Appendix : Stochastic Variance Reduced Optimization for
Nonconvex Sparse Learning

A. Proof of Lemma 3.4

For any w, w’ € R? in sparse linear model, we have V2F(w) = AT A and

Flw) ~ Flw') — (VF@'),w — ) = 5 (w—w) V2 Fw")(w —w') = | Adw - w3,

2

where w’ is between w and w’ and ||w — w'||p < 2k < s. Letv = w — w’, then ||v]|p < s and ||v]|? < s|lv||3. By (3.8),
we have

| Av]3 clogd |As,.v]3 slogd
2 > ullold — 1 2 ol and P < g ol + 0, B o3, Vi € [n]
which further imply
I VT slogd |As. vl slogd
p; = inf > — 1 , and p; = sup ——= < Yy + g . (A.1)
Ivllo<s nbljv3 nb lollozs.icm  bllvl3 b

Ifo> %:’gd and n > %, then we have nb > %ﬁ(’gd. Combining these with (A.1), we have

1
s 2> 51/)17 and p7 < 29

.- .. . p+ 4'41)2 16017/12
By the definition of «, this indicates k5 = p—i < o . Then for some C5 > e , we have

k= C5k‘* Z Ollﬂik}*.

B. Proof of Theorem 3.5

For sparse linear model, we have VF(w*) = ATz/(nb). Since z has ii.d. N(0,0?) entries, then A, ;2/(nb) ~
N(0,0?]|A.;||3/(nb)?) for any j € [d]. Using the Mill’s inequality for tail bounds of Normal distribution, we have

Alz log d Alz Vnblogd 1 nblogd
P | —— | =P t > 2 < ||Ay; — X (—4) .
(‘ nb nb TAsT| 2 TALl ) = My sriogd P\ AL, s

This implies, using union bound and the assumption % <1,

Az log d a3
P J > 20 o8 < .
nb nb vmnblogd
Then we have the following result holds with probability at least 1 — \/nbjlog -d=3
ATz logd
[VF(w*) [l < ’ <20/ 82 (B.1)
o nb
Conditioning on (B.1), it follows consequently that
N N 402slogd
|V2F (w3 < slIVF(w)|% < 5= (B.2)

nb
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We have from Lemma 3.4 that s = 2k + k* = (2C5 + 1) k* for some constant Cs when n and b are large enough. For a
givene > 0and § € (0, 1), if

F(w®) — F(w*)
€d ) ’

then with probability at least 1 — § — ﬁogd -d~3, we have from (3.4), (B.1) and (B.2) that

r24log<

k*logd
nb '

@) —w*||y < cs0
for some constant c3, which completes the proof.

C. Proof of Lemma 4.1

For notational convenience, define w’ = Hj,(w). Let supp(w*) = Z*, supp(w) = Z, supp(w’) = 7', and w"’ = w — w’
with supp(w”) = Z". Clearly we have ' UZ" = Z,7' N Z" =, and ||w||3 = ||w’||3 + ||w”||3. Then we have that

[ = w3 — w — w3 = [lw'[|5 - 2(w’, w") — [w]3 + 2(w, w") = 2(w",w") — [lw"]3. €.n
If 2(w”, w*) — ||lw"||3 < 0, then (4.1) holds naturally. From this point on, we will discuss the situation when 2(w", w*) —
[w"|[3 > 0.
LetZ*NZ' = Z*' and ZT*NZ" = Z*2, and denote (w*) 7.1 = w*!, (w*) 1.2 = w*2, (w') 71 = wl*, and (w"') 7.2 = w?*.
Then we have that

2(w” w*) — W[ = 2(w*, w*?) — |w"|3 < 2(w* w*?) — w3 < 2[w*[2w?]2 — [lw* (3. (C2)

Let [supp(w?*)| = |Z*?| = k** and w2 max = ||w?* ||, then consequently we have [|w?*||a = m - wa max for some
m € [1,Vk**]. Notice that we are interested in 1 < k** < k*, because (4.1) holds naturally if £** = 0. In terms of
||lw*2||2, the RHS of (C.2) is maximized when:

Case I: m = 1, if [|w*?||]2 < w2 max;

*2
Case 2: m = 1wl ¢ Wa max < [|[W*2 |2 < VE*wa max, ;

W2 max

Case 3: m = VE**, if |w*?|]2 > VE** W2 max-

Case 1: If |w*?||2 < w2 max, then the RHS of (C.2) is maximized when m = 1, i.e. w?* has only one nonzero element
W2 max- By (C.2), we have

2<’U)”,'LU*> - kung < 2er-,maX||'Lv*2||2 - w%,max < 2U‘)g,max - wg,max = w%,max' (C.3)

Denote w1 min as the smallest element of w'™ (in magnitude), which indicates that |w1 min| > |W2 max| as w’ contains the
largest k entries and w”’ contains the smallest d — k entries of w. For ||w — w*||3, we have that

[w —w*|3 = [[w —w [ + [|w" — w3
= lwze |3 + [lwza — w3 + w3 - (2(w”, w*) — [[w"|3) (C.4)
Z (k — k" + k**)w%,min - wg,max (CS)

where the last inequality follows from the fact that wz.1)c has k — k* + k** entries larger than w; iy (in magnitude).
Combining (C.1), (C.3) and (C.5), we have that

[w" — w*|[5 — lw — w3 W3 ma
Hw - ’LU*H% B (k —k*+ k**)w%,min - w%,max

W3 ma o1
k= 4+ B3 o — W3 o K — K

2,max

<< (C.6)
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Case 2: If wo max < [|w*?||2 < VE**W2 max, then the RHS of (C.2) is maximized when m = ‘101‘2’*& By (C.2), we have
that ’

2<’LUH,’LU*> - ||’LUNH§ < 2v k**wQ,maX s MW2,max — wg,max < k**w%,max' (C7)
By (C.4), we have that
H'LU - w*Hg 2> (k — k" + k**)w%,min + m2wg,max - wg,max 2 (k -k + k**)w%,min' (CS)

Combining (C.1), (C.7) and (C.8), we have that

o’ — w* 3 — |l — w3 W k™
Jw — w3 G EER  E e

(C.9)

Case 3: If [|[w*?||s > Vk** W2 max, then the RHS of (C.2) is maximized when m = vk**. Let [|[w*?|2 = Ywa max for
some v > v k**. We have from (C.2) that

w',wT) — ||lw < 29V k**w — w . .
2(w” : " % <2 k %,max k™ g,max (C.10)
By (C.4), we have

H’UJ —w" H% Z (k —k* + k**)wimin + ’ygw%,max -V k**wg,max + k**wg,max' (Cll)
Combining (C.1), (C.10) and (C.11), we have

lw’ — w3 — flw — w5 _ 2YVE WS e = WS
H'w — 'w*||§ T (k= k* ) w? .+ ,},2w2 _ ’Y\/WUIQ Y
1,min 2,max 2,max 2, max
2y VE — k™
i (C.12)

- k_k* +2k** _|_,y2 —2’}/‘/]6**.
Inspecting the RHS of (C.12) carefully, we can see that it is either a bell shape function or a monotone decreasing function

when v > v k**. Setting the first derivative of the RHS in terms of ~ to zero, we have v = %\/k** + 1 /k—k*+ gk**

(the other root is smaller than v/k**). Denoting v, = max{vk**, %\/k** + 4 /k—k*+ %k**} and plugging it into the
RHS of (C.12), we have

o w3 fw - ke 2/ .
lw — w3 B D N N

Combining (C.6), (C.9) and (C.13), and taking k£ > £* and £* > k** > 1 into consideration, we have

1 [ 2V - 2vVk**
k’—k*’k—k’*‘Fk**’Q k—k’*-i-gk**— Jork 72 k’—k*—l—%k‘**— Joxx
- 2vVk* - 2vVk*
So0E R VE o VE—k

max

which proves the result.

D. Proof of Lemma 4.3

Remind that the stochastic variance reduced gradient is

g (w?) =Vf,(w?) - Vf,(w) + &, (D.1)
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where ot = VF(w) = % S, Vii(w).

It is straightforward that the stochastic variance reduced gradient (D.1) satisfies
Eg®(w®) = EVf;, (w®) — EV f;, (@) + fp = VF(w),
Thus g (w®) is a unbiased estimate of VF(w®) and the first claim is verified.

Next, we bound ]E||g(zt)(w(t))||%. For any ¢ € [n] and w with supp(w) C Z, consider
6i(w) = fi(w) — filw") = (Y filw®),w —w’).
Since V¢, (w*) = V f;(w*) — V f;(w*) = 0, we have that ¢; (w*) = min,, ¢;(w), which implies
(w)]]3
[Vi(w)]3, (D.2)

0= gu(w*) < mini(w —V6(w)) < mingi(w) — ][ Voi(w)[3 + =5

= ¢;(w) — 2T

where the last inequality follows from the RSS condition and the last equality follows from the fact that n = 1/pF
minimizes the function. By (D.2), we have

IVzfi(w) = Vzfi(w")[3 < |V fi(w) = Vfi(w")|3
< 2p7 [fi(w) — fi(w") = (Vfi(w"), w — w")]
=2p! [fi(w) — fi(w*) = (V7 fi(w*), w — w*)]. (D.3)

Since the sampling of ¢ from [n] is uniform sampling, we have from (D.3)

E[|Vzfi(w) = Vzfi(w Z IVzfi(w) — Vzfi(w*)|3

< 29 F(w) — Flw) — (V2 F(w)w — w°)
< 2p} [F(w) — Flw") + |(V2F(w"), w - w")]
< 4p! [F(w) - Flw")], (D4)

where the last inequality is from the RSC condition of F(w).

() .

By the definition of g7~ in (D.1), we can verify the second claim as

Elgt” (w™)|3 < 3E|| [V fi, (@) — V1 fi,(w")] = V2F(@) + V2F (w*)|}
+ 3|V fi, (w") = Vi fi, (w3 + 3| V2 F (w13
< 3E[|Vzfi, (w) = Vz fi, (w")|3 + 3BV fi, (@) — Vzfi, (w3 + 3] V2 F (w13
< 12pf []:(w(t)) — F(w") + F(w) — F(w")| +3[|VzF(w")]3,
where the first inequality follows from ||a + b + c||2 < 3|la||2 + 3||b|2 + 3||c||2, the second inequality follows from

Elx — Ex|j3 < E|x||3 with E [Vzfi, (W) — Vzf;, (w*)] = VzF(w) — VzF(w*), and the last inequality follows from
(D.4).





