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Abstract
Low-rank matrix approximation has been widely
adopted in machine learning applications with s-
parse data, such as recommender systems. How-
ever, the sparsity of the data, incomplete and
noisy, introduces challenges to the algorithm sta-
bility – small changes in the training data may
significantly change the models. As a result, ex-
isting low-rank matrix approximation solution-
s yield low generalization performance, exhibit-
ing high error variance on the training dataset,
and minimizing the training error may not guar-
antee error reduction on the testing dataset. In
this paper, we investigate the algorithm stabili-
ty problem of low-rank matrix approximations.
We present a new algorithm design framework,
which (1) introduces new optimization objectives
to guide stable matrix approximation algorithm
design, and (2) solves the optimization problem
to obtain stable low-rank approximation solu-
tions with good generalization performance. Ex-
perimental results on real-world datasets demon-
strate that the proposed work can achieve better
prediction accuracy compared with both state-of-
the-art low-rank matrix approximation methods
and ensemble methods in recommendation task.

1. Introduction
Low-rank matrix approximation (LRMA) has been widely
adopted in machine learning applications with sparse da-
ta, e.g., recommender systems (Paterek, 2007; Koren et al.,
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2009). In LRMA-based recommender systems (Paterek,
2007; Koren et al., 2009), a given user-item rating matrix
is approximated using observed ratings (often sparse), then
user ratings on unrated items are predicted using the dot
product of corresponding user and item feature vectors. L-
RMA methods have the capability of reducing the dimen-
sionality of user/item rating vectors, hence are suitable to
handle applications with sparse data (Koren et al., 2009).
Indeed, LRMA-based solutions have been widely used in
existing recommender systems (Paterek, 2007; Koren et al.,
2009; Lee et al., 2013; Beutel et al., 2015).

The sparsity of the data, incomplete and noisy (Keshavan
et al., 2010; Candès & Recht, 2012), introduces challenges
to the algorithm stability. In LRMA, models are biased to
the limited training data (sparse), so that small changes in
the training data (noisy) may significantly change the mod-
els. As demonstrated in this work, existing LRMA meth-
ods cannot provide stable matrix approximations. Such un-
stable matrix approximations will introduce high training
error variance, and minimizing the training error may not
guarantee consistent error reduction on the testing dataset,
i.e., low generalization performance (Bousquet & Elisseeff,
2001; Srebro et al., 2004a;b). In other words, the algorithm
stability has direct impact on generalization performance,
and an unstable LRMA algorithm has low generalization
performance (Srebro et al., 2004a).

Heuristic techniques, such as cross-validation and ensem-
ble learning (Koren, 2008; Mackey et al., 2011; Lee et al.,
2013; Chen et al., 2015), can be adopted to improve the
generalization performance of LRMA. However, cross val-
idation methods have the drawback that the amount of da-
ta available for model learning is reduced (Kohavi, 1995;
Bousquet & Elisseeff, 2001). Ensemble LRMA method-
s (Lee et al., 2013; Chen et al., 2015) are computational-
ly expensive due to the training of sub-models. Recently,
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the notion of “algorithmic stability” has been introduced
to investigate the theoretical bound of the generalization
performance of learning algorithms (Bousquet & Elisseef-
f, 2001; 2002; Agarwal & Niyogi, 2009; Shalev-Shwartz
et al., 2010; London et al., 2013). It is timely to develop
stable algorithms with low generation errors, suitable for
learning applications with sparse data.

This paper presents a stable LRMA algorithm design
framework. It formulates new optimization objectives to
derive stable LRMA algorithms, namely SMA, and solves
the new optimization objectives to obtain SMA solutions
with good generalization performance. We first introduce
the stability notion in LRMA, and then develop theoretical
guidelines for deriving LRMA solutions with high stability.
Then, we formulate a new optimization problem for achiev-
ing stable LRMA, in which minimizing the loss function
can obtain solutions with high stability, i.e., good general-
ization performance. Finally, we develop a stochastic gra-
dient descent method to solve the new optimization prob-
lem. Experimental results on real-world datasets demon-
strate that the proposed SMA method can deliver a stable
LRMA algorithm, which achieves better prediction accura-
cy over state-of-the-art single LRMA methods and ensem-
ble LRMA methods in recommendation task. The key con-
tributions of this paper are as follows: (1) this work first in-
troduces the stability concept in LRMA, which can provide
theoretical guidelines for deriving stable matrix approxi-
mation; (2) a stable LRMA algorithm design framework is
proposed, which can achieve high stability, i.e., high gener-
alization performance by designing and solving new opti-
mization objectives derived based on stability analysis; (3)
evaluation using real-world datasets demonstrates that the
proposed work can make significant improvement in pre-
diction accuracy over state-of-the-art LRMA methods and
ensemble methods in recommendation task.

The rest of this paper is organized as follows: Section 2
formulates stability problem in LRMA and formally proves
key observations. Section 3 presents details of SMA. Sec-
tion 4 presents the experimental results. Section 5 discusses
related work, and we conclude this work in Section 6.

2. Stability of LRMA
This section first summarizes LRMA, and then introduces
the definition of stability. Next, we conduct quantitative
analysis of the relationship between algorithm stability and
generalization error. Finally, we present key guidelines to
developing stable LRMA, and derive theoretical proof.

2.1. Low-Rank Matrix Approximation

In this paper, upper case letters, such as R,U, V denote
matrices. For a targeted matrix R ∈ Rm×n, Ω denotes

the set of observed entries in R, and R̂ denotes the low-
rank approximation of R. The objective of r-rank matrix
approximation is to determine two feature matrices, i.e.,
U ∈ Rm×r, V ∈ Rn×r, s.t., R̂ = UV T . The rank r is con-
sidered low in many scenarios, because r � min{m,n}
can deliver good performance in many real applications.

The feature matrices U and V cannot be determined arbi-
trarily in low-rank matrix approximation. Generally, loss
functions should be defined towards different tasks, and
U and V are chosen to minimize such loss functions (Lee
& Seung, 2001; Salakhutdinov & Mnih, 2007; 2008; Yan
et al., 2010). Let loss function Loss(R, R̂) be the error of
approximating R by R̂, the optimization problem of LR-
MA can be formally described as follows:

R̂ = arg min
X

Loss(R,X), rank(X) = r. (1)

The loss functions should vary for different tasks. For
instance, Singular Value Decomposition (SVD) usually
adopts Frobenius norm to define loss function, and Com-
pressed Sensing adopts nuclear norm. Typically, the prob-
lems defined by Equation 1 are often difficult non-convex
optimization problems, so that iterative methods, e.g., gra-
dient descent (GD), stochastic gradient descent (SGD), are
adopted to find solutions that will converge to local mini-
mum (Lee & Seung, 2001; Salakhutdinov & Mnih, 2007).

2.2. Stability w.r.t Matrix Approximation

Recent work on algorithmic stability (Bousquet & Elisseef-
f, 2001; 2002; Lan et al., 2008; London et al., 2013) demon-
strated that a stable learning algorithm has the property that
replacing one element in the training set does not result in
significant change to the algorithm’s output. Therefore, if
we take the training error as a random variable, the training
error of stable learning algorithm should have small vari-
ance. This implies that stable algorithms have the property
that the training errors are close to the test errors (Bousquet
& Elisseeff, 2001; Lan et al., 2008; London et al., 2013).
The rest of this section introduces and analyzes the algo-
rithm stability problem of low-rank matrix approximation.

Root Mean Square Error (RMSE), as a common evalua-
tion metric for recommendation tasks, is adopted to mea-
sure the stability of matrix approximation. Let D(R̂) =√

1
mn

∑m
i=1

∑n
j=1 (Ri,j − R̂i,j)2 be the root mean square

error of approximating R with R̂. One of the objectives
of matrix approximation is to approximate a given ma-
trix R based on a set of observed entries Ω (DΩ(R̂) =√

1
|Ω|
∑

(i,j)∈Ω (Ri,j − R̂i,j)2). Thus, the stability of ap-
proximating R is defined as follows.
Definition 1 (Stability w.r.t. Matrix Approximation). For
any R ∈ Fm×n, choose a subset of entries Ω from R uni-
formly. For a given ε > 0, we say that DΩ(R̂) is δ-stable if
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the following holds:

Pr[|D(R̂)−DΩ(R̂)| ≤ ε] ≥ 1− δ. (2)

Matrix approximation with stability guarantee has the
property that the generalization error is bounded. Minimiz-
ing the training error will have a high probability of mini-
mizing the test error. The stability notion introduced in this
work defines how stable an approximation is in terms of
the overall prediction error. It is different from the Unifor-
m Stability definition (Bousquet & Elisseeff, 2001), which
defines the prediction stability on individual entries. This
new stability notion makes it possible to measure the gen-
eralization performance between different approximation-
s. For instance, for any two subsets of entries Ω1 and Ω2

from R, approximating R by Ω1 and Ω2 are δ1-stable and
δ2-stable, respectively, then DΩ1

(R̂) is more stable than
DΩ2

(R̂) if δ1 < δ2. This implies that DΩ1
(R̂) is close

to D(R̂) with higher probability than DΩ2
(R̂), i.e., min-

imizing DΩ1(R̂) will lead to solutions that are of higher
probabilities with better generalization performance than
minimizing DΩ2

(R̂). In summary, using the stability no-
tion introduced in this paper, we can define new matrix ap-
proximation problems which can yield solutions with high
stability, i.e., high generalization performance.

2.3. Stability vs. Generalization Error
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Figure 1. Stability vs. generalization error with different rank r
on MovieLens (1M) dataset.

Figure 1 quantifies stability changes of LRMA method with
the generalization error when rank r increases from 5 to
20. This experiment uses RSVD (Paterek, 2007), a popular
LRMA-based recommendation algorithm, on the Movie-
Lens (1M) dataset (∼106 ratings, 6,040 users, 3,706 items).
We choose ε in Definition 1 as 0.0046 to cover all error dif-
ferences when r = 5. We compute Pr[|D(R̂)−DΩ(R̂)| ≤
ε] with 500 different runs to measure stability (y-axis), and
compute RMSE differences between training and test data
to measure generalization error (x-axis).

As shown in Figure 1, the generalization error increases
when rank r increases, because LRMA models become
more complex and more biased on training data with high-
er ranks. In contrary, the stability of RSVD decreases with
r increases. This indicates that (1) stability decreases with

generalization error increases, and (2) RSVD cannot pro-
vide stable recommendation even the rank is as low as 20.
This study demonstrates that existing LRMA methods suf-
fer from low generalization performance due to low algo-
rithm stability. Therefore, it is important to develop stable
LRMA methods with good generalization performance.

2.4. Stability Analysis

Next, we introduce the Hoeffding’s Lemma, and then ana-
lyze the the Stability properties of low-rank matrix approx-
imation problems.
Lemma 1 (Hoeffding’s Lemma). Let X be a real-valued
random variable with zero mean and Pr (X ∈ [a, b]) = 1.
Then, for any s ∈ R, E

[
esX

]
≤ exp

(
1
8s

2(b− a)2
)
.

Following the Uniform Stability (Bousquet & Elisseeff,
2001), given a stable LRMA algorithm, the approximation
results remain stable if the change of the training data set,
i.e., the set of observed entries Ω from the original matrix
R, is small. For instance, we can remove a subset of easily
predictable entries from Ω to obtain Ω′. It is desirable that
the solution of minimizing both DΩ and DΩ′ together will
be more stable than the solution of minimizing DΩ only.
The following Theorem 1 formally proves the statement.
Theorem 1. Let Ω (|Ω| > 2) be a set of observed entries in
R. Let ω ⊂ Ω be a subset of observed entries, which satisfy
that ∀(i, j) ∈ ω, |Ri,j − R̂i,j | ≤ DΩ(R̂). Let Ω′ = Ω− ω,
then for any ε > 0 and 1 > λ0, λ1 > 0 (λ0 + λ1 = 1),
λ0DΩ(R̂) + λ1DΩ′(R̂) and DΩ(R̂) are δ1-stable and δ2-
stable, resp., then δ1 ≤ δ2.

Proof. Let’s assume that D(R̂) − DΩ(R̂) ∈ [−a, a]
(a = sup{D(R̂) − DΩ(R̂)}) and D(R̂) − (λ0DΩ(R̂) +
λ1DΩ′(R̂)) ∈ [−a′, a′] (a′ = sup{D(R̂) − (λ0DΩ(R̂) +
λ1DΩ′(R̂))}) are two random variables with 0 mean.

Based on Markov’s inequality, for any t > 0, we have

Pr[D(R̂)−DΩ(R̂) ≥ ε] ≤ E(et(D(R̂)−DΩ(R̂)))

etε
.

Then, based on Lemma 1, we have Pr[D(R̂) − DΩ(R̂) ≥
ε] ≤ exp ( 1

2 t
2a2)

exp (tε) and Pr[−D(R̂) + DΩ(R̂) ≥ ε] ≤
exp ( 1

2 t
2a2)

exp (tε) . Combining above two equations, we have

Pr[|D(R̂)−DΩ(R̂)| ≥ ε] ≤ 2 exp ( 1
2 t

2a2)

exp (tε) , i.e., Pr[|D(R̂)−

DΩ(R̂)| ≤ ε] ≥ 1 − 2 exp ( 1
2 t

2a2)

exp (tε) . Similarly, we have

Pr[|D(R̂) − (λ0DΩ(R̂) + λ1DΩ′(R̂))| ≤ ε] ≥ 1 −
2 exp ( 1

2 t
2a′2)

exp (tε) . We can compare a′ with a as follows:

a′ = sup{D(R̂)−DΩ(R̂) + λ1(DΩ(R̂)−DΩ′(R̂))}
= sup{D(R̂)−DΩ(R̂)}+ λ1 sup{DΩ(R̂)−DΩ′(R̂)}
= a+ λ1 sup{DΩ(R̂)−DΩ′(R̂)}.



Low-Rank Matrix Approximation with Stability

Since ∀(i, j) ∈ ω, |Ri,j − R̂i,j | ≤ DΩ(R̂), we have
1/|ω|

∑
(i,j)∈ω(Ri,j − R̂i,j)

2 ≤ D2
Ω(R̂), i.e., Dω(R̂) ≤

DΩ(R̂). Then, since Ω = ω ∪ Ω′, we have DΩ′(R̂) ≥
DΩ(R̂). This means that sup{DΩ(R) − DΩ′(R)} ≤ 0.

Thus, we have a′ ≤ a. This turns out that 2 exp ( 1
2 t

2a′2)

exp (tε) ≤
2 exp ( 1

2 t
2a2)

exp (tε) , i.e., δ1 ≤ δ2.

Remark. The above Theorem 1 indicates that, if we re-
move a subset of entries that are easier to predict than av-
erage from Ω to form Ω′, then λ0DΩ(R̂) + λ1DΩ′(R̂) has
a higher probability of being close to D(R̂) than DΩ(R̂).
Therefore, minimizing λ0DΩ(R̂) + λ1DΩ′(R̂) will lead to
solutions that have better generalization performance than
minimizing DΩ(R̂). It should be noted that the condition
that ∀(i, j) ∈ ω, |Ri,j − R̂i,j | ≤ DΩ(R̂) is not necessary.
The conclusion will be the same if Dω(R̂) ≤ DΩ(R̂). The
following Proposition 1 formally shows this.

Proposition 1. Let Ω (|Ω| > 2) be a set of observed entries
in R. Let ω ⊂ Ω be a subset of observed entries, which
satisfy that Dω(R̂) ≤ DΩ(R̂). Let Ω′ = Ω − ω, then for
any ε > 0 and 1 > λ0, λ1 > 0 (λ0 + λ1 = 1), λ0DΩ(R̂) +
λ1DΩ′(R̂) and DΩ(R̂) are δ1-stable and δ2-stable, resp.,
then δ1 ≤ δ2.

Proof. This proof is omitted as it is similar to that of The-
orem 1.

However, Theorem 1 and Proposition 1 only prove that it
is beneficial to remove easily predictable entries from Ω to
obtain Ω′, but does not show how many entries we should
remove from Ω. The following Theorem 2 shows that re-
moving more entries that satisfy |Ri,j − R̂i,j | ≤ DΩ(R̂)
can yield better Ω′.

Theorem 2. Let Ω (|Ω| > 2) be a set of observed entries in
R. Let ω2 ⊂ ω1 ⊂ Ω, and ω1 and ω2 satisfy that ∀(i, j) ∈
ω1(ω2), |Ri,j − R̂i,j | ≤ DΩ(R̂). Let Ω1 = Ω − ω1 and
Ω2 = Ω − ω2, then for any ε > 0 and 1 > λ0, λ1 > 0
(λ0 + λ1 = 1), λ0DΩ(R̂) + λ1DΩ1(R̂) and λ0DΩ(R̂) +
λ1DΩ2

(R̂) are δ1-stable and δ2-stable, resp., then δ1 ≤ δ2.

Proof. Similar to Theorem 1, let’s assume that D(R̂) −
(λ0DΩ(R̂) + λ1DΩ1

(R̂)) ∈ [−a1, a1] (a1 = sup{D(R̂)−
(λ0DΩ(R̂) + λ1DΩ1

(R̂))}) and D(R̂) − (λ0DΩ(R̂) +
λ1DΩ2

(R̂)) ∈ [−a2, a2] (a2 = sup{D(R̂)− (λ0DΩ(R̂) +
λ1DΩ2

(R̂))}) are two random variables with 0 mean.

Applying Lemma 1 and the Markov’s inequality, we have
Pr[|D(R̂) − (λ0DΩ(R̂) + λ1DΩ1

(R̂))| ≤ ε] ≥ 1 −
2 exp ( 1

2 t
2a2

1)

exp (tε) and Pr[|D(R̂)− (λ0DΩ(R̂) + λ1DΩ2(R̂))| ≤

ε] ≥ 1 − 2 exp ( 1
2 t

2a2
2)

exp (tε) . Since ∀(i, j) ∈ ω1(ω2), |Ri,j −
R̂i,j | ≤ DΩ(R̂) and ω2 ⊂ ω1, we have DΩ1(R̂) ≥

DΩ2
(R̂). Thus, we have sup{DΩ1

(R̂) − DΩ2
(R̂)} ≤ 0.

Since a1 = a2 + λ1 sup{DΩ1(R̂) − DΩ2(R̂)}, we have
a1 ≤ a2. Then, similar to Theorem 1, we can conclude
that δ1 ≤ δ2.

Remark. From Theorem 2, we know that removing more
entries that are easy to predict will yield more stable matrix
approximation. Therefore, it is desirable to choose Ω′ as
the whole set of entries which are harder to predict than
average, i.e., the whole set of entries satisfying ∀(i, j) ∈
Ω′, |Ri,j − R̂i,j | ≥ DΩ(R̂).

Theorem 1 and 2 only consider choosing one Ω′ to find
stable matrix approximations. The next question is, is it
possible to choose more than one Ω′ that satisfy the above
condition, and yield more stable solutions by minimizing
them all together. The following Theorem 3 shows that
incorporating K such entry sets (Ω′) will be more stable
than incorporating any K − 1 out of the K entry sets.

Theorem 3. Let Ω (|Ω| > 2) be a set of observed entries in
R. ω1, ..., ωK ⊂ Ω (K > 1) satisfy that ∀(i, j) ∈ ωk (1 ≤
k ≤ K), |Ri,j − R̂i,j | ≤ DΩ(R̂). Let Ωk = Ω− ωk for all
1 ≤ k ≤ K. Then, for any ε > 0 and 1 > λ0, λ1, ..., λK >
0 (
∑K
i=0 λi = 1), λ0DΩ(R̂) +

∑
k∈[1,K] λkDΩk

(R̂) and

(λ0 + λK)DΩ(R̂) +
∑
k∈[1,K−1] λkDΩk

(R̂) are δ1-stable
and δ2-stable, resp., then δ1 ≤ δ2.

Proof. Let’s assume that D(R̂) − ((λ0 + λK)DΩ(R̂) +∑
k∈[1,K−1] λkDΩk

(R̂)) ∈ [−a, a] (a = sup{D(R̂) −
((λ0+λK)DΩ(R̂)+

∑
k∈[1,K−1] λkDΩk

(R̂))} andD(R̂)−
(λ0DΩ(R̂) +

∑
k∈[1,K] λkDΩk

(R̂)) ∈ [−a′, a′] (a′ =

sup{D(R̂)− (λ0DΩ(R̂) +
∑
k∈[1,K] λkDΩk

(R̂))} are two
random variables with 0 mean.

Applying Lemma 1 and the Markov’s inequality, we have
Pr[|D(R̂) − (λ0DΩ(R̂) +

∑
k∈[1,K] λkDΩk

(R̂))| ≤ ε] ≥

1 − 2 exp ( 1
2 t

2a′2)

exp (tε) and Pr[|D(R̂) − ((λ0 + λK)DΩ(R̂) +∑
k∈[1,K−1] λkDΩk

(R̂))| ≤ ε] ≥ 1 − 2 exp ( 1
2 t

2a2)

exp (tε) . Sim-

ilar as the above proofs, we have DΩK
(R̂) ≤ DΩ(R̂),

which means sup{DΩ(R̂) − DΩK
(R̂)} ≤ 0. Since a′ =

a + λK sup{DΩ(R̂) − DΩK
(R̂)}, we know that a′ ≤ a.

Thus, we can conclude that 2 exp ( 1
2 t

2a′2)

exp (tε) ≤ 2 exp ( 1
2 t

2a2)

exp (tε) ,
i.e., δ1 ≤ δ2.

Remark. Theorem 3 shows that minimizing DΩ together
with the RMSEs of more than one hard predictable subsets
of Ω will help generate more stable matrix approximation
solutions.

However, sometimes it is expensive to find such “hard pre-
dictable subsets”, because we do not know which subset of
entries to choose without any prior knowledge. Thus, we
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propose a solution to obtain hard predictable subsets of Ω
based on only one set of easily predictable entries as fol-
lows: 1) choose ω ⊂ Ω, which satisfies that ∀(i, j) ∈ ω,
|Ri,j − R̂i,j | ≤ DΩ(R̂), and choose Ω0 = Ω − ω;
2) divide ω into K non-overlapping subsets ω1, ..., ωK
with the condition that ∪k∈[1,K]ωk = ω, and choose
Ωk = Ω − ωk for all 1 ≤ k ≤ K; and 3) minimize
λ0DΩ(R̂)+

∑K
k=1 λkDΩk

(R̂) to find stable matrix approx-
imation solutions. The following Theorem 4 proves that it
is desirable to minimize λ0DΩ(R̂) +

∑K
k=1 λkDΩk

(R̂) in-
stead of λ0DΩ(R̂) + (1− λ0)DΩ0

(R̂).

Theorem 4. Let Ω (|Ω| > 2) be a set of observed entries in
R. Choose ω ⊂ Ω, which satisfies that ∀(i, j) ∈ ω, |Ri,j −
R̂i,j | ≤ DΩ(R̂). And divide ω into K non-overlapping
subsets ω1, ..., ωK with the condition that ∪k∈[1,K]ωk = ω.
Let Ω0 = Ω−ω and Ωk = Ω−ωk for all 1 ≤ k ≤ K. Then,
for any ε > 0 and 1 > λ0, λ1, ..., λK > 0 (

∑K
i=0 λi =

1), λ0DΩ(R̂) +
∑K
k=1 λkDΩk

(R̂) and λ0DΩ(R̂) + (1 −
λ0)DΩ0(R̂) are δ1-stable and δ2-stable, resp., then δ1 ≤
δ2.

Proof. Let’s first assume that D(R̂) − (λ0DΩ(R̂) +∑K
k=1 λkDΩk

(R̂)) ∈ [−a1, a1] (a1 = sup{D(R̂) −
(λ0DΩ(R̂)+

∑K
k=1 λkDΩk

(R̂))} andD(R̂)−(λ0DΩ(R̂)+

(1 − λ0)DΩ0(R̂)) ∈ [−a2, a2] (a2 = sup{D(R̂) − ((1 −
λ0)DΩ0(R̂))} are two random variables with 0 mean.

We have Pr[|D(R̂) − (λ0DΩ(R̂) +
∑K
k=1 λkDΩk

(R̂))| ≤
ε] ≥ 1− 2 exp ( 1

2 t
2a2

1)

exp (tε) and Pr[|D(R̂)−((1−λ0)DΩ0
(R̂))| ≤

ε] ≥ 1 − 2 exp ( 1
2 t

2a2
2)

exp (tε) . ∀k ∈ [1,K] ωk ⊂ ω and ∀(i, j) ∈
ω, |Ri,j − R̂i,j | ≤ DΩ(R̂), we have for all k ∈ [1,K],
DΩk

≤ DΩ0
. Sum the above inequation over all k ∈ [1,K],

we have
∑K
k=1 λkDΩk

≤
∑K
k=1 λkDΩ0 = (1 − λ0)DΩ0 .

Thus, sup{D(R̂) − (λ0DΩ(R̂) +
∑K
k=1 λkDΩk

(R̂))} ≤
sup{D(R̂)− ((1− λ0)DΩ0

(R̂))}, i.e., a1 ≤ a2. Thus, we
can conclude that δ1 ≤ δ2.

Remark. Theorem 4 shows that if we can find only one
subset of entries that are easier to predict than average, then
we can probe this subset of entries to increase the stability
of matrix approximations.

3. SMA Algorithm
This section presents the algorithm stability optimization
problem for matrix approximation. Then, we propose a
method to find out entry sets that are harder to predict than
average, which is a key step for constructing this optimiza-
tion problem. Finally, we present how to solve the algorith-
m stability optimization problem using a stochastic gradi-
ent descent method.

3.1. Model Formulation

Singular value decomposition (SVD) is one of the com-
monly used methods for low-rank matrix approxima-
tion (Candès & Plan, 2010). Based on the analysis of
stable matrix approximation described in the previous sec-
tion, it is desirable to minimize the loss functions that will
lead to solutions with good generalization performance.
Let {Ω1, ...,ΩK} be subsets of Ω which satisfy that ∀s ∈
[1,K], DΩs

≥ DΩ. Then, following Theorem 4, we next
describe a new extension of SVD. Note that, extensions to
other LRMA methods can be similarly derived.

R̂ = arg min
X

λ0DΩ(X) +

K∑
s=1

λsDΩs(X)

s.t. rank(X) = r. (3)

where λ0, λ1, ..., λK define the contributions of each com-
ponent in the loss function.

3.2. Hard Predictable Subsets Selection

The key step in Equation 3 is to obtain subsets of Ω —
{Ω1, ...,ΩK} which satisfy that ∀s ∈ [1,K], DΩs ≥ DΩ.
To obtain such Ωs is not trivial, because we can only check
if the condition is satisfied with the final model. But the fi-
nal model cannot be known before we define and optimize
a given loss function. Here, we address this issue using the
following idea: 1) approximate the targeted matrix R with
existing LRMA solutions, e.g., RSVD (Paterek, 2007); 2)
for each entry (i, j) ∈ Ω, it is chosen with large probabil-
ity if |Ri,j − R̂i,j | < DΩ and small probability otherwise;
and 3) obtain Ω′ by removing the chosen entries to satisfy
the condition of Proposition 1, or probe Ω′ to find hard pre-
dictable subsets that satisfy the condition of Theorem 4. By
assuming that other LRMA methods will not dramatically
differ from the final model of SMA, we can ensure that Ω′

will satisfy DΩ′ ≥ DΩ with high probability.

3.3. The SMA Learning Algorithm

The pseudo-code of the proposed SMA learning algorithm
to solve the optimization problem defined in Equation 3 is
presented in Algorithm 1. From Step 1 to 9, we obtain K
different hard predictable entry sets. In Step 10, the opti-
mization is performed by stochastic gradient descent, the
details of which are trivial and thus omitted. Also, L2 reg-
ularization is adopted in Step 10. Note that, other types of
optimization methods and regularization can also be used
in Algorithm 1. The complexity of Step 1 to 9 is O(|Ω|),
where |Ω| is the number of the observed entries in R. The
complexity of Step 10 is O(rmn) per-iteration, where r is
the rank and m,n is the matrix size. Thus, the computation
complexity of SMA is similar to classic LRMA methods,
such as regularized SVD (Paterek, 2007).
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Algorithm 1 The SMA Learning Algorithm
Require: R is the targeted matrix, Ω is the set of entries

in R, and R̂ is an approximation of R by existing L-
RMA methods. p > 0.5 is the predefined probability
for entry selection. µ1 and µ2 are the coefficients for
L2-regularization.

1: Ω′ = ∅;
2: for each (i, j) ∈ Ω do
3: randomly generate ρ ∈ [0, 1];
4: if (|Ri,j − R̂i,j | ≤ DΩ & ρ ≤ p) or (|Ri,j − R̂i,j | >

DΩ & ρ ≤ 1− p) then
5: Ω′ ← Ω′ ∪ {(i, j)};
6: end if
7: end for
8: randomly divide Ω′ into ω1, ..., ωK (∪Kk=1ωi = Ω′);
9: for all k ∈ [1,K], Ωk = Ω− ωk;

10: (Û , V̂ ) : = arg minU,V [
∑K
k=1 λkDΩk

(UTV )

+λ0DΩ(UV T ) + µ1 ‖ U ‖2 +µ2 ‖ V ‖2]
11: return R̂ = Û V̂ T

4. Experiments
In this section, we first analyze the generalization perfor-
mance of SMA, and then evaluate the performance of S-
MA with different parameters, e.g., rank r and the num-
ber of non-overlapping subsets K. Next, SMA is com-
pared against seven state-of-then-art matrix approximation
based recommendation algorithms, including four single
MA methods and three ensemble methods. At last, we an-
alyze SMA’s accuracy in different data sparsity settings.

4.1. Experiment Setup

Two widely used datasets are adopted to evaluate SMA:
MovieLens 10M (∼70k users, 10k items, 107 ratings) and
Netflix (∼480k users, 18k items, 108 ratings). For each
dataset, we randomly split it into training and test sets and
keep the ratio of training set to test set as 9:1. All exper-
imental results are presented by averaging the results over
five different random train-test splits.

In this study, we use learning rate v = 0.001 for stochastic
gradient decent method, µ1 = 0.06 for L2-regularization
coefficient, ε = 0.0001 for gradient descent convergence
threshold, and T = 250 for maximum number of itera-
tions. Optimal parameters of the compared methods are
chosen from their original papers. The source codes of all
the experiments are publicly available 1.

We compare the performance of SMA with four single MA
models and three ensemble MA models as follows:

• Regularized SVD [Paterek et al., KDD’ 07]: is one

1https://github.com/ldscc/StableMA.git.

of the most widely used matrix factorization methods, in
which user/item features are estimated by minimizing the
sum-squared error using L2 regularization.
• BPMF [Salakhutdinov et al., ICML’ 08]: is a Bayesian
extension of PMF with model parameters and hyperparam-
eters estimated using Markov chain Monte Carlo method.
• APG [Toh et al., PJO’ 2010]: computes the approxi-
mation by solving a nuclear norm regularized linear least
squares problem.
• GSMF [Yuan et al., AAAI’ 14]: can transfer informa-
tion among multiple types of user behaviors by modeling
the shared and private latent factors with group sparsity reg-
ularization.
• DFC [Mackey et al., NIPS’ 11]: is an ensemble method,
which divides a large-scale matrix factorization task into
smaller subproblems, solves each other in parallel, and fi-
nally combines the subproblem solutions.
• LLORMA [Lee et al., ICML’ 13]: is an ensemble
method, which assumes that the original matrix is de-
scribed by multiple low-rank submatrices constructed by
non-parametric kernel smoothing techniques.
• WEMAREC [Chen et al., SIGIR’ 15]: is an ensemble
method, which constructs biased model by weighting strat-
egy to address the insufficient data issue in each submatrix.

4.2. Generalization Performance

Figure 2 compares training/test errors of SMA and RSVD
with different epochs on MovieLens 10M dataset (rank
r = 20 and subset number K = 3). As we can see, the dif-
ferences between training and test error of SMA are much
smaller than RSVD. Moreover, the training error and test
error are very close when epoch is less than 100. This re-
sult demonstrates that SMA can indeed find models that
have good generalization performance and yield small gen-
eralization error during the training process.

4.3. Sensitivity Analysis

Figure 3 investigates how SMA performs by varying num-
ber of non-overlapping subsets K (rank r = 200) and the
optimal RMSEs of all compared methods on both Movie-
lens 10M (left) and Netfilx (right) datasets. As we can see,
SMA outperforms all these state-of-the-art methods with
K varying from 1 to 5. It should be noted that, when
K = 0, SMA is degraded to RSVD. Thus, the fact that S-
MA can produce better recommendations than RSVD con-
firms Theorem 1: with additional terms

∑K
s=1 λsDΩs

(R̂),
we can improve the stability of MA models. In addition,
we can see the RMSEs on both two datasets decrease as K
increases. This further confirms Theorem 4: probing easily
predictable entries to form harder predictable entry sets can
better increase the model performance.

https://github.com/ldscc/StableMA.git
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Figure 2. Training and test errors vs. epochs
of RSVD and SMA on MovieLens 10M
dataset.
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Figure 3. Effect of subset number K on MovieLens 10M dataset (left) and Netflix dataset
(right). SMA models are indicated by solid line and other compared methods are indicated
by dot lines.
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Figure 4. Effect of rank r on MovieLens 10M dataset (left) and Netflix dataset (right).
SMA and RSVD models are indicated by solid line and other compared methods are indi-
cated by dot lines.
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Figure 5. RMSEs of SMA and four single
methods with varying training set size on
MovieLens 10M dataset (rank r = 50).

Figure 4 analyzes the effect of rank r on MovieLens 10M
(left) and Netflix (right) datasets by fixing K = 3. It can
be seen that for any rank r from 50 to 250, SMA always
outperform the other seven compared methods in recom-
mendation accuracy. And higher ranks for SMA will lead
to better accuracy when the rank r increases from 50 to 250
on both two datasets. It is interesting to see that the rec-
ommendation accuracies of RSVD decrease slightly when
r > 50 due to over-fitting and SMA can consistently in-
crease recommendation accuracy even when r > 200. This
indicates that SMA is less prone to over-fitting than RSVD,
i.e., SMA is more stable than RSVD.

4.4. Accuracy Comparisons

Table 1 presents the performance of SMA with rank r =
200 and subset numberK = 3. The compared methods are
as follows: RSVD (r = 50) (Paterek, 2007), BPMF (r =
300) (Salakhutdinov & Mnih, 2008), APG (r = 100) (Toh
& Yun, 2010), GSMF (r = 20) (Yuan et al., 2014), DFC
(r = 30) (Mackey et al., 2011), LLORMA (r = 20) (Lee
et al., 2013) and WEMAREC (r = 20) (Chen et al., 2015)
on MovieLens 10M and Netflix datasets. Notably, DFC,
LLORMA and WEMAREC are ensemble methods, which
have been shown to be more accurate than single method-
s due to better generalization performance. However, as
shown in Table 1, the SMA method significantly outper-

Table 1. RMSEs of SMA and the seven compared methods on
MovieLens (10M) and Netflix datasets.

MovieLens (10M) Netflix
RSVD 0.8256 ± 0.0006 0.8534 ± 0.0001
BPMF 0.8197 ± 0.0004 0.8421 ± 0.0002
APG 0.8101 ± 0.0003 0.8476 ± 0.0003

GSMF 0.8012 ± 0.0011 0.8420 ± 0.0006
DFC 0.8067 ± 0.0002 0.8453 ± 0.0003

LLORMA 0.7855 ± 0.0002 0.8275 ± 0.0004
WEMAREC 0.7775 ± 0.0007 0.8143 ± 0.0001

SMA 0.7682 ± 0.0003 0.8036 ± 0.0004

forms all seven compared methods on both two datasets.
This confirms that SMA can indeed achieve better general-
ization performance than both state-of-the-art single meth-
ods and ensemble methods. The main reason is that SMA
can minimize objective functions that lead to solutions with
good generalization performance, but other methods can-
not guarantee low gap between training error and test error.

4.5. Performance under Data Sparsity

Figure 5 presents the RMSEs of SMA vs. the size of train-
ing set size as compared with four single LRMA methods
(RSVD, BPMF, APG and GSMF). The rank r of all five
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methods are fixed to 50. Note that, the rating density be-
comes more sparse when the training set ratio decreases.
The results show that all methods can improve accuracy
with the training set size increasing, but the proposed SMA
method always outperforms the compared methods. This
demonstrates that SMA can still provide stable matrix ap-
proximation even on very sparse dataset.

5. Related Work
Algorithmic stability has been analyzed and applied in
several popular problems, such as regression (Bousquet
& Elisseeff, 2001), classification (Bousquet & Elisseeff,
2001), ranking (Lan et al., 2008), marginal inference (Lon-
don et al., 2013), etc. Bousquet & Elisseeff (2001) first
proposed a method of obtaining bounds on generalization
errors of learning algorithms, and formally proved that reg-
ularization networks posses the uniform stability proper-
ty. Then, Bousquet & Elisseeff (2002) extends the algo-
rithmic stability concept from regression to classification.
Kutin & Niyogi (2002) generalized the work of Bousquet
& Elisseeff (2001) and proposed the notion of training sta-
bility, which can ensure good generalization error bounds
even when the learner has infinite VC dimension. Lan et al.
(2008) proposed query-level stability and gave query-level
generalization bounds to learning to rank algorithms. A-
garwal & Niyogi (2009) derived generalization bounds for
ranking algorithms that have good properties of algorith-
mic stability. Shalev-Shwartz et al. (2010) considered the
general learning setting including most statistical learning
problems as special cases, and identified that stability is the
necessary and sufficient condition for learnability. London
et al. (2013) proposed the concept of collective stability for
structure prediction, and established generalization bounds
for structured prediction. This work differs from the above
works by (1) this work introduces the stability concept to
low-rank matrix approximation problem, and proves that
matrix approximations with high stability will have high
probability to generalize well and (2) most existing works
focus on theoretical analysis, but this work provides prac-
tical framework for achieving solutions with high stability.

Low-rank matrix approximation methods have been exten-
sively studied recently. Lee & Seung (2001) analyzed the
optimization problems of Non-negative Matrix Factoriza-
tion (NMF). Srebro et al. (2004b) proposed Maximum-
Margin Matrix Factorization (MMMF), which can learn
low-norm factorizations by solving a semi-definite pro-
gram to achieve collaborative prediction. Salakhutdinov
& Mnih (2007) viewed matrix factorization from a proba-
bilistic perspective and proposed Probabilistic Matrix Fac-
torization (PMF). Later, they proposed Bayesian Proba-
bilistic Matrix Factorization (BPMF) (Salakhutdinov & M-
nih, 2008) by giving a fully Bayesian treatment to PMF.

Lawrence & Urtasun (2009) also extends PMF and devel-
oped a non-linear PMF using Gaussian process latent vari-
able models. Paterek (2007) applied regularized singular
value decomposition (RSVD) in the Netflix Prize contest.
Koren (2008) combined matrix factorization and neighbor-
hood model and built a more accurate combined model
named SVD++. Many of the above methods tried to solve
overfitting problems in model training, e.g., regularization
in most of the above methods and Bayesian treatment in
BPMF. However, alleviating overfitting cannot decrease the
lower bound of generalization errors, and thus cannot fun-
damentally solve the low generalization performance prob-
lem. Different from the above works, this work proposes
a new optimization problem with smaller lower bound of
generalization error. Minimizing the new loss function can
substantially improve generalization performance of matrix
approximation as demonstrated in the experiments. Srebro
et al. (2004a) analyzed the generalization error bounds of
collaborative prediction with low-rank matrix approxima-
tion for “0-1” recommendation. Candès & Plan (2010) es-
tablished error bounds of matrix completion problem with
noises. However, those works did not consider how to
achieve LRMA with small generalization error.

Ensemble matrix approximation methods, such as ensem-
ble MMMF (DeCoste, 2006), DFC (Mackey et al., 2011),
LLORMA (Lee et al., 2013), WEMAREC (Chen et al.,
2015), ACCAMS (Beutel et al., 2015) etc., have been pro-
posed, which aimed to provide matrix approximations with
high generalization performance by ensemble learning.
However, those ensemble methods need to train a num-
ber of biased weak matrix approximation models, which
require much more computations than SMA. In addition,
weak models in those methods are generated by heuristics
which are not directly related to minimizing generalization
error. Therefore, the optimality of generalization perfor-
mance of those methods cannot be proved as in this work.

6. Conclusion
Low-rank matrix approximation methods are widely adopt-
ed in machine learning applications. However, similar to
other machine learning techniques, many existing low-rank
matrix approximation methods suffer from the low gener-
alization performance issue. This paper introduces the sta-
bility notion to low-rank matrix approximation problem, in
which models achieve high stability will have better gen-
eralization performance. Then, SMA, a new low-rank ma-
trix approximation framework, is proposed to achieve high
stability, i.e., high generalization performance. Experimen-
tal results on real-world datasets demonstrate that the pro-
posed SMA method can achieve better prediction accura-
cy than both state-of-the-art matrix approximation methods
and ensemble methods in recommendation task.
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