
Appendix : Stochastic Variance Reduced Optimization for
Nonconvex Sparse Learning

A. Proof of Lemma 3.4
For any w,w′ ∈ Rd in sparse linear model, we have∇2F(w) = A>A and

F(w)−F(w′)− 〈∇F(w′),w −w′〉 =
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2
‖A(w −w′)‖22,

wherew′′ is betweenw andw′ and ‖w−w′‖0 ≤ 2k ≤ s. Let v = w−w′, then ‖v‖0 ≤ s and ‖v‖21 ≤ s‖v‖22. By (3.8),
we have
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which further imply
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If b ≥ ϕ2s log d
ψ2

and n ≥ 2ϕ1ψ2
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, then we have nb ≥ 2ϕ1s log d
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. Combining these with (A.1), we have
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, we have
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∗.

B. Proof of Theorem 3.5
For sparse linear model, we have ∇F(w∗) = A>z/(nb). Since z has i.i.d. N (0, σ2) entries, then A>∗jz/(nb) ∼
N (0, σ2‖A∗j‖22/(nb)2) for any j ∈ [d]. Using the Mill’s inequality for tail bounds of Normal distribution, we have
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This implies, using union bound and the assumption maxj ‖A∗j‖2√
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≤ 1,
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Then we have the following result holds with probability at least 1− 1√
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Conditioning on (B.1), it follows consequently that

‖∇ĨF(w∗)‖22 ≤ s‖∇F(w∗)‖2∞ ≤
4σ2s log d

nb
. (B.2)



Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning

We have from Lemma 3.4 that s = 2k + k∗ = (2C5 + 1) k∗ for some constant C5 when n and b are large enough. For a
given ε > 0 and δ ∈ (0, 1), if

r ≥ 4 log

(F(w̃(0))−F(w∗)

εδ

)
,

then with probability at least 1− δ − 1√
nb log d

· d−3, we have from (3.4), (B.1) and (B.2) that

‖w̃(r) −w∗‖2 ≤ c3σ
√
k∗ log d
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,

for some constant c3, which completes the proof.

C. Proof of Lemma 4.1
For notational convenience, define w′ = Hk(w). Let supp(w∗) = I∗, supp(w) = I, supp(w′) = I ′, and w′′ = w −w′
with supp(w′′) = I ′′. Clearly we have I ′ ∪ I ′′ = I, I ′ ∩ I ′′ = ∅, and ‖w‖22 = ‖w′‖22 + ‖w′′‖22. Then we have that

‖w′ −w∗‖22 − ‖w −w∗‖22 = ‖w′‖22 − 2〈w′,w∗〉 − ‖w‖22 + 2〈w,w∗〉 = 2〈w′′,w∗〉 − ‖w′′‖22. (C.1)

If 2〈w′′,w∗〉−‖w′′‖22 ≤ 0, then (4.1) holds naturally. From this point on, we will discuss the situation when 2〈w′′,w∗〉−
‖w′′‖22 > 0.

Let I∗∩I ′ = I∗1 and I∗∩I ′′ = I∗2, and denote (w∗)I∗1 = w∗1, (w∗)I∗2 = w∗2, (w′)I∗1 = w1∗, and (w′′)I∗2 = w2∗.
Then we have that

2〈w′′,w∗〉 − ‖w′′‖22 = 2〈w2∗,w∗2〉 − ‖w′′‖22 ≤ 2〈w2∗,w∗2〉 − ‖w2∗‖22 ≤ 2‖w2∗‖2‖w∗2‖2 − ‖w2∗‖22. (C.2)

Let |supp(w2∗)| = |I∗2| = k∗∗ and w2,max = ‖w2∗‖∞, then consequently we have ‖w2∗‖2 = m · w2,max for some
m ∈ [1,

√
k∗∗]. Notice that we are interested in 1 ≤ k∗∗ ≤ k∗, because (4.1) holds naturally if k∗∗ = 0. In terms of

‖w∗2‖2, the RHS of (C.2) is maximized when:

Case 1: m = 1, if ‖w∗2‖2 ≤ w2,max;

Case 2: m = ‖w∗2‖2
w2,max

, if w2,max < ‖w∗2‖2 <
√
k∗∗w2,max, ;

Case 3: m =
√
k∗∗, if ‖w∗2‖2 ≥

√
k∗∗w2,max.

Case 1: If ‖w∗2‖2 ≤ w2,max, then the RHS of (C.2) is maximized when m = 1, i.e. w2∗ has only one nonzero element
w2,max. By (C.2), we have

2〈w′′,w∗〉 − ‖w′′‖22 ≤ 2w2,max‖w∗2‖2 − w2
2,max ≤ 2w2

2,max − w2
2,max = w2

2,max. (C.3)

Denote w1,min as the smallest element ofw1∗ (in magnitude), which indicates that |w1,min| ≥ |w2,max| asw′ contains the
largest k entries and w′′ contains the smallest d− k entries of w. For ‖w −w∗‖22, we have that

‖w −w∗‖22 = ‖w′ −w∗1‖22 + ‖w′′ −w∗2‖22
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where the last inequality follows from the fact that w(I∗1)C has k − k∗ + k∗∗ entries larger than w1,min (in magnitude).
Combining (C.1), (C.3) and (C.5), we have that

‖w′ −w∗‖22 − ‖w −w∗‖22
‖w −w∗‖22

≤ w2
2,max

(k − k∗ + k∗∗)w2
1,min − w2

2,max

≤ w2
2,max

(k − k∗ + k∗∗)w2
2,max − w2

2,max

≤ 1

k − k∗ . (C.6)



Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning

Case 2: If w2,max < ‖w∗2‖2 <
√
k∗∗w2,max, then the RHS of (C.2) is maximized when m = ‖w∗2‖2

w2,max
. By (C.2), we have

that
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By (C.4), we have that
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Combining (C.1), (C.7) and (C.8), we have that
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Case 3: If ‖w∗2‖2 ≥
√
k∗∗w2,max, then the RHS of (C.2) is maximized when m =

√
k∗∗. Let ‖w∗2‖2 = γw2,max for
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k∗∗. We have from (C.2) that
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By (C.4), we have
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Combining (C.1), (C.10) and (C.11), we have
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Inspecting the RHS of (C.12) carefully, we can see that it is either a bell shape function or a monotone decreasing function
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2

√
k∗∗ +

√
k − k∗ + 5

4k
∗∗

(the other root is smaller than
√
k∗∗). Denoting γ∗ = max{

√
k∗∗, 12

√
k∗∗ +

√
k − k∗ + 5

4k
∗∗} and plugging it into the

RHS of (C.12), we have
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Combining (C.6), (C.9) and (C.13), and taking k > k∗ and k∗ ≥ k∗∗ ≥ 1 into consideration, we have
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which proves the result.

D. Proof of Lemma 4.3
Remind that the stochastic variance reduced gradient is

g(t)(w(t)) = ∇fit(w(t))−∇fit(w̃) + µ̃, (D.1)
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where µ̃ = ∇F(w̃) = 1
n

∑n
i=1∇fi(w̃).

It is straightforward that the stochastic variance reduced gradient (D.1) satisfies

Eg(t)(w(t)) = E∇fit(w(t))− E∇fit(w̃) + µ̃ = ∇F(w(t)),

Thus g(t)(w(t)) is a unbiased estimate of∇F(w(t)) and the first claim is verified.

Next, we bound E‖g(t)
I (w(t))‖22. For any i ∈ [n] and w with supp(w) ⊆ I, consider

φi(w) = fi(w)− fi(w∗)− 〈∇fi(w∗),w −w∗〉.

Since ∇φi(w∗) = ∇fi(w∗)−∇fi(w∗) = 0, we have that φi(w∗) = minw φi(w), which implies

0 = φi(w
∗) ≤ min

η
φi(w − η∇φi(w)) ≤ min

η
φi(w)− η‖∇φi(w)‖22 +

ρ+s η
2

2
‖∇φi(w)‖22

= φi(w)− 1

2ρ+s
‖∇φi(w)‖22, (D.2)

where the last inequality follows from the RSS condition and the last equality follows from the fact that η = 1/ρ+s
minimizes the function. By (D.2), we have

‖∇Ifi(w)−∇Ifi(w∗)‖22 ≤ ‖∇fi(w)−∇fi(w∗)‖22
≤ 2ρ+s [fi(w)− fi(w∗)− 〈∇fi(w∗),w −w∗〉]
= 2ρ+s [fi(w)− fi(w∗)− 〈∇Ifi(w∗),w −w∗〉] . (D.3)

Since the sampling of i from [n] is uniform sampling, we have from (D.3)

E‖∇Ifi(w)−∇Ifi(w∗)‖22 =
1

n

n∑
i=1

‖∇Ifi(w)−∇Ifi(w∗)‖22

≤ 2ρ+s [F(w)−F(w∗)− 〈∇IF(w∗),w −w∗〉]
≤ 2ρ+s [F(w)−F(w∗) + |〈∇IF(w∗),w −w∗〉|]
≤ 4ρ+s [F(w)−F(w∗)] , (D.4)

where the last inequality is from the RSC condition of F(w).

By the definition of g
(t)
I in (D.1), we can verify the second claim as

E‖g(t)
I (w(t))‖22 ≤ 3E‖ [∇Ifit(w̃)−∇Ifit(w∗)]−∇IF(w̃) +∇IF(w∗)‖22

+ 3E‖∇Ifit(w(t))−∇Ifit(w∗)‖22 + 3‖∇IF(w∗)‖22
≤ 3E‖∇Ifit(w(t))−∇Ifit(w∗)‖22 + 3E‖∇Ifit(w̃)−∇Ifit(w∗)‖22 + 3‖∇IF(w∗)‖22
≤ 12ρ+s

[
F(w(t))−F(w∗) + F(w̃)−F(w∗)

]
+ 3‖∇IF(w∗)‖22,

where the first inequality follows from ‖a + b + c‖22 ≤ 3‖a‖22 + 3‖b‖22 + 3‖c‖22, the second inequality follows from
E‖x − Ex‖22 ≤ E‖x‖22 with E [∇Ifit(w̃)−∇Ifit(w∗)] = ∇IF(w̃) −∇IF(w∗), and the last inequality follows from
(D.4).




