
Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing

Supplementary Material

Ke Li KE.LI@EECS.BERKELEY.EDU
Jitendra Malik MALIK@EECS.BERKELEY.EDU

University of California, Berkeley, CA 94720, United States

Below, we present proofs of the results shown in the paper.
We first prove two intermediate results, which are used to
derive results in the paper. Throughout our proofs, we use
{p(i)}n

i=1

to denote a re-ordering of the points {pi}n
i=1

so
that p(i) is the ith closest point to the query q. For any given
projection direction ujl associated with a simple index, we
also consider a ranking of the points {pi}n

i=1

by their dis-
tance to q under projection ujl in nondecreasing order. We
say points are ranked before others if they appear earlier in
this ranking.

Lemma 14. The probability that for all constituent
simple indices of a composite index, fewer than n

0

points exist that are not the true k-nearest neigh-
bours but are ranked before some of them, is at least
1 � 1

n
0

�k

Pn
i=2k+1

kp(k)�qk
2

kp(i)�qk
2

�m

.

Proof. For any given simple index, we will refer to the
points that are not the true k-nearest neighbours but are
ranked before some of them as extraneous points. We fur-
thermore categorize the extraneous points as either reason-
able or silly. An extraneous point is reasonable if it is one
of the 2k-nearest neighbours, and is silly otherwise. Since
there can be at most k reasonable extraneous points, there
must be at least n

0

� k silly extraneous points. Therefore,
the event that n

0

extraneous points exist must be contained
in the event that n

0

� k silly extraneous points exist.

We find the probability that such a set of silly extraneous
points exists for any given simple index. By Theorem 3,
where we take {vs

i0}N 0

i0=1

to be {p(i) � q}k
i=1

, {vl
i}N

i=1

to
be {p(i) � q}n

i=2k+1

and k0 to be n
0

� k, the probability
that there are at least n

0

� k silly extraneous points is at

most 1

n
0

�k

Pn
i=2k+1

✓
1 � 2

⇡ cos�1

✓
kp(k)�qk

2

kp(i)�qk
2

◆◆
. This

implies that the probability that at least n
0

extraneous
points exist is bounded above by the same quantity, and so
the probability that fewer than n

0

extraneous points exist is

at least 1 � 1

n
0

�k

Pn
i=2k+1

✓
1 � 2

⇡ cos�1

✓
kp(k)�qk

2

kp(i)�qk
2

◆◆
.

Hence, the probability that fewer than n
0

ex-

traneous points exist for all constituent sim-
ples indices of a composite index is at least
1 � 1

n
0

�k

Pn
i=2k+1

✓
1 � 2

⇡ cos�1

✓
kp(k)�qk

2

kp(i)�qk
2

◆◆�m

.

Using the fact that 1 � (2/⇡) cos�1 (x) 
x 8x 2 [0, 1], this quantity is at least
1 � 1

n
0

�k

Pn
i=2k+1

kp(k)�qk
2

kp(i)�qk
2

�m

.

Lemma 15. On a dataset with global relative spar-
sity (k, �), the probability that for all constituent
simple indices of a composite index, fewer than n

0

points exist that are not the true k-nearest neigh-
bours but are ranked before some of them, is at leasth
1 � 1

n
0

�kO
�
max(k log(n/k), k(n/k)1�log

2

�)
�im

.

Proof. By definition of global relative sparsity, for all i �
2k + 1,

��p(i) � q
��

2

> �
��p(k) � q

��
2

. By applying this
recursively, we see that for all i � 2i0k + 1,

��p(i) � q
��

2

>

�i0
��p(k) � q

��
2

. It follows that
Pn

i=2k+1

kp(k)�qk
2

kp(i)�qk
2

is less

than
Pdlog

2

(n/k)e�1

i0=1

2i0k��i0 . If � � 2, this quantity is at
most k log

2

�
n
k

�
. If 1  � < 2, this quantity is:

k

✓
2

�

◆ ✓
2

�

◆dlog
2

(n/k)e�1

� 1

!
/

✓
2

�
� 1

◆

= O

 
k

✓
2

�

◆dlog
2

(n/k)e�1

!

= O

✓
k
⇣n
k

⌘
1�log

2

�
◆

Combining this bound with Lemma 14 yields the desired
result.

Lemma 6. For a dataset with global rel-
ative sparsity (k, �), there is some k̃ 2
⌦(max(k log(n/k), k(n/k)1�log

2

�)) such that the
probability that the candidate points retrieved from a given



Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing

composite index do not include some of the true k-nearest
neighbours is at most some constant ↵ < 1.

Proof. We will refer to points ranked in the top k̃ positions
that are the true k-nearest neighbours as true positives and
those that are not as false positives. Additionally, we will
refer to points not ranked in the top k̃ positions that are the
true k-nearest neighbours as false negatives.

When not all the true k-nearest neighbours are in the top
k̃ positions, then there must be at least one false negative.
Since there are at most k � 1 true positives, there must be
at least k̃ � (k � 1) false positives.

Since false positives are not the true k-nearest neighbours
but are ranked before the false negative, which is a true k-
nearest neighbour, we can apply Lemma 15. By taking n

0

to be k̃�(k�1), we obtain a lower bound on the probability
of the existence of fewer than k̃�(k�1) false positives for
all constituent simple indices of the composite index, which
is

h
1 � 1

˜k�2k+1

O
�
max(k log(n/k), k(n/k)1�log

2

�)
�im

.

If each simple index has fewer than k̃ � (k � 1) false
positives, then the top k̃ positions must contain all the true
k-nearest neighbours. Since this is true for all constituent
simple indices, all the true k-nearest neighbours must be
among the candidate points after k̃ iterations of the outer
loop. The failure probability is therefore at most 1 �h
1 � 1

˜k�2k+1

O
�
max(k log(n/k), k(n/k)1�log

2

�)
�im

.

So, there is some k̃ 2
⌦(max(k log(n/k), k(n/k)1�log

2

�)) that makes this
quantity strictly less than 1.

Theorem 7. For a dataset with global relative spar-
sity (k, �), for any ✏ > 0, there is some L and k̃ 2
⌦(max(k log(n/k), k(n/k)1�log

2

�)) such that the algo-
rithm returns the correct set of k-nearest neighbours with
probability of at least 1 � ✏.

Proof. By Lemma 6, the first k̃ points retrieved from a
given composite index do not include some of the true k-
nearest neighbours with probability of at most ↵. For the
algorithm to fail, this must occur for all composite indices.
Since each composite index is constructed independently,
the algorithm fails with probability of at most ↵L, and so
must succeed with probability of at least 1 � ↵L. Since
↵ < 1, there is some L that makes 1 � ↵L � 1 � ✏.

Theorem 8. The algorithm takes
O(max(dk log(n/k), dk(n/k)1�1/d0

)) time to retrieve the
k-nearest neighbours at query time, where d0 denotes the
intrinsic dimension of the dataset.

Proof. Computing projections of the query point
along all ujl’s takes O(d) time, since m and L
are constants. Searching in the binary search
trees/skip lists Tjl’s takes O(log n) time. The to-
tal number of candidate points retrieved is at most
⇥(max(k log(n/k), k(n/k)1�log

2

�)). Computing the
distance between each candidate point and the query point
takes at most O(max(dk log(n/k), dk(n/k)1�log

2

�))
time. We can find the k closest points to q in the set of
candidate points using a selection algorithm like quicks-
elect, which takes O(max(k log(n/k), k(n/k)1�log

2

�))
time on average. Since the time taken to compute
distances to the query point dominates, the entire al-
gorithm takes O(max(dk log(n/k), dk(n/k)1�log

2

�))
time. Since d0 = 1/ log

2

�, this can be rewritten as
O(max(dk log(n/k), dk(n/k)1�1/d0

)).

Theorem 9. The algorithm takes O(dn + n log n) time to
preprocess the data points in D at construction time.

Proof. Computing projections of all n points along all ujl’s
takes O(dn) time, since m and L are constants. Inserting
all n points into mL self-balancing binary search trees/skip
lists takes O(n log n) time.

Theorem 10. The algorithm requires O(d + log n) time to
insert a new data point and O(log n) time to delete a data
point.

Proof. In order to insert a data point, we need to compute
its projection along all ujl’s and insert it into each binary
search tree or skip list. Computing the projection takes
O(d) time and inserting an entry into a self-balancing bi-
nary search tree or skip list takes O(log n) time. In order
to delete a data point, we simply remove it from each of
the binary search trees or skip lists, which takes O(log n)
time.

Theorem 11. The algorithm requires O(n) space in addi-
tion to the space used to store the data.

Proof. The only additional information that needs to be
stored are the mL binary search trees or skip lists. Since
n entries are stored in each binary search tree/skip list, the
additional space required is O(n).

Theorem 12. For any ✏ > 0, m and L, the data-dependent
algorithm returns the correct set of k-nearest neighbours
of the query q with probability of at least 1 � ✏.

Proof. We analyze the probability that the algorithm fails
to return the correct set of k-nearest neighbours. Let p⇤

denote a true k-nearest neighbour that was missed. If the
algorithm fails, then for any given composite index, p⇤ is



Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing

not among the candidate points retrieved from the said in-
dex. In other words, the composite index must have re-
turned all these points before p⇤, implying that at least one
constituent simple index returns all these points before p⇤.
This means that all these points must appear closer to q
than p⇤ under the projection associated with the simple
index. By Lemma 2, if we take

�
vl

i

 N

i=1

to be displace-
ment vectors from q to the candidate points that are far-
ther from q than p⇤ and vs to be the displacement vec-
tor from q to p⇤, the probability of this occurring for a
given constituent simple index of the lth composite index
is at most 1 � 2

⇡ cos�1

�
kp⇤ � qk

2

/ kp̃max

l � qk
2

�
. The

probability that this occurs for some constituent simple in-
dex is at most 1�

�
2

⇡ cos�1

�
kp⇤ � qk

2

/ kp̃max

l � qk
2

��m.
For the algorithm to fail, this must occur for all com-
posite indices; so the failure probability is at mostQL

l=1

�
1 �

�
2

⇡ cos�1

�
kp⇤ � qk

2

/ kp̃max

l � qk
2

��m�.

We observe that
��p⇤ � q

��
2


��p(k) � q

��
2


��p̃(k) � q

��
2

since there can be at most k � 1 points in the
dataset that are closer to q than p⇤. So, the
failure probability can be bounded above by
QL

l=1

⇣
1 �

�
2

⇡ cos�1

���p̃(k) � q
��

2

/
��p̃max

l � q
��

2

��m
⌘

.
When the algorithm terminates, we know this quantity is at
most ✏. Therefore, the algorithm returns the correct set of
k-nearest neighbours with probability of at least 1 � ✏.

Theorem 13. On a dataset with global rel-
ative sparsity (k, �), given fixed parameters
m and L, the data-dependent algorithm takes

O

 
max

 
dk log

�
n
k

�
, dk

�
n
k

�
1�log

2

�
, 2d
⇣
1� m

p
1� Lp✏

⌘d0

!!

time with high probability to retrieve the k-nearest
neighbours at query time, where d0 denotes the intrinsic
dimension of the dataset.

Proof. In order to bound the running time, we bound
the total number of candidate points retrieved until the
stopping condition is satisfied. We divide the execution
of the algorithm into two stages and analyze the algo-
rithm’s behaviour before and after it finishes retrieving
all the true k-nearest neighbours. We first bound the
number of candidate points the algorithm retrieves be-
fore finding the complete set of k-nearest neighbours.
By Lemma 15, the probability that there exist fewer
than n

0

points that are not the k-nearest neighbours
but are ranked before some of them in all constituent
simple indices of any given composite index is at leasth
1 � 1

n
0

�kO
�
max(k log(n/k), k(n/k)1�log

2

�)
�im

.
We can choose some n

0

2
⇥
�
max(k log(n/k), k(n/k)1�log

2

�)
�

that makes
this probability arbitrarily close to 1. So, there are
⇥
�
max(k log(n/k), k(n/k)1�log

2

�)
�

such points

in each constituent simple index with high proba-
bility, implying that the algorithm retrieves at most
⇥
�
max(k log(n/k), k(n/k)1�log

2

�)
�

extraneous points
from any given composite index before finishing fetching
all the true k-nearest neighbours. Since the number of
composite indices is constant, the total number of candi-
date points retrieved from all composite indices during
this stage is k + ⇥

�
max(k log(n/k), k(n/k)1�log

2

�)
�

=

⇥
�
max(k log(n/k), k(n/k)1�log

2

�)
�

with high probabil-
ity.

After retrieving all the k-nearest neighbours, if the stopping
condition has not yet been satisfied, the algorithm would
continue retrieving points. We analyze the number of ad-
ditional points the algorithm retrieves before it terminates.
To this end, we bound the ratio

��p̃(k) � q
��

2

/
��p̃max

l � q
��

2

in terms of the number of candidate points retrieved
so far. Since all the true k-nearest neighbours have
been retrieved,

��p̃(k) � q
��

2

=
��p(k) � q

��
2

. Suppose
the algorithm has already retrieved n0 � 1 candidate
points and is about to retrieve a new candidate point.
Since this new candidate point must be different from
any of the existing candidate points,

���p̃max

l � q
���

2

�
���p(n0

) � q
���

2

. Hence,
��p̃(k) � q

��
2

/
��p̃max

l � q
��

2


���p(k) � q

���
2

/
���p(n0

) � q
���

2

.

By definition of global relative sparsity, for all n0 �
2i0k + 1,

���p(n0
) � q

���
2

> �i0
���p(k) � q

���
2

. It follows that
���p(k) � q

���
2

/
���p(n0

) � q
���

2

< ��blog
2

((n0�1)/k)c for all n0.
By combining the above inequalities, we find an upper
bound on the test statistic:

LY

l=1

0

B@1�

0

B@
2

⇡
cos

�1

0

B@

���p̃(k) � q
���
2���p̃max

l � q
���
2

1

CA

1

CA

m1

CA


LY

l=1

0

B@1�

0

B@1�

���p̃(k) � q
���
2���p̃max

l � q
���
2

1

CA

m1

CA

<
h
1�

⇣
1� ��blog

2

((n0�1)/k)c
⌘miL

<
h
1�

⇣
1� �� log

2

((n0�1)/k)+1

⌘miL

Hence, if
h
1 �

⇣
1 � �� log

2

((n0�1)/k)+1

⌘miL

 ✏, then
QL

l=1

⇣
1 �

�
2

⇡ cos�1

���p̃(k) � q
��

2

/
��p̃max

l � q
��

2

��m
⌘

<

✏. So, for some n0 that makes the former inequal-
ity true, the stopping condition would be satisfied and
so the algorithm must have terminated by this point, if
not earlier. By rearranging the former inequality, we
find that in order for it to hold, n0 must be at least

2/
⇣
1 � m

p
1 � L

p
✏
⌘

1/ log

2

�
. Therefore, the number of



Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing

points the algorithm retrieves before terminating cannot ex-

ceed 2/
⇣
1 � m

p
1 � L

p
✏
⌘

1/ log

2

�
.

Combining the analysis for both stages, the number of
points retrieved is at most

O

0

B@max

0

B@k log
⇣n
k

⌘
, k

⇣n
k

⌘
1�log

2

�
,

2

⇣
1� m

p
1� L

p
✏
⌘ 1

log

2

�

1

CA

1

CA

with high probability.

Since the time taken to compute distances between the
query point and candidate points dominates, the running
time is

O

0

B@max

0

B@dk log
⇣n
k

⌘
, dk

⇣n
k

⌘
1�log

2

�
,

2d
⇣
1� m

p
1� L

p
✏
⌘ 1

log

2

�

1

CA

1

CA

with high probability.

Applying the definition of intrinsic dimension yields the
desired result.


