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Abstract

Due to its numerous applications, rank aggre-
gation has become a problem of major interest
across many fields of the computer science liter-
ature. In the vast majority of situations, Kemeny
consensus(es) are considered as the ideal solu-
tions. It is however well known that their com-
putation is NP-hard. Many contributions have
thus established various results to apprehend this
complexity. In this paper we introduce a practi-
cal method to predict, for a ranking and a dataset,
how close this ranking is to the Kemeny con-
sensus(es) of the dataset. A major strength of
this method is its generality: it does not require
any assumption on the dataset nor the ranking.
Furthermore, it relies on a new geometric inter-
pretation of Kemeny aggregation that we believe
could lead to many other results.

1. Introduction

Given a collection of rankings on a set of alternatives, how
to aggregate them into one ranking? This rank aggregation
problem has gained a major interest across many fields of
the scientific literature. Starting from elections in social
choice theory (see for instance Borda, 1781; Condorcet,
1785; Arrow, 1950; Xia, 2015), it has been applied to meta-
search engines (see for instance Dwork et al., 2001; Renda
& Straccia, 2003; Desarkar et al., 2016), competitions rank-
ing (see for instance Davenport & Lovell, 2005; Deng et al.,
2014), analysis of biological data (see for instance Kolde
et al., 2012; Patel et al., 2013) or natural language process-
ing (see for instance Li, 2014; Zamani et al., 2014) among
others.
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Among the many ways to state the rank aggregation prob-
lem stands out Kemeny aggregation (Kemeny, 1959). De-
fined as the problem of minimizing a cost function over the
symmetric group (see Section 2 for the definition), its so-
lutions, called Kemeny consensus(es), have been shown to
satisfy desirable properties from many points of view (see
for instance Young & Levenglick, 1978).

Computing a Kemeny consensus is however NP-hard, even
for only four rankings (see Bartholdi et al., 1989; Co-
hen et al., 1999; Dwork et al., 2001). This fact has mo-
tivated the scientific community to introduce many ap-
proximation procedures and to evaluate them on datasets
(see Schalekamp & van Zuylen, 2009; Ali & Meila,
2012, for examples of procedures and experiments). It
has also triggered a tremendous amount of work to ob-
tain theoretical guarantees on these procedures and more
generally to tackle the complexity of Kemeny aggrega-
tion from various perspectives. Some contributions have
proven bounds on the approximation cost of procedures
(see Diaconis & Graham, 1977; Coppersmith et al., 2006;
Van Zuylen & Williamson, 2007; Ailon et al., 2008; Freund
& Williamson, 2015) while some have established recov-
ery properties (see for instance Saari & Merlin, 2000; Pro-
caccia et al., 2012). Some other contributions have shown
that exact Kemeny aggregation is tractable if some quan-
tity is known on the dataset (see for instance Betzler et al.,
2008; 2009; Cornaz et al., 2013) or if the dataset satis-
fies some conditions (see for instance Brandt et al., 2015).
At last, some contributions have established approximation
bounds that can be computed on the dataset (see Davenport
& Kalagnanam, 2004; Conitzer et al., 2006; Sibony, 2014).

In this paper we introduce a novel approach to apprehend
the complexity of Kemeny aggregation. We consider the
following question: Given a dataset and a ranking, can we
predict how close the ranking is to a Kemeny consensus
without computing the latter? We exhibit a tractable quan-
tity that allows to give a positive answer to this question.
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The main practical application of our results is a simple
method to obtain such a guarantee for the outcome of an
aggregation procedure on any dataset. A major strength of
our approach is its generality: it applies to all aggregation
procedures, for any dataset.

Our results are based on a certain geometric structure of
Kemeny aggregation (see Section 3) that has been barely
exploited in the literature yet but constitutes a powerful
tool. We thus take efforts to explain it in details. We be-
lieve that it could lead to many other results on Kemeny
aggregation.

The paper is structured as follows. Section 2 introduces
the general notations and states the problem. The geomet-
ric structure is detailed in Section 3 and further studied in
Section 5 while our main result is presented in Section 4.
At last, numerical experiments are described in details in
Section 6 to address the efficiency and usefulness of our
method on real datasets.

2. Controlling the distance to a Kemeny
consensus

Let [n] = {1,...,n} be a set of alternatives to be ranked.
A full ranking a; > --- > a, on [n] is seen as the per-
mutation o of [n] that maps an item to its rank: o(a;) =14
for i € [n]. The set of all permutations of [n] is called the
symmetric group and denoted by &,,. Given a collection
of N permutations Dy = (01,...,0n5) € &, Kemeny
aggregation aims at solving

N

min Cy (o) := Zd(a, o), (1)

ceS, =1

where d is the Kendall’s tau distance defined for o, 0’ € &,
as the number of their pairwise disagreements: d(c,c’) =
Yi<icj<n H(o(j) =0 (i) (0’ (j)—0o'(2)) < 0}. The func-
tion C'y denotes the cost, and a permutation o* solving (1)
is called a Kemeny consensus. We denote by /Cyy the set of
Kemeny consensuses on the dataset Dy.

Exact Kemeny aggregation is NP-hard: it cannot be solved
efficiently with a general procedure. This does not mean
however that nothing can be done. For example, it is clear
that on a dataset where all permutations are equal to a
oo € G, the Kemeny consensus is trivially given by oy.
Many contributions from the literature have thus focused
on a particular approach to apprehend some part of the
complexity of Kemeny aggregation. The examples given
in the introduction divide in three main categories.

e General guarantees for approximation procedures.
These results provide a bound on the cost of one vot-
ing rule, valid for any dataset (see Diaconis & Gra-
ham, 1977; Coppersmith et al., 2006; Van Zuylen

& Williamson, 2007; Ailon et al., 2008; Freund &
Williamson, 2015).

e Bounds on the approximation cost computed from
the dataset. These results provide a bound, either on
the cost of a consensus or on the cost of the outcome of
a specific voting rule, that depends on a quantity com-
puted from the dataset (see Davenport & Kalagnanam,
2004; Conitzer et al., 2006; Sibony, 2014).

e Conditions for the exact Kemeny aggregation to
become tractable. These results ensure the tractabil-
ity of exact Kemeny aggregation if the dataset satis-
fies some condition or if some quantity is known from
the dataset (see for instance Betzler et al., 2008; 2009;
Cornaz et al., 2013; Brandt et al., 2015).

In this paper, we introduce a novel approach to appre-
hend the complexity of Kemeny aggregation to some ex-
tent. More specifically, we consider the following problem:

The Problem. Let o € G,, be a permutation, typically out-
put by a computationally efficient aggregation procedure
on Dy. Can we use computationally tractable quantities
to give an upper bound for the distance d(o, o*) between o
and a Kemeny consensus c* on Dy ?

The answer to this problem is positive as we will elabo-
rate. It is well known that the Kendall’s tau distance takes
its values in {0, ..., (g)} (see for instance Stanley, 1986).
Our main result, Theorem 1, thus naturally takes the form:
given o and Dy, if the proposed condition is satisfied for
some k € {0,...,(5) — 1}, then d(0,0*) < k for all
consensuses 0* € K,,. Its application in practice is then
straightforward (see Section 4 for an illustration).

A major strength of our method is its generality: it can
be applied to any dataset Dy, any permutation o. This
is because it exploits a powerful geometric framework for
the analysis of Kemeny aggregation.

3. Geometric analysis of Kemeny aggregation

Because of its rich mathematical structure, Kemeny aggre-
gation can be analyzed from many different point of views.
While some contributions deal directly with the combina-
torics of the symmetric group (for instance Diaconis & Gra-
ham, 1977; Blin et al., 2011), some work for instance on
the pairwise comparison graph (for instance Coppersmith
et al., 2006; Conitzer et al., 2006; Jiang et al., 2011), and
others exploit the geometry of the Permutahedron (for in-
stance Saari & Merlin, 2000). In this paper, we analyze it
via the Kemeny embedding (see also Jiao & Vert, 2015).

Definition 1 (Kemeny embedding). The Kemeny embed-
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ding is the mapping ¢ : &,, — R(2) defined by

6:00 | sign(o() - o(d) ,

1<i<j<n
where sign(x) = 1 if > 0 and —1 otherwise.

The Kemeny embedding ¢ maps a permutation to a vec-

tor in R(2) where each coordinate is indexed by an (un-
ordered) pair {i,j} C [n] (we choose i < j by conven-
tion). Though this vector representation is equivalent to
representing a permutation as a flow on the complete graph
on [n], it allows us to perform a geometric analysis of Ke-

meny aggregation in the Euclidean space R(). Denoting
by (-, -) the canonical inner product and || - || the Euclidean
norm, the starting point of our analysis is the following re-
sult, already proven in Barthelemy & Monjardet (1981).

Proposition 1 (Background results). For all 0,0’ € &,

6@l = /"= and [6(0) ~ 6(0")| = td(c.0").

and for any dataset Dy = (01,...0n) € 65, Kemeny
aggregation (1) is equivalent to the minimization problem

min Ciy(0) := [[6(0) — &(Dx)|I, @)
where
1 N
t=1

Remark 1. Proposition 1 says that Kemeny rule is a “Mean
Proximity Rule”, a family of voting rules introduced in
Zwicker (2008) and further studied in Lahaie & Shah
(2014). Our approach actually applies more generally to
other voting rules from this class but we limit ourselves to
Kemeny rule in the paper for sake of clarity.

Proposition 1 leads to the following geometric interpreta-
tion of Kemeny aggregation, illustrated by Figure 1. First,

as ||¢(o)|] = /n(n—1)/2 for all 0 € &, the embed-

dings of all the permutations in &,, lie on the sphere $
of center 0 and radius R := /n(n —1)/2. Notice that
lp(o) — d(a")||? = 4d(o,0’) for all 0,0’ € &,, implies
that ¢ is injective, in other words that it maps two differ-
ent permutations to two different points on the sphere. A
dataset Dy = (o1,...,0n5) € &Y is thus mapped to a
weighted point cloud on this sphere, where forany o € G,,,
the weight of ¢(o) is the number of times ¢ appears in Dy .
The vector ¢(Dy ), defined by Equation (3), is then equal
to the barycenter of this weighted point cloud. We call it
the mean embedding of Dy. Now, the reformulation of
Kemeny aggregation given by Equation (2) means that a

Kemeny consensus is a permutation o* whose embedding
@(c*) is closest to ¢(Dy), with respect to the Euclidean

n
norm in R\2/,

Figure 1. Kemeny aggregation for n = 3.

From an algorithmic point of view, Proposition 1 natu-
rally decomposes problem (1) of Kemeny aggregation in
two steps: first compute the mean embedding ¢(Dy) in

the space R(g), and then find a consensus ¢* as a solu-
tion of problem (2). The first step is naturally performed
in O(Nn?) operations. The NP-hardness of Kemeny ag-
gregation thus stems from the second step. In this regard,
one may argue that having ¢(D ) does not reduce much of
the complexity in identifying an exact Kemeny consensus.
However, a closer look at the problem leads us to asserting
that ¢(Dy ) greatly contains rich information about the lo-
calization of the Kemeny consensus(es). More specifically,
we show in Theorem 1 that the knowledge of ¢(Dy) helps
to provide an upper bound for the distance between a given
permutation o € G,, and any Kemeny consensus o*.

4. Main result

We now state our main result. For a permutation 0 € S,,,
we define the angle 0 (o) between ¢(o) and ¢(Dy) by

_ ((0).6(D))
To(@) e

with 0 < (o) < 7 by convention.

Theorem 1. Let Dy € GTJ:[ be a dataset and 0 € S, a
permutation. For any k € {0,...,(5) — 1}, one has the
following implication:

cos(On(a)) )

k+1
—: = max d(o,0") <k.
(2) ok

cos(On (o)) > /1 —

The proof of Theorem 1 along with its geometric interpre-
tation are postponed to Section 5. Here we focus on its ap-
plication. Broadly speaking, Theorem 1 ensures that if the
angle Oy (o) between the embedding ¢(o) of a permutation
o € &, and the mean embedding ¢ (D) is small, then the
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Kemeny consensus(es) cannot be too far from o. Its appli-
cation in practice is straightforward. Assume that one ap-
plies an aggregation procedure on Dy (say the Borda count
for instance) with an output ¢. A natural question is then:
how far is it from the Kemeny consensus(es)? Of course, it
is at most equal to max, ,ca, d(o’,0”) = (3). Butif
one computes the quantity cos(fx (o)), it can happen that
Theorem 1 allows to give a better bound. More specifically,
the best bound is given by the minimal k € {0,..., (5)—1}

such that cos(fn(c)) > /1 — (k+1)/(}). Denoting by

kmin(0; D) this integer, it is easy to see that

kmin(U; DN) = { \(E;QL) Sinz(el\](g)”

where |z | denotes the integer part of the real z. We for-
malize this method in the following description.

Method 1. Let Dy € 6,12/ be a datasetandleto € G,, bea
permutation considered as an approximation of Kemeny’s
rule. In practice o is the consensus returned by a tractable
voting rule.

1. Compute ki (0; D) with Formula (5).

2. Then by Theorem 1, d(o,0*) < kpin(0; Dy ) for any
Kemeny consenus o* € K.

The following proposition ensures that Method 1 has
tractable complexity.

Proposition 2 (Complexity of the method). The applica-
tion of Method 1 has complexity in time O(Nn?).

With a concrete example, we demonstrate the applicability
and the generality of Method 1.

Example 1 (Application of Method 1 on the sushi dataset.).
We report here the results of a case-study on the sushi
dataset provided by Kamishima (2003) to illustrate our
method. The dataset consists of N = 5000 full rankings
given by different individuals of the preference order on
n = 10 sushi dishes such that a brute-force search for the
Kemeny consensus is already quite computationally inten-
sive. To apply our method, we select seven tractable vot-
ing rules, denoted by o, as approximate candidates to Ke-
meny’s rule to provide an initial guess (details of voting
rules can be found in the Supplementary Material). Table
1 summarizes the values of cos(0n (o)) and kypin (o), Te-
spectively given by Equations (4) and (5). Results show
that on this particular dataset, if we use for instance Borda
Count to approximate Kemeny consensus, we are confident
that the exact consensus(es) have a distance of at most 14 to
the approximate ranking. We leave detailed interpretation
of the results to Section 6.

Table 1. Summary of a case-study on the validity of Method 1
with the sushi dataset (N = 5000,» = 10). Rows are ordered
by increasing k.:» (or decreasing cosine) value.

Voting rule cos(On () | kmin(o)

Borda 0.820 14
Copeland 0.822 14
QuickSort 0.822 14
Plackett-Luce 0.80 15
2-approval 0.745 20
1-approval 0.710 22

Pick-a-Perm 0.383" 34.851

Pick-a-Random | 03771 35.097

JrFor randomized methods such as Pick-a-Perm and Pick-a-Random, results are av-
eraged over 10 000 computations.

5. Geometric interpretation and proof of
Theorem 1

This section details the proof of Theorem 1 and its geo-
metric interpretation. We deem that our proof has indeed a
standalone interest, and that it could lead to other profound
results on Kemeny aggregation.

5.1. Extended cost function

We recall that the Kemeny consensuses of a dataset Dy are
the solutions of Problem (2):

min Ciy (o) = [[¢(0) = 4(Dn)II*,
This is an optimization problem on the discrete set G,,,
naturally hard to analyze. In particular the shape of the
cost function C;V is not easy to understand. However,
since all the vectors ¢(o) for 0 € &, lie on the sphere
$ = {z € RO)|||z|| = R} with R = /n(n — 1)/2, it is

natural to consider the relaxed problem on $
min Cy (z) == o = ¢(Dw)]* (6)

We call C the extended cost function with domain $. The
advantage of C is that it has a very simple shape. We
denote by 6y (x) the angle between a vector x € $ and
¢(Dy) (with the slight abuse of notations that 6 (¢(0)) =
On(0)). For any x € $, one has

Cy (@) = RB? + [|¢(Dn)||* — 2R[|6(Duv)| cos (B ().

This means that the extended cost Cy () of a vector z € $
only depends on the angle 6 (x). The level sets of Cy are
thus of the form {z € $ | On(2) = a}, for0 < a < 7.
If n = 3, these level sets are circles in planes orthogonal
to ¢(Dy ), each centered around the projection of the latter
on the plane (Figure 2). This property implies the following
result.
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Lemma 1. A Kemeny consensus of a dataset Dy is a per-
mutation o* such that:

On(c"™) <On(o)  forallo € &,.

Lemma 1 means that the problem of Kemeny aggregation
translates into finding permutations ¢* that have minimal
angle 0x(0*). This reformulation is crucial to our ap-
proach.

Figure 2. Level sets of Cy over 3.

5.2. Interpretation of the condition in Theorem 1

The second element of our approach is motivated by the
following observation. Let x € $ be a point on the sphere
andletr > 0. If r is large enough, then all the points ' € $
on the sphere that have distance ||z’ — z|| greater than r
will have a greater angle 6y (z"). Formally, we denote by
B(z,r) = {2’ € R() | |l=" — || < r} the (open) ball of
center x and radius 7. Then one has the following result.
Lemma 2. For x € S and r > 0, one has the following
implication:

r2

cos(On(x)) >1/1— o

min
' €S\B(z,r)

Proof. Let 9(Dy) = H¢(Dx§\l We discuss over two cases.

Case I: ||¢(Dy) — x|| > r. By laws of cosines, this case
is equivalent to:

2R*(1 — cos(On(2))) = ||¢(Dn) — 2| > 72

2 2
Note also that in this case, we have ¢(Dy) € S\ B(z,7)
and hence ming cg\p(q,r) On(2') = mingcsOn(2') =

0<6n (z) always holds, where the minimum is attained at
' = ¢(Dn).

Case II: ||¢(Dy) — | < r, that is (Dy) € B(x,r).
As the function 2’ — 6y (') is convex with global mini-
mum in B(x,r), its minimum over $ \ B(x,r) is attained

HN(.%‘/) > HN(.%‘)

at the boundary $ N 9B(z,r) = {a/ € RG) | |o/|| =

R and ||z’ — z|| = r}, which is formed by cutting $ with
the ((72’) - 1)-dimensional hyperplane written as

" 2 2 _ .2

L={s eR) | (@',2) = RT}

Straightforwardly one can verify that $ N 9B(z,r) is in
fact a ((g) — 1)-dimensi0nal sphere lying in I, centered

2 2 . .
at ¢ = 2=y with radius v = ry/1— 432 Now we
take effort to identify:
z* = argmin Oy(z')= argmin Cy(z').

' €SNoB(x,r) /' €SNOB(x,r)

Note that ¢(Dy) projected onto I is the vector
(¢(DN))L == ¢(Dn) — Ww. One can easily ver-
ify by Pythagoras rule that, for any set K C I,

argmin [|z" — ¢(Dy)|| = argmin ||z — (¢(Dn))rl| -
z’ €K z'eK

Therefore we have:

¥ = argmin ||z’ — =c (¢(Dn))r
=LA 1 P = e

_232_7,2 r2 ¢(DN) M
 2R? V 4R? \/ 12— ¢<DN>>

||¢ R2

Tedious but essentially undemanding calculation leads to

On(2%) > On(z) & (2", ¢(Dn)) > (z,9(Dn))
< cos(On(x)) >14/1— % .

O

It is interesting to look at the geometric interpretation of
Lemma 2. In fact, it is clear from the proof that =* should
lie in the 2-dimensional subspace spanned by ¢(Dy ) and
x. We are thus able to properly define multiples of an angle
by summation of angles on such linear space 20y (x) :=
On (x)+0n (z). Figure 3 provides an illustration of Lemma
2 in this 2-dimensional subspace from the geometric point
of view. In words, provided that O () < 7/2, z* has a
smaller angle than z is equivalently written using laws of
cosines as

r? =z —z** > 2R?(1 — cos(20n(z)))
2

< cos(20n(x)) > -

5pE & cos(On(x)) >

This recovers exactly the condition stated in Lemma 2.
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Figure 3. Illustration of Lemma 2 with r taking integer values
(representing possible Kendall’s tau distance). The smallest in-
teger value for r such that these inequalities hold is » = 2.

5.3. Embedding of a ball

Foro € &, and k € {0,..., (5)} we denote by B(c, k)
the (closed) ball for the Kendall’s tau distance of center o
and radius k, i.e. B(o,k) = {0’ € 6,, | d(o,0") < k}.
The following is a direct consequence of Proposition 1.

Lemma 3. Foro € &, and k € {0,. .., (;) I3

¢ (6 \ Blo,k)) C $\B(d(0),2VE +1)

5.4. Proof of Theorem 1

We can now prove Theorem 1 by combining the previous
results and observations.

Proof of Theorem 1. Let Dy € &Y be a dataset and o €
&,, a permutation. By Lemma 2, one has for any » > 0,

r2

cos(On (o)) >14/1— 15

= 9N($)>9N(U).

min
z€S\B(é(0),r)

We take 1 = 2vk+ 1.
cos(On(0)) > /1 — ELL which is the condition in Theo-

The left-hand term becomes

R2 >
rem 1. The right-hand term becomes:

min QN(JJ) >9N(O'),
z€S\B(¢(0),2vE+F1)

which implies by Lemma 3 that

i On(c’) >0 .

U’EGI,,I}\IE(U,IC) N(J ) N(J)
This means that for all ¢/ € &,, with d(o,0") > k,
On(0') > On(0). Now, by Lemma 1, any Kemeny consen-
sus o necessarily satisfies O (0*) < Oy(c). One there-
fore has d(o, 0*) < k, and the proof is concluded. O

6. Numerical experiments

In this section we study the tightness of the bound in Theo-
rem | and the applicability of Method 1 through numerical
experiments.

6.1. Tightness of the bound

Recall that we denote by n the number of alternatives,
by Dy € &) any dataset, by r any voting rule, and by
r(Dy) a consensus of Dy given by r. For ease of no-
tation convenience, we assume that [ contains a single
consensus (otherwise we pick one randomly as we do in
all experiments). The approximation efficiency of r to Ke-
meny’s rule is exactly measured by d(r(Dy ), Kn ). Apply-
ing our method with (D) would return an upper bound
for d(r(Dy), Kn), that is:

d(T(DN)7 ’CN) < kmin .

Notably here we are not interested in studying the approx-
imation efficiency of a particular voting rule, but we are
rather interested in studying the approximation efficiency
specific to our method indicated by the tightness of the
bound, i.e.,

—d(r(Dn),Kn) -

S (T7 DN7 TL) = kmin

In other words, s (r, Dy, n) quantifies how confident we
are when we use k;,;, to “approximate” the approxima-
tion efficiency d(r(Dy), Kn) of r to Kemeny’s rule on a
given dataset Dy. The smaller s (r, Dy, n) is, the better
our method works when it is combined with the voting rule
7 to pinpoint the Kemeny consensus on a given dataset Dy .
Note that our notation stresses on the fact that s depends
typically on (r, Dy, n).

We empirically investigate the efficiency of our proposed
method by experimenting s (r, Dy, n) with various voting
rules r, on different datasets Dy, implicitly involving n
as well. For that purpose, in each experiment we test six
prevalent voting rules plus one negative-control method as
approximate candidates to Kemeny’s rule: three scoring
rules that are Borda Count, k-approval, Copeland; two al-
gorithmic approaches that are QuickSort and Pick-a-Perm;
one statistical approach based on Plackett-Luce ranking
model; one baseline method serving a negative control that
is Pick-a-Random where a random permutation is picked
from &,, according to uniform law (independent from the
dataset Dy). Details of the voting rules are found in the
supplementary material.

We first look at the the effect of different voting rules r
on s (r; Dy, n) with the APA dataset. In the 1980 Ameri-
can Psychological Association (APA) presidential election,
voters were asked to rank n = 5 candidates in order of
preference and a total of N = 5738 complete ballots were
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Figure 4. Boxplot of s (r, Dn,n) over sampling collections of datasets shows the effect from different size of alternative set n with

restricted sushi datasets (n = 3;4;5, N = 5000).

reported. With the original collection of ballots introduced
by Diaconis (1989), We created 500 bootstrapped pseudo-
samples following Popova (2012). As shown in Figure
3, s (r; Dy, n) varies across different voting rules and our
method works typically well combined with Borda Count
or Plackett-Luce, a phenomenon that constantly occurs in
many experiments. For example for Borda Count the me-
dian tightness being 3 means that our method provides a
bound that tolerates an approximation within a Kendall’s
tau distance up to 3. We also observe that on the contrary,
the boxplot of Pick-a-Random always shows a wider range
and larger median as expected.
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Figure 5. Boxplot of s (r,Dn,n) over sampling collections of
datasets shows the effect from different voting rules » with 500
bootstrapped pseudo-samples of the APA dataset (n = 5, N =
5738).

The effect of datasets Dy on the measure s (Dy;7,n) is
tested with the Netflix data provided by Mattei et al. (2012).
We set n = 3 the number of ranked alternatives and take
two types of data with distinct characteristics to contrast
their impact: we took the 100 datasets with a Condorcet
winner and randomly selected 100 datasets from those with
no Condorcet winner. The rationale for this experiment is
that Kemeny’s rule is a Condorcet method, i.e., Kemeny
rule always yields a Condorcet winner if it exists. There-
fore we suppose that the efficiency of our method should

also depend on this particular social characteristic present
in data. As expected, it is interesting to note the clear dif-
ference shown by the two types of data shown by Figure
6. In words, our method is more efficient in case that a
Condorcet winner is present in the dataset than the other
case that a Condorcet winner is absent in the sense that s is
generally smaller in the former case.

— Condorcet winner
— No Condorcet winner

(]

bS]

s (Applicability score)

|
—

Figure 6. Boxplot of s(r,Dn,n) over sampling collections of
datasets shows the effect from datasets D . 100 Netflix datasets
with the presence of Condorcet winner and 100 datasets with no
Condorcet winner (n = 4 and N varies for each sample).

We finally study how the s (n;r, D) grows with the size
of the alternative set n using the sushi dataset found in
Kamishima (2003), originally provided as a dataset of N =
5000 full rankings of 10 sushi dishes. As evaluating s re-
quires exact Kemeny consensus which can quickly become
intractable when n is large, we strict in this study the num-
ber of sushi dishes n to be relatively small, and generate
collections of datasets, indexed by combinations of n sushi
dishes outof {1, ..., 10}, by counting the total occurrences
of such order present in the original dataset. For example,
when n = 3 we have a total of (%) = 120 different com-
binations of alternatives (hence 120 collections of datasets)
each generated by counting the total occurrences of prefer-
ence orders of individuals restricted to these 3 alternatives.
Therefore we have a total of 120; 210; 252 datasets respec-
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tively for n = 3;4;5. Figure 4 shows that s (r,Dy,n)
increases as n grows, a trend that is dominant and consis-
tent across all voting rules. Since the maximal distance (g)
in G,, grows quadratically with respect to n, an interesting
question would remain to specify explicitly the dependency
of kynin on n, or the dependency of s (r, Dy, n) on n, for
a given voting rule.

6.2. Applicability of the method

We have so far focused on small n (n < 5) case, and ver-
ified that our method is efficient in using k,,,;,, to approxi-
mate d(r(Dy), ). We are now mostly interested in the
usefulness of our method when £,,,;,, is directly combined
with voting rules in pinpointing Kemeny consensus /Cy
particularly when n is large. Now we employ our method
by using k,,;, for each dataset to upper bound the approx-
imation performance of r(Dy) to Kemeny’s rule. More-
over, suppose that we are still interested in finding the exact
Kemeny consensus despite a good approximation 7(Dy ).
Once we have computed an approximated ranking r(Dy)
and k., is identified via our method, the search scope for
the exact Kemeny consensuses can be narrowed down to
those permutations within a distance of k,,;, to 7(Dy).
Notably Wang et al. (2013, Lemma 1) proved that the to-
tal number of such permutations in &, is upper bounded by
("*t¥min=1) which is usually much smaller than |&,,| = nl.

kmin

%5
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k min
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Figure 7. Boxplot of k;,in over 500 bootstrapped pseudo-samples
of the sushi dataset (n = 10, N = 5000).

We took the original sushi dataset consisting of N = 5000
individual votes on n = 10 sushi dishes and created 500
bootstrapped pseudo-samples following the same empiri-
cal distribution. Note that k,,;, should also depend on
(r,Dn,n). Since our bound is established in general with
any o € G,, and does take into consideration the approxi-
mation efficiency of specific voting rules to Kemeny’s rule,
the predicted k,,,;,, should significantly rely on the approx-
imate voting rules utilized and should be biased more in
favor to voting rules with good approximation to Kemeny’s
rule since k., can never be inferior to d(r(Dy), K ). As

shown in Figure 7, Pick-a-Random and Pick-a-Perm typ-
ically performs poorly, but this is largely due to the fact
that the two voting rules are too naive to well approximate
Kemeny’s rule per se. On the contrary, we observe that
Borda, Copeland and QuickSort combined with our method
best pinpoint Kemeny consensuses with k,,;, of a median
distance 14. This further means that in order to obtain all
the exact Kemeny consensuses now, on average we need to
search through at most (*°*' ") = 817, 190 permutations
instead of 10! = 3,628,800 permutations, where 77% of
permutations in $1( are removed from consideration.

7. Conclusion and discussion

In this paper, we have established a theoretical result that
allows to control the Kendall’s tau distance between a per-
mutation and the Kemeny consensuses of any dataset. In
practice, this provides a simple and general method to pre-
dict, for any ranking aggregation procedure, how close its
output on a dataset is from the Kemeny consensuses. From
a broader perspective, it constitutes a novel approach to ap-
prehend the complexity of Kemeny aggregation.

Our results rely on the geometric properties of the Kemeny
embedding. Though it has rarely been used in the litera-
ture, it provides a powerful framework to analyze Kemeny
aggregation. We therefore believe that it could lead to other
profound results. In particular we deem that an analysis
of how the embeddings of the permutation spread on the
sphere could lead to a finer condition in Theorem 1 which
is left as future work.

Another interesting direction would certainly be to extend
our method to rank aggregation from partial orders, such
as pairwise comparisons or top-k rankings. Two main ap-
proaches can be followed. In the first one, a partial or-
der would be identified with the set S C &,, of its lin-
ear extensions and its distance to a permutation 0 € &,
defined by the average (1/|S|)>_,/cgd(co,0’). The Ke-
meny embedding would then naturally be extended to S
as (1/|8]) > ,cg @(0'), the barycenter of embeddings of
its linear extensions. In the second approach, one would
see a partial order as a collection of pairwise compar-
isons {i1 > j1,...,im > jm} and define its distance to
a permutation 0 € &, by the average number of pair-
wise disagreements (1/m) Y " I{c (i) > o(j,)}. The
Kemeny embedding would then naturally be extended to
{i1 > Jj1,.--yim > Jm} as the embedding of any linear
extension o where the coordinate on {4, j} is put equal to
0 if {4, j} does not appear in the collection. In both cases,
our approach would apply with slight changes to exploit the
related geometrical properties.
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