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Abstract

Cumulative prospect theory (CPT) is known to
model human decisions well, with substantial
empirical evidence supporting this claim. CPT
works by distorting probabilities and is more
general than the classic expected utility and co-
herent risk measures. We bring this idea to a risk-
sensitive reinforcement learning (RL) setting and
design algorithms for both estimation and con-
trol. The RL setting presents two particular chal-
lenges when CPT is applied: estimating the CPT
objective requires estimations of the entire dis-
tribution of the value function and finding a ran-
domized optimal policy. The estimation scheme
that we propose uses the empirical distribution
to estimate the CPT-value of a random variable.
We then use this scheme in the inner loop of a
CPT-value optimization procedure that is based
on the well-known simulation optimization idea
of simultaneous perturbation stochastic approx-
imation (SPSA). We provide theoretical conver-
gence guarantees for all the proposed algorithms
and also illustrate the usefulness of CPT-based
criteria in a traffic signal control application.
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1. Introduction

Since the beginning of its history, mankind has been deeply
immersed in designing and improving systems to serve hu-
man needs. Policy makers are busy with designing systems
that serve the education, transportation, economic, health
and other needs of the public, while private sector enter-
prises work hard at creating and optimizing systems to bet-
ter serve specialized needs of their customers. While it has
been long recognized that understanding human behavior is
a prerequisite to best serving human needs (Simon, |1959),
it is only recently that this approach is gaining a wider
recognition

In this paper we consider human-centered reinforcement
learning problems where the reinforcement learning agent
controls a system to produce long term outcomes (“return’)
that are maximally aligned with the preferences of one or
possibly multiple humans, an arrangement shown in Fig-
ure [I] As a running example, consider traffic optimiza-
tion where the goal is to maximize travelers’ satisfaction,
a challenging problem in big cities. In this example, the
outcomes (“return”) are travel times, or delays. To capture
human preferences, the outcomes are mapped to a single
numerical quantity. While preferences of rational agents
facing decisions with stochastic outcomes can be modeled
using expected utilities, i.e., the expectation of a nonlinear

! As evidence for this wider recognition in the public sector,
we can mention a recent executive order of the White House call-
ing for the use of behavioral science in public policy making, or
the establishment of the “Committee on Traveler Behavior and
Values” in the Transportation Research Board in the US.
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transformation, such as the exponential function, of the re-
wards or costs (Von Neumann & Morgenstern), 1944 [Fish-
burn, [1970), humans are subject to various emotional and
cognitive biases, and, as the psychology literature points
out, human preferences are inconsistent with expected utili-
ties regardless of what nonlinearities are used (Allais, | 1953;
Ellsberg,1961;|[Kahneman & Tverskyl|1979). An approach
that gained strong support amongst psychologists, behav-
ioral scientists and economists (e.g., |Starmer} [2000; |Quig-
ginl 2012) is based on (Kahneman & Tversky,|1979)’s cel-
ebrated prospect theory (PT), the theory that we will base
our models of human preferences on in this work. More
precisely, we will use cumulative prospect theory (CPT), a
later, refined variant of prospect theory due to [Tversky &
Kahneman| (1992)), which superseded prospect theory (e.g.,
Barberis|, [2013). CPT generalizes expected utility theory
in that in addition to having a utility function transforming
the outcomes, another function is introduced which distorts
the probabilities in the camulative distribution function. As
compared to prospect theory, CPT is monotone with re-
spect to stochastic dominance, a property that is thought to
be useful and (mostly) consistent with human preferences.

Reward

[
World ||
CPT

Figure 1. Operational flow of a human-based decision making
system

Our contributions: To our best knowledge, we are the
first to investigate (and define) human-centered RL, and,
in particular, this is the first work to combine CPT with
RL. Although on the surface the combination may seem
straightforward, in fact there are many research challenges
that arise from trying to apply a CPT objective in the RL
framework, as we will soon see. We outline these chal-
lenges as well as our approach to addressing them below.

The first challenge stems from the fact that the CPT-value
assigned to a random variable is defined through a non-
linear transformation of the cumulative distribution func-
tions associated with the random variable (cf. Section [2]
for the definition). Hence, even the problem of estimat-
ing the CPT-value given a random sample requires quite an
effort. In this paper, we consider a natural quantile-based
estimator and analyze its behavior. Under certain technical
assumptions, we prove consistency and give sample com-
plexity bounds, the latter based on the Dvoretzky-Kiefer-
Wolfowitz (DKW) theorem. As an example, we show that

the sample complexity for estimating the CPT-value for
Lipschitz probability distortion (so-called “weight”) func-
tions is O (%), which coincides with the canonical rate
for Monte Carlo-type schemes and is thus unimprovable.
Since weight-functions that fit well to human preferences
are only Holder continuous, we also consider this case and
find that (unsurprisingly) the sample complexity jumps to
O (=7=) where o € (0,1] is the weight function’s Holder
exponent.

Our results on estimating CPT-values form the basis of the
algorithms that we propose to maximize CPT-values based
on interacting either with a real environment, or a simula-
tor. We set up this problem as an instance of policy search:
We consider smoothly parameterized policies whose pa-
rameters are tuned via stochastic gradient ascent. For es-
timating gradients, we use two-point randomized gradi-
ent estimators, borrowed from simultaneous perturbation
stochastic approximation (SPSA), a widely used algorithm
in simulation optimization (Ful [2015). Here a new chal-
lenge arises, which is that we can only feed the two-point
randomized gradient estimator with biased estimates of the
CPT-value. To guarantee convergence, we propose a partic-
ular way of controlling the arising bias-variance tradeoff.

To put things in context, risk-sensitive reinforcement learn-
ing problems are generally hard to solve. For a discounted
MDP, |Sobel| (1982) showed that there exists a Bellman
equation for the variance of the return, but the underly-
ing Bellman operator is not necessarily monotone, thus rul-
ing out policy iteration as a solution approach for variance-
constrained MDPs. Further, even if the transition dynamics
are known, [Mannor & Tsitsiklis| (2013) show that finding
a globally mean-variance optimal policy in a discounted
MDP is NP-hard. For average reward MDPs, [Filar et al.
(1989) motivate a different notion of variance and then pro-
vide NP-hardness results for finding a globally variance-
optimal policy. Solving Conditional Value at Risk (CVaR)
constrained MDPs is equally complicated (cf. Borkar &
Jain|2010; Prashanth|2014; Tamar et al.[2014)). Finally, we
point out that the CPT-value is a generalization of all the
risk measures above in the sense that one can recover these
particular risk measures such as VaR and CVaR by appro-
priate choices of the distortions used in the definition of the
CPT value.

The work closest to ours is by |Lin| (2013)), who proposes a
CPT-measure for an abstract MDP setting. We differ from
this work in several ways: (i) We do not assume a nested
structure for the CPT-value and this implies the lack of a
Bellman equation for our CPT measure; (i) we do not as-
sume model information, i.e., we operate in a model-free
RL setting. Moreover, we develop both estimation and con-
trol algorithms with convergence guarantees for the CPT-
value function.
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Figure 2. An example of a utility function. A reference point on
the z axis serves as the point of separating gains and losses. For
losses, the disutility —u ™ is typically convex, for gains, the utility
u™ is typically concave; they are always non-decreasing and both
of them take on the value of zero at the reference point.

2. CPT-value

For a real-valued random variable X, we introduce a “CPT-
functional” that replaces the traditional expectation oper-
ator. The functional, denoted by C, indexed by u =
(ut,u™), w = (wtr,w™), where u™,u~ : R — R, and
wt,w™ 1 [0,1] — [0,1] are continuous with u*(z) = 0
when 2 < 0 and ©~ (2) = 0 when z > 0 (see assumptions
(A1)-(A2) in Section [3| for precise requirements on u and
w), is defined as

+oo
(Cuyw(X):/O wh (P (uh(X) > 2)) dz

o0
—/O w™ (P(u(X)>2z))dz. (1)

For notational convenience, when u, w are fixed, we drop
the dependence on them and use C(X) to denote the CPT-
value of X . Note that when wt,w™ and u™ (—u ™), when
restricted to the positive (respectively, negative) half line,
are the identity functions, and we let (a)* = max(a,0),
(@)~ = max(—a,0), C(X) = [“P(X >2)dz —
[P (=X > 2)dz = E[(X)T]-E[(X)], showing the
connection to expectations.

In the definition, v, u ™ are utility functions corresponding
to gains (X > 0) and losses (X < 0), respectively, where
zero is chosen as a somewhat arbitrary “reference point” to
separate gains and losses. Handling losses and gains sep-
arately is a salient feature of CPT, and this addresses the
tendency of humans to play safe with gains and take risks
with losses. To illustrate this tendency, consider a scenario
where one can either earn $500 with probability (w.p.) 1
or earn $1000 w.p. 0.5 and nothing otherwise. The human
tendency is to choose the former option of a certain gain.
If we flip the situation, i.e., a certain loss of $500 or a loss
of $1000 w.p. 0.5, then humans choose the latter option.
This distinction of playing safe with gains and taking risks
with losses is captured by a concave gain-utility u™ and a
convex disutility —u~, cf. Fig.

The functions w™, w~, called the weight functions, capture
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Figure 3. An example of a weight function. A typical CPT weight
function inflates small, and deflates large probabilities, capturing
the tendency of humans doing the same when faces with decisions
of uncertain outcomes.

the idea that humans deflate high-probabilities and inflate
low-probabilities. For example, humans usually choose a
stock that gives a large reward, e.g., one million dollars
w.p. 1/10° over one that gives $1 w.p. 1 and the reverse
when signs are flipped. Thus the value seen by a human
subject is non-linear in the underlying probabilities — an ob-
servation backed by strong empirical evidence (Tversky &
Kahneman, [1992; |Barberis}, |2013)). As illustrated with w =
wt = w™~ in Fig 3 the weight functions are continuous,
non-decreasing and have the range [0,1] with w*(0) =
w(0) = 0 and w™ (1) = w™ (1) = 1. Tversky & Kah-

neman| (1992) recommend w(p) while

— p"

= a7
Prelec (1998) recommends w(p) = exp(—(—Inp)7), with
0 < n < 1. In both cases, the weight function has an

inverted-s shape.

Remark 1. (RL applications) For any RL problem setting,
one can define the return for a given policy and then ap-
ply a CPT-functional on the return. For instance, with a
fixed policy, the random variable (r.v.) X could be the to-
tal reward in a stochastic shortest path problem or the in-
finite horizon cumulative reward in a discounted MDP or
the long-run average reward in an MDP.

Remark 2. (Generalization) As noted earlier, the CPT-
value is a generalization of mathematical expectation. It is
also possible to get (1)) to coincide with risk measures (e.g.
VaR and CVaR) by appropriate choice of weight functions.

3. CPT-value estimation

Before diving into the details of CPT-value estimation, let
us discuss the conditions necessary for the CPT-value to
be well-defined. Observe that the first integral in @, ie.,
f0+oo wh (P (ut(X) > z)) dz may diverge even if the first
moment of random variable (X)) is finite. For example,
suppose U has the tail distribution function P (U > z) =
%,z € [1,400), and wT(2) takes the form w(z) = 23,
Then, the first integral in (T)), i.e., f1+°° 2~5 dz does not



CPT meets RL: Prediction and Control

even exist. A similar argument applies to the second inte-
gral in (I as well.

To overcome the above integrability issues, we impose ad-
ditional assumptions on the weight and/or utility functions.
In particular, we assume that the weight functions w™, w™
are either (i) Lipschitz continuous, or (ii) Holder contin-
uous, or (iii) locally Lipschitz. We devise a scheme for
estimating (I)) given only samples from X and show that,
under each of the aforementioned assumptions, our estima-
tor (presented next) converges almost surely. We also pro-
vide sample complexity bounds assuming that the utility
functions are bounded.

3.1. Estimation scheme for Holder continuous weights

Recall the Holder continuity property first:

Definition 1. (Holder continuity) A function f € C([a, b))
is said to satisfy a Holder condition of order o € (0, 1] (or
to be Holder continuous of order «) if there exists H > 0,

s.L.
@)~ 1wl _

sup
zHy |z — y|~

In order to ensure the integrability of the CPT-value (I)), we
make the following assumption:

Assumption (A1). The weight functions w™,w™ are
Holder continuous with common order «. Further, there
exists 7 < « such that (s.t.) f0+oo PY(ut(X) > 2)dz <
~+o0 and f0+°o PY(u™(X) > 2)dz < +o00, where P7(-) =
()"

The above assumption ensures that the CPT-value as de-
fined by (1) is finite - see Proposition 5 in (Prashanth et al.,
2015)) for a formal proof.

Approximating CPT-value using quantiles: Let &; de-

note the kth quantile of the r.v. u™(X). Then, it can be
seen that (see Proposition@in (Prashanth et al.| 2015))

- +1—3 n—i
li Sl e L ot
g Sz (o () e (M)

_ /0 Tt (P (ut(X) > 2)) de. @)

A similar claim holds with v~ (X), £, ,w™ in place of
uT(X), &, w™T, respectively. Here £ denotes the ath
quantile of u~ (X).

However, we do not know the distribution of u™(X) or
u~ (X) and hence, we next present a procedure that uses
order statistics for estimating quantiles and this in turn as-
sists estimation of the CPT-value along the lines of ). The
estimation scheme is presented in Algorithm [T}

Algorithm 1 CPT-value estimation for Holder continuous
weights
1: Simulate n i.i.d. samples from the distribution of X.

2: Order the samples and label them as fol-
lows: Xy Xp2ps -+« s X Note that
ut(Xpy),...,u"(X},)) are also in ascending or-
der.

3: Let

C, = (X Hl—)—w? .
o (o (12 o

4: Apply u~ on the sequence { X1}, X3}, ..., X[n}; nO-

tice that u™ (X{;)) is in descending order since u~ is a
decreasing function.
5: Let

S (e (2) -+ ()

6: Return C,, = @: -C,.

MAIN RESULTS

Proposition 1. (Asymptotic consistency) Assume (Al) and
that F*(-) and F~(-), the respective distribution functions
of u™(X) and v~ (X), are Lipschitz continuous on the re-
spective intervals (0, +00), and (—00,0). Then, we have
that

C, = C(X)as asn — 3)
where C,, is as defined in Algorithmand C(X) as in ().

Under additional assumptions on utility functions, our next
result shows that O (= ) number of samples are sufficient
to get a high-probability estimate of the CPT-value that is
€-accurate:

Assumption (A2). The utility functions v+ and —u~ are
continuous and strictly increasing.

Proposition 2. (Sample complexity.) Assume (Al), (A2)
and also that the utilities u*(X) and u™ (X) are bounded
above by M < oo w.p. 1. Then, Ve > 0,9 > 0, we have

4H?*M?
€2/

P(|C, —C(X)| <€) >1-8,Yn>In <(15) :

3.1.1. RESULTS FOR LIPSCHITZ CONTINUOUS
WEIGHTS

In the previous section, it was shown that Holder continu-
ous weights incur a sample complexity of order O (62%)
and this is higher than the canonical Monte Carlo rate of
O (). In this section, we establish that one can achieve
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the canonical Monte Carlo rate if we consider Lipschitz
continuous weights, i.e., the following assumption in place
of (Al):

Assumption (A1°). The weight functions w*,w™ are Lip-
schitz with common constant L, and v+ (X) and u™ (X)
both have bounded first moments.

Setting « = 1, one can make special cases of the claims
regarding asymptotic convergence and sample complexity
of Proposition However, these results are under a
restrictive Lipschitz assumption on the distribution func-
tions of u*(X) and v~ (X). Using a different proof tech-
nique that employs the dominated convergence theorem
and Dvoretzky-Kiefer-Wolfowitz (DKW) inequality, one
can obtain results similar to Proposition[TH2]with (A1”) and
(A2) only. The following claim makes this precise.

Proposition 3. Assume (Al’) and (A2). Then, we have that
C, = C(X)as. asn — oo

In addition, if we assume that the utilities u*(X) and
u~ (X)) are bounded above by M < oo w.p. 1, then we
have Ve > 0,6 > 0,

P (T - C(X)|<¢)>1-6¥n>In ((13) .

4L2M?

€2

Note that according to this proposition, our estimation
scheme is sample-efficient (choosing the weights to be the
identity function, the sample complexity cannot be im-
proved).

3.2. Estimation scheme for locally Lipschitz weights
and discrete X

Here we assume that the r.v. X is discrete valued. Let
pi,t = 1,..., K, denote the probability of incurring a
gain/loss ;,2 = 1,..., K, wherez; < ... <2; <0<
Ti41 < ... < xx and let

k K
Fo=Y prifk<land Y ppifk>1 @)
1=1 i=k

Then, the CPT-value is defined as
l
)= (@) o)+ 3w (@) (w (F) —w (Fir))

K-1
+ 3wt (w0t (E) — vt () +ut @ow (o),
i=l+1
where v, u~ are utility functions and w™, w™ are weight
functions corresponding to gains and losses, respectively.
The utility functions ©™ and u~ are non-decreasing, while
the weight functions are continuous, non-decreasing and
have the range [0,1] with wt(0) = w~(0) = 0 and
wh(l)=w (1) = 1.

Estimation scheme. Letp, = 1>"  Iy_,, yand

k K
B, = Zf’k if k <land Zﬁk ifk > 1. (5)
=1 i=k

Then, we estimate C(X) as follows:

C, :u_(m)w_(ﬁl)—i—i u” (x;) (w_(ﬁ'i) - w_(ﬁ'i_l))

K-1
+ 3wt (W (B) — 0 () + ot (@)w ().
i=l+1

Assumption (A3). The weight functions w(X) and
w~ (X) are locally Lipschitz continuous, i.e., for any x,
there exist L < oo and p > 0, such that

[w¥ (z) —w* (y)| < Le|o —y|, forally € (z —p,z + p).

The main result for discrete-valued X is given below.

Proposition 4. Assume (A3). Let L = max{Ly, k =
2...K}, where Ly is the local Lipschitz constant of func-
tion w™(x) at points Fy, where k = 1,...,l, and of
function w* (x) at points k = 1+ 1,...,K. Let M =
max{u~ (zg),k=1,..., 0} H{uT(zx), k =1+1,...,K}
and p = min{py }, where py, is half the length of the inter-
val centered at point Fy, where (A3) holds with constant Ly,.
Then, Ve > 0,0 > 0, we have

P(|C0 — C(X)| < ) >1-6,¥n > im(é) In (‘;};)

where k = min(p?, €2 /(K LM)?).

In comparison to Propositions [2] and 3] observe that the
sample complexity for discrete X scales with the local Lip-
schitz constant L and this can be much smaller than the
global Lipschitz constant of the weight functions, or the
weight functions may not be Lipschitz globally.

The detailed proofs of Propositions [[H4] are available in
(Prashanth et al., 2015)).

4. Gradient-based algorithm for CPT
optimization (CPT-SPSA)

Optimization objective: Suppose the r.v. X in (I) is a
function of a d-dimensional parameter 6. In this section we
consider the problem

Find 0" = arg max C(X?), (6)

00

where © is a compact and convex subset of R%. As men-
tioned earlier, the above problem encompasses policy opti-
mization in an MDP that can be discounted or average or
episodic and/or partially observed. The difference here is
that we apply the CPT-functional to the return of a policy,
instead of the expected return.
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4.1. Gradient estimation

Given that we operate in a learning setting and only have
biased estimates of the CPT-value from Algorithm [I] we
require a simulation scheme to estimate VC(X?). Simulta-
neous perturbation methods are a general class of stochas-
tic gradient schemes that optimize a function given only
noisy sample values - see (Bhatnagar et al. [2013) for a
textbook introduction. SPSA is a well-known scheme that
estimates the gradient using two sample values. In our con-
text, at any iteration n of CPT-SPSA-G, with parameter 6,,,
the gradient VC(X?%) is estimated as follows: For any
1=1,...,d,

=On+onAn

C nln

70,"’_
-C,
26, AL ’
where §,, is a positive scalar that satisfies (A3) below,
A, = (AL...,A%)", where {Al,i = 1,....d}, n =
1,2,... are i.i.d. Rademacher, independent of 6y, ..., 0,

*9n+51zAn *971_5nAn
and C,, (resp. C, ) denotes the CPT-value
estimate that uses m,, samples of the r.v. X% +n%n (resp.

n

V.C(x%) =

(7

67’1ATL . . .
X" ). The (asymptotic) unbiasedness of the gradi-
ent estimate is proven in Lemma[5]

4.2. Update rule
We incrementally update the parameter 6 in the ascent di-
rection as follows: Fori =1,...,d,

Ohir =T (0 + 7 ViC(X™) ) @)

where v, is a step-size chosen to satisfy (A3) below and
I' = (T'y,...,T4) is an operator that ensures that the up-
date (8] stays bounded within a compact and convex set ©.
Algorithm [2] presents the pseudocode.

On the number of samples m,, per iteration: The CPT-
value estimation scheme is biased, i.e., providing samples
with parameter 6,, at instant n, we obtain its CPT-value
estimate as C(X%) + ¢/, with ¢/ denoting the bias. The
bias can be controlled by increasing the number of samples
my, in each iteration of CPT-SPSA (see Algorithm[2). This
is unlike many simulation optimization settings where one
only sees function evaluations with zero mean noise and
there is no question of deciding on m,, to control the bias
as we have in our setting.

To motivate the choice for m,,, we first rewrite the update
rule (8] as follows:

9;4—1 =I; (9; +Mn (
(EZIL+67LA71 — 6?{1_6n An)
26, A}

(C(XQ"""S"A") _ (C(Xe"_‘s"A")
20, Al

n

+

Kn

Algorithm 2 Structure of CPT-SPSA-G algorithm.

Input: initial parameter 6, € © where © is a compact
and convex subset of R?, perturbation constants d,, > 0,
sample sizes {m,, }, step-sizes {7, }, operator I" : R% —
0.
forn=0,1,2,...do
Generate {A?,i = 1,...,d} using Rademacher dis-
tribution, independent of {A,,,m =0,1,...,n —1}.
CPT-value Estimation (Trajectory 1)
Simulate m,, samples using (6,, + 6, A,).
Obtain CPT-value estimate @i"+ e
CPT-value Estimation (Trajectory 2)
Simulate m,, samples using (6,, — 6, A,).
Obtain CPT-value estimate @i"_ e
Gradient Ascent
Update 6,, using (8).
end for
Return 6,,.

Let ¢, = 27:0 vik;. Then, a critical requirement that al-
lows us to ignore the bias term ¢, is the following condition
(see Lemma 1 in Chapter 2 of (Borkar} 2008)):

sup (Cpy1 — Cn) — 0asn — oo.
1>0

While Theorems show that the bias €’ is bounded
above, to establish convergence of the policy gradient re-
cursion @I), we increase the number of samples m,, so that
the bias vanishes asymptotically. The assumption below
provides a condition on the increase rate of m,,.

Assumption (A3). The step-sizes 7, and the perturbation
constants ¢,, are positive Vn and satisfy

2
Yn, On %0,% —>O7Z% = oo and Zg—g < 0.
Mn 571 n n "
While the conditions on =y, and §,, are standard for SPSA-
based algorithms, the condition on m,, is motivated by the
earlier discussion. A simple choice that satisfies the above
conditions is v, = ag/n, m, = men* and 6,, = §p/n7,
for some v,y > 0 with v > va/2.

4.3. Convergence resul

Theorem 1. Assume (Al)-(A3) and also that C(X?) is a
continuously differentiable function of 0, for any 6 € (ﬂ
Consider the ordinary differential equation (ODE):

fi =T, (—VC(X93)) fori=1,....d,
’The detailed proof is available in (Prashanth et al.,|2015).

3In a typical RL setting, it is sufficient to assume that the pol-
icy is continuously differentiable in 6.
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where T;(f(0)) := li% W, for any continuous

f(). Let K = {0 | I'; (V,C(X?)) = 0,Vi = 1,...,d}.
Then, for 0,, governed by (B), we have

0, — Ka.s. asn — oo.

S. Simulation Experiments

We consider a traffic signal control application where the
aim is to improve the road user experience by an adap-
tive traffic light control (TLC) algorithm. We apply the
CPT-functional to the delay experienced by road users,
since CPT realistically captures the attitude of the road
users towards delays. We then optimize the CPT-value of
the delay and contrast this approach with traditional ex-
pected delay optimizing algorithms. It is assumed that
the CPT functional’s parameters (u, w) are given (usually,
these are obtained by observing human behavior). The ex-
periments are performed using the GLD traffic simulator
(Wiering et al., [2004) and the implementation is available
athttps://bitbucket.org/prashla/rl-gld.

We consider a road network with A signalled lanes that
are spread across junctions and M paths, where each path
connects (uniquely) two edge nodes, from which the traf-
fic is generated — cf. Fig. At any instant n, let ¢/,
and ¢!, denote the queue length and elapsed time since the
lane turned red, for any lane i = 1,...,N. Let d%’ de-
note the delay experienced by jth road user on ith path,
foranyi = 1,...,.M and j = 1,...,n;, where n; de-
notes the number of road users on path ¢. We specify the
various components of the traffic control MDP below. The
state s, = (qb, ..., ¢\, tL, .. N dLt . dMra)T s
a vector of lane-wise queue lengths, elapsed times and
path-wise delays. The actions are the feasible traffic sig-
nal configurations.

We consider three different notions of return as follows:
CPT: Let i* be the proportion of road users along path i,
fori =1,..., M. Any road user along path ¢, will evaluate
the delay he experiences in a manner that is captured well
by CPT. Let X; be the delay r.v. for path ¢ and let the
corresponding CPT-value be C(X;). With the objective of
maximizing the experience of road users across paths, the
overall return to be optimized is given by

M
CPT(X1,...,Xpm) = ZmC(Xi). )
=1

EUT: Here we only use the utility functions u* and u~
to handle gains and losses, but do not distort probabilities.
Thus, the EUT objective is defined as

M
EUT(Xy,...,Xum) = Z” (E(ut(X;) —E(u (X)),

where E(ut(X;)) = [Pt (X;)>z)d> and
E(u (X)) — [ P (u™(X;) > 2)dz, fori = 1,..., M.
AVG: This is EUT without the distinction between gains
and losses via utility functions, i.e.,

AVG(X1,..., X)) = S WE(X,).

An important component of CPT is to employ a reference
point to calculate gains and losses. In our setting, we use
path-wise delays obtained from a pre-timed TLC (cf. the
Fixed TLCs in (Prashanth & Bhatnagar, [2011))) as the ref-
erence point. If the delay of any algorithm (say CPT-SPSA)
is less than that of pre-timed TLC, then the (positive) dif-
ference in delays is perceived as a gain and in the comple-
mentary case, the delay difference is perceived as a loss.
Thus, the CPT-value C(X;) for any path ¢ in (9) is to be
understood as a differential delay.

Using a Boltzmann policy that has the form

N
A

0T¢s,a’

, Vs €S8, Va e A(s),

mo(s,a) =

Za’ cA(s) €

with features ¢, , as described in Section V-B of
(Prashanth & Bhatnagar, |2012), we implement the follow-
ing TLC algorithms:

CPT-SPSA: This is the first-order algorithm with SPSA-
based gradient estimates, as described in Algorithm [2] In
particular, the estimation scheme in Algorithm [I] is in-
voked to estimate C(X;) for each path ¢ = 1,..., M, with
dii,j=1,...,n; as the samples.

EUT-SPSA: This is similar to CPT-SPSA, except that
weight functions w™ (p) = w™(p) = p, for p € [0, 1].

AVG-SPSA: This is similar to CPT-SPSA, except that
weight functions wt (p) = w™(p) = p, for p € [0, 1].

For both CPT-SPSA and EUT-SPSA, we set the utility
functions (see (I)) as follows:

ut(z) = |z|7, and u” () = x|,

where A = 2.25 and 0 = 0.88. For CPT-SPSA, we set the
weights as follows:

+ pT]l
(p) = B
(pm + (]_ — p)m)nl
_ p7]2
p) = 1
(p™ + (L —p)m2)=
where 71 = 0.61 and 72 = 0.69. The choices for A, o, 11
and 75 are based on median estimates given by (Tversky
& Kahneman, [1992)) and have been used earlier in a traffic
application (see (Gao et al.,[2010)). For all the algorithms,

motivated by standard guidelines (see [Spalll2005)), we set
8, = 1.9/n%1%% and a,, = 1/(n + 50). The initial point 6

, and



https://bitbucket.org/prashla/rl-gld

CPT meets RL: Prediction and Control

is the d-dimensional vector of ones and V, the operator I';
projects 6; onto the set [0.1,10.0].

The experiments involve two phases: first, a training phase
where we run each algorithm for 200 iterations, with each
iteration involving two perturbed simulations, each of tra-
jectory length 500. This is followed by a test phase where
we fix the policy for each algorithm and 100 independent
simulations of the MDP (each with a trajectory length of
1000) are performed. After each run in the test phase, the
overall CPT-value () is estimated.

Figures (b)H4(d)] present the histogram of the CPT-values
from the test phase for AVG-SPSA, EUT-SPSA and CPT-
SPSA, respectively. A similar exercise for pre-timed TLC
resulted in a CPT-value of —46.14. It is evident that each
algorithm converges to a different policy. However, the
CPT-value of the resulting policies is highest in the case
of CPT-SPSA, followed by EUT-SPSA and AVG-SPSA in
that order. Intuitively, this is expected because AVG-SPSA
uses neither utilities nor probability distortions, while EUT-
SPSA distinguishes between gains and losses using utilities
while not using weights to distort probabilities. The results
in Figure [4] argue for specialized algorithms that incorpo-
rate CPT-based criteria, esp. in the light of previous find-
ings which show CPT matches human evaluation well and
there is a need for algorithms that serve human needs well.

6. Conclusions

CPT has been a very popular paradigm for modeling hu-
man decisions among psychologists/economists, but has
escaped the radar of the Al community. This work is the
first step in incorporating CPT-based criteria into an RL
framework. However, both prediction and control of CPT-
based value is challenging. For prediction, we proposed a
quantile-based estimation scheme. Next, for the problem of
control, since CPT-value does not conform to any Bellman
equation, we employed SPSA - a popular simulation opti-
mization scheme and designed a first-order algorithm for
optimizing the CPT-value. We provided theoretical con-
vergence guarantees for all the proposed algorithms and il-
lustrated the usefulness of our algorithms for optimizing
CPT-based criteria in a traffic signal control application.
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(a) Snapshot of a 2x2-grid network from
GLD simulator. The figure shows eight
edge nodes that generate traffic, four traf-
fic lights and four-laned roads carrying

cars.
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Figure 4. Histogram of CPT-value of the differential delay (calcu-
lated with a pre-timed TLC as reference point) for three different
algorithms (all based on SPSA): AVG uses plain sample means
(no utility/weights), EUT uses utilities but no weights and CPT
uses both utilites and weights. Note: larger values are better.
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