving

K K K K
TT—we) - H1_7$k ) > [ TT—ww) - Hl—xk
k=1 k=1 k=1 k=1

The proof is by induction on K. To simplify exposition, we define the following shorthands
Xi=[J—2), X7 =]JC—ra), Yi= Hl—yk v =110 —vm)-
k=1

k=1 k=1

Our claim holds trivially for K = 1 because

(I =7y1) = (1 =vz1) = 9[(1 —y1) — (1 —21)].
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To prove that the claim holds for any K, we first rewrite ;> — X interms of Y,/ | — X} | as
Y =X =0 —yyr)Yey — (L —vy2x) X,
=Y 1 —wrYE o — Xg e X +v(@x —yx)Xg
= (L= yyr)(Yg_y = X)) +v(@x —yr) Xy -

By our induction hypothesis, Y} | — X}, | > v(Yx_1 — Xg_1). Moreover, X}, | > Xg_jand 1 —yyx > 1 — yg.
We apply these lower bounds to the right-hand side of the above equality and then rearrange it as

Y, - X, >0 —yx)Yr-1 — Xx-1) +v(2x —yr) XK1
= W[(l —yr)Yk_1 — (1 —yx +yx — xK)XK_l]
=9[Yx — Xk].

This concludes our proof. m



