## Appendix : Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning

## A. Proof of Lemma 3.4

For any $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in \mathbb{R}^{d}$ in sparse linear model, we have $\nabla^{2} \mathcal{F}(\boldsymbol{w})=\mathbf{A}^{\top} \mathbf{A}$ and

$$
\mathcal{F}(\boldsymbol{w})-\mathcal{F}\left(\boldsymbol{w}^{\prime}\right)-\left\langle\nabla \mathcal{F}\left(\boldsymbol{w}^{\prime}\right), \boldsymbol{w}-\boldsymbol{w}^{\prime}\right\rangle=\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{\prime}\right)^{\top} \nabla^{2} \mathcal{F}\left(\boldsymbol{w}^{\prime \prime}\right)\left(\boldsymbol{w}-\boldsymbol{w}^{\prime}\right)=\frac{1}{2}\left\|\mathbf{A}\left(\boldsymbol{w}-\boldsymbol{w}^{\prime}\right)\right\|_{2}^{2},
$$

where $\boldsymbol{w}^{\prime \prime}$ is between $\boldsymbol{w}$ and $\boldsymbol{w}^{\prime}$ and $\left\|\boldsymbol{w}-\boldsymbol{w}^{\prime}\right\|_{0} \leq 2 k \leq s$. Let $\boldsymbol{v}=\boldsymbol{w}-\boldsymbol{w}^{\prime}$, then $\|\boldsymbol{v}\|_{0} \leq s$ and $\|\boldsymbol{v}\|_{1}^{2} \leq s\|\boldsymbol{v}\|_{2}^{2}$. By (3.8), we have

$$
\frac{\|\mathbf{A} \boldsymbol{v}\|_{2}^{2}}{n b} \geq \psi_{1}\|\boldsymbol{v}\|_{2}^{2}-\varphi_{1} \frac{s \log d}{n b}\|\boldsymbol{v}\|_{2}^{2}, \text { and } \frac{\left\|\mathbf{A}_{\mathcal{S}_{i} *} \boldsymbol{v}\right\|_{2}^{2}}{b} \leq \psi_{2}\|\boldsymbol{v}\|_{2}^{2}+\varphi_{2} \frac{s \log d}{b}\|\boldsymbol{v}\|_{2}^{2}, \forall i \in[n],
$$

which further imply

$$
\begin{equation*}
\rho_{s}^{-}=\inf _{\|\boldsymbol{v}\|_{0} \leq s} \frac{\|\mathbf{A} \boldsymbol{v}\|_{2}^{2}}{n b\|\boldsymbol{v}\|_{2}^{2}} \geq \psi_{1}-\varphi_{1} \frac{s \log d}{n b}, \text { and } \rho_{s}^{+}=\sup _{\|\boldsymbol{v}\|_{0} \leq s, i \in[n]} \frac{\left\|\mathbf{A}_{\mathcal{S}_{i} *} \boldsymbol{v}\right\|_{2}^{2}}{b\|\boldsymbol{v}\|_{2}^{2}} \leq \psi_{2}+\varphi_{2} \frac{s \log d}{b} \text {. } \tag{A.1}
\end{equation*}
$$

If $b \geq \frac{\varphi_{2} s \log d}{\psi_{2}}$ and $n \geq \frac{2 \varphi_{1} \psi_{2}}{\psi_{1} \varphi_{2}}$, then we have $n b \geq \frac{2 \varphi_{1} s \log d}{\psi_{1}}$. Combining these with (A.1), we have

$$
\rho_{s}^{-} \geq \frac{1}{2} \psi_{1}, \text { and } \rho_{s}^{+} \leq 2 \psi_{2} .
$$

By the definition of $\kappa$, this indicates $\kappa_{s}=\frac{\rho_{s}^{+}}{\rho_{s}^{-}} \leq \frac{4 \psi_{2}}{\psi_{1}}$. Then for some $C_{5} \geq \frac{16 C_{1} \psi_{2}^{2}}{\psi_{1}^{2}}$, we have

$$
k=C_{5} k^{*} \geq C_{1} \kappa_{s}^{2} k^{*} .
$$

## B. Proof of Theorem 3.5

For sparse linear model, we have $\nabla \mathcal{F}\left(\boldsymbol{w}^{*}\right)=\mathbf{A}^{\top} \mathbf{z} /(n b)$. Since $\mathbf{z}$ has i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries, then $\mathbf{A}_{* j}^{\top} \mathbf{z} /(n b) \sim$ $\mathcal{N}\left(0, \sigma^{2}\left\|\mathbf{A}_{* j}\right\|_{2}^{2} /(n b)^{2}\right)$ for any $j \in[d]$. Using the Mill's inequality for tail bounds of Normal distribution, we have

$$
\mathbb{P}\left(\left|\frac{\mathbf{A}_{* j}^{\top} \mathbf{z}}{n b}\right|>2 \sigma \sqrt{\frac{\log d}{n b}}\right)=\mathbb{P}\left(\left|\frac{\mathbf{A}_{* j}^{\top} \mathbf{z}}{\sigma\left\|\mathbf{A}_{* j}\right\|_{2}}\right|>2 \frac{\sqrt{n b \log d}}{\left\|\mathbf{A}_{* j}\right\|_{2}}\right) \leq\left\|\mathbf{A}_{* j}\right\|_{2} \sqrt{\frac{1}{2 \pi n b \log d}} \exp \left(-4 \frac{n b \log d}{\left\|\mathbf{A}_{* j}\right\|_{2}^{2}}\right) .
$$

This implies, using union bound and the assumption $\frac{\max _{j}\left\|\mathbf{A}_{* j}\right\|_{2}}{\sqrt{n b}} \leq 1$,

$$
\mathbb{P}\left(\left\|\frac{\mathbf{A}_{* *}^{\top} \mathbf{Z}}{n b}\right\|_{\infty}>2 \sigma \sqrt{\frac{\log d}{n b}}\right) \leq \frac{d^{-3}}{\sqrt{\pi n b \log d}} .
$$

Then we have the following result holds with probability at least $1-\frac{1}{\sqrt{n b \log d}} \cdot d^{-3}$

$$
\begin{equation*}
\left\|\nabla \mathcal{F}\left(\boldsymbol{w}^{*}\right)\right\|_{\infty} \leq\left\|\frac{\mathbf{A}^{\top} \mathbf{z}}{n b}\right\|_{\infty} \leq 2 \sigma \sqrt{\frac{\log d}{n b}} . \tag{B.1}
\end{equation*}
$$

Conditioning on (B.1), it follows consequently that

$$
\begin{equation*}
\left\|\nabla_{\widetilde{\mathcal{I}}} \mathcal{F}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2} \leq s\left\|\nabla \mathcal{F}\left(\boldsymbol{w}^{*}\right)\right\|_{\infty}^{2} \leq \frac{4 \sigma^{2} s \log d}{n b} \tag{B.2}
\end{equation*}
$$

We have from Lemma 3.4 that $s=2 k+k^{*}=\left(2 C_{5}+1\right) k^{*}$ for some constant $C_{5}$ when $n$ and $b$ are large enough. For a given $\varepsilon>0$ and $\delta \in(0,1)$, if

$$
r \geq 4 \log \left(\frac{\mathcal{F}\left(\widetilde{\boldsymbol{w}}^{(0)}\right)-\mathcal{F}\left(\boldsymbol{w}^{*}\right)}{\varepsilon \delta}\right)
$$

then with probability at least $1-\delta-\frac{1}{\sqrt{n b \log d}} \cdot d^{-3}$, we have from (3.4), (B.1) and (B.2) that

$$
\left\|\widetilde{\boldsymbol{w}}^{(r)}-\boldsymbol{w}^{*}\right\|_{2} \leq c_{3} \sigma \sqrt{\frac{k^{*} \log d}{n b}}
$$

for some constant $c_{3}$, which completes the proof.

## C. Proof of Lemma 4.1

For notational convenience, define $\boldsymbol{w}^{\prime}=\mathcal{H}_{k}(\boldsymbol{w})$. Let $\operatorname{supp}\left(\boldsymbol{w}^{*}\right)=\mathcal{I}^{*}, \operatorname{supp}(\boldsymbol{w})=\mathcal{I}, \operatorname{supp}\left(\boldsymbol{w}^{\prime}\right)=\mathcal{I}^{\prime}$, and $\boldsymbol{w}^{\prime \prime}=\boldsymbol{w}-\boldsymbol{w}^{\prime}$ with $\operatorname{supp}\left(\boldsymbol{w}^{\prime \prime}\right)=\mathcal{I}^{\prime \prime}$. Clearly we have $\mathcal{I}^{\prime} \cup \mathcal{I}^{\prime \prime}=\mathcal{I}, \mathcal{I}^{\prime} \cap \mathcal{I}^{\prime \prime}=\emptyset$, and $\|\boldsymbol{w}\|_{2}^{2}=\left\|\boldsymbol{w}^{\prime}\right\|_{2}^{2}+\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2}$. Then we have that

$$
\begin{equation*}
\left\|\boldsymbol{w}^{\prime}-\boldsymbol{w}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}=\left\|\boldsymbol{w}^{\prime}\right\|_{2}^{2}-2\left\langle\boldsymbol{w}^{\prime}, \boldsymbol{w}^{*}\right\rangle-\|\boldsymbol{w}\|_{2}^{2}+2\left\langle\boldsymbol{w}, \boldsymbol{w}^{*}\right\rangle=2\left\langle\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}\right\rangle-\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2} \tag{C.1}
\end{equation*}
$$

If $2\left\langle\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}\right\rangle-\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2} \leq 0$, then (4.1) holds naturally. From this point on, we will discuss the situation when $2\left\langle\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}\right\rangle-$ $\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2}>0$.
Let $\mathcal{I}^{*} \cap \mathcal{I}^{\prime}=\mathcal{I}^{* 1}$ and $\mathcal{I}^{*} \cap \mathcal{I}^{\prime \prime}=\mathcal{I}^{* 2}$, and denote $\left(\boldsymbol{w}^{*}\right)_{\mathcal{I}^{* 1}}=\boldsymbol{w}^{* 1},\left(\boldsymbol{w}^{*}\right)_{\mathcal{I}^{* 2}}=\boldsymbol{w}^{* 2},\left(\boldsymbol{w}^{\prime}\right)_{\mathcal{I}^{* 1}}=\boldsymbol{w}^{1 *}$, and $\left(\boldsymbol{w}^{\prime \prime}\right)_{\mathcal{I}^{* 2}}=\boldsymbol{w}^{2 *}$. Then we have that

$$
\begin{equation*}
2\left\langle\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}\right\rangle-\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2}=2\left\langle\boldsymbol{w}^{2 *}, \boldsymbol{w}^{* 2}\right\rangle-\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2} \leq 2\left\langle\boldsymbol{w}^{2 *}, \boldsymbol{w}^{* 2}\right\rangle-\left\|\boldsymbol{w}^{2 *}\right\|_{2}^{2} \leq 2\left\|\boldsymbol{w}^{2 *}\right\|_{2}\left\|\boldsymbol{w}^{* 2}\right\|_{2}-\left\|\boldsymbol{w}^{2 *}\right\|_{2}^{2} \tag{C.2}
\end{equation*}
$$

Let $\left|\operatorname{supp}\left(\boldsymbol{w}^{2 *}\right)\right|=\left|\mathcal{I}^{* 2}\right|=k^{* *}$ and $w_{2, \max }=\left\|\boldsymbol{w}^{2 *}\right\|_{\infty}$, then consequently we have $\left\|\boldsymbol{w}^{2 *}\right\|_{2}=m \cdot w_{2, \text { max }}$ for some $m \in\left[1, \sqrt{k^{* *}}\right]$. Notice that we are interested in $1 \leq k^{* *} \leq k^{*}$, because (4.1) holds naturally if $k^{* *}=0$. In terms of $\left\|\boldsymbol{w}^{* 2}\right\|_{2}$, the RHS of (C.2) is maximized when:

Case 1: $m=1$, if $\left\|\boldsymbol{w}^{* 2}\right\|_{2} \leq w_{2, \max }$;
Case 2: $m=\frac{\left\|\boldsymbol{w}^{* 2}\right\|_{2}}{w_{2, \text { max }}}$, if $w_{2, \text { max }}<\left\|\boldsymbol{w}^{* 2}\right\|_{2}<\sqrt{k^{* *}} w_{2, \max }$, ;
Case 3: $m=\sqrt{k^{* *}}$, if $\left\|\boldsymbol{w}^{* 2}\right\|_{2} \geq \sqrt{k^{* *}} w_{2, \max }$.
Case 1: If $\left\|\boldsymbol{w}^{* 2}\right\|_{2} \leq w_{2, \max }$, then the RHS of (C.2) is maximized when $m=1$, i.e. $\boldsymbol{w}^{2 *}$ has only one nonzero element $w_{2, \max }$. By (C.2), we have

$$
\begin{equation*}
2\left\langle\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}\right\rangle-\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2} \leq 2 w_{2, \max }\left\|\boldsymbol{w}^{* 2}\right\|_{2}-w_{2, \max }^{2} \leq 2 w_{2, \max }^{2}-w_{2, \max }^{2}=w_{2, \max }^{2} \tag{C.3}
\end{equation*}
$$

Denote $w_{1, \min }$ as the smallest element of $\boldsymbol{w}^{1 *}$ (in magnitude), which indicates that $\left|w_{1, \min }\right| \geq\left|w_{2, \max }\right|$ as $\boldsymbol{w}^{\prime}$ contains the largest $k$ entries and $\boldsymbol{w}^{\prime \prime}$ contains the smallest $d-k$ entries of $\boldsymbol{w}$. For $\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}$, we have that

$$
\begin{align*}
\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2} & =\left\|\boldsymbol{w}^{\prime}-\boldsymbol{w}^{* 1}\right\|_{2}^{2}+\left\|\boldsymbol{w}^{\prime \prime}-\boldsymbol{w}^{* 2}\right\|_{2}^{2} \\
& =\left\|\boldsymbol{w}_{\left(\mathcal{I}^{* 1}\right)^{C}}\right\|_{2}^{2}+\left\|\boldsymbol{w}_{\mathcal{I}^{* 1}}-\boldsymbol{w}^{* 1}\right\|_{2}^{2}+\left\|\boldsymbol{w}^{* 2}\right\|_{2}^{2}-\left(2\left\langle\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}\right\rangle-\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2}\right)  \tag{C.4}\\
& \geq\left(k-k^{*}+k^{* *}\right) w_{1, \min }^{2}-w_{2, \max }^{2} \tag{C.5}
\end{align*}
$$

where the last inequality follows from the fact that $\boldsymbol{w}_{\left(\mathcal{I}^{* 1}\right)^{C}}$ has $k-k^{*}+k^{* *}$ entries larger than $w_{1, \text { min }}$ (in magnitude). Combining (C.1), (C.3) and (C.5), we have that

$$
\begin{align*}
\frac{\left\|\boldsymbol{w}^{\prime}-\boldsymbol{w}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}}{\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}} & \leq \frac{w_{2, \max }^{2}}{\left(k-k^{*}+k^{* *}\right) w_{1, \min }^{2}-w_{2, \max }^{2}} \\
& \leq \frac{w_{2, \max }^{2}}{\left(k-k^{*}+k^{* *}\right) w_{2, \max }^{2}-w_{2, \max }^{2}} \leq \frac{1}{k-k^{*}} \tag{C.6}
\end{align*}
$$

Case 2: If $w_{2, \max }<\left\|\boldsymbol{w}^{* 2}\right\|_{2}<\sqrt{k^{* *}} w_{2, \max }$, then the RHS of (C.2) is maximized when $m=\frac{\left\|\boldsymbol{w}^{* 2}\right\|_{2}}{w_{2, \max }}$. By (C.2), we have that

$$
\begin{equation*}
2\left\langle\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}\right\rangle-\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2} \leq 2 \sqrt{k^{* *}} w_{2, \max } \cdot m w_{2, \max }-w_{2, \max }^{2} \leq k^{* *} w_{2, \max }^{2} \tag{C.7}
\end{equation*}
$$

By (C.4), we have that

$$
\begin{equation*}
\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2} \geq\left(k-k^{*}+k^{* *}\right) w_{1, \min }^{2}+m^{2} w_{2, \max }^{2}-w_{2, \max }^{2} \geq\left(k-k^{*}+k^{* *}\right) w_{1, \min }^{2} \tag{C.8}
\end{equation*}
$$

Combining (C.1), (C.7) and (C.8), we have that

$$
\begin{equation*}
\frac{\left\|\boldsymbol{w}^{\prime}-\boldsymbol{w}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}}{\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}} \leq \frac{k^{* *} w_{2, \max }^{2}}{\left(k-k^{*}+k^{* *}\right) w_{1, \min }^{2}} \leq \frac{k^{* *}}{k-k^{*}+k^{* *}} \tag{C.9}
\end{equation*}
$$

Case 3: If $\left\|\boldsymbol{w}^{* 2}\right\|_{2} \geq \sqrt{k^{* *}} w_{2, \max }$, then the RHS of (C.2) is maximized when $m=\sqrt{k^{* *}}$. Let $\left\|\boldsymbol{w}^{* 2}\right\|_{2}=\gamma w_{2, \max }$ for some $\gamma \geq \sqrt{k^{* *}}$. We have from (C.2) that

$$
\begin{equation*}
2\left\langle\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}\right\rangle-\left\|\boldsymbol{w}^{\prime \prime}\right\|_{2}^{2} \leq 2 \gamma \sqrt{k^{* *}} w_{2, \max }^{2}-k^{* *} w_{2, \max }^{2} \tag{C.10}
\end{equation*}
$$

By (C.4), we have

$$
\begin{equation*}
\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2} \geq\left(k-k^{*}+k^{* *}\right) w_{1, \min }^{2}+\gamma^{2} w_{2, \max }^{2}-\gamma \sqrt{k^{* *}} w_{2, \max }^{2}+k^{* *} w_{2, \max }^{2} \tag{C.11}
\end{equation*}
$$

Combining (C.1), (C.10) and (C.11), we have

$$
\begin{align*}
\frac{\left\|\boldsymbol{w}^{\prime}-\boldsymbol{w}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}}{\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}} & \leq \frac{2 \gamma \sqrt{k^{* *}} w_{2, \max }^{2}-k^{* *} w_{2, \max }^{2}}{\left(k-k^{*}+k^{* *}\right) w_{1, \min }^{2}+\gamma^{2} w_{2, \max }^{2}-\gamma \sqrt{k^{* *}} w_{2, \max }^{2}+k^{* *} w_{2, \max }^{2}} \\
& \leq \frac{2 \gamma \sqrt{k^{* *}}-k^{* *}}{k-k^{*}+2 k^{* *}+\gamma^{2}-2 \gamma \sqrt{k^{* *}}} \tag{C.12}
\end{align*}
$$

Inspecting the RHS of (C.12) carefully, we can see that it is either a bell shape function or a monotone decreasing function when $\gamma \geq \sqrt{k^{* *}}$. Setting the first derivative of the RHS in terms of $\gamma$ to zero, we have $\gamma=\frac{1}{2} \sqrt{k^{* *}}+\sqrt{k-k^{*}+\frac{5}{4} k^{* *}}$ (the other root is smaller than $\sqrt{k^{* *}}$ ). Denoting $\gamma_{*}=\max \left\{\sqrt{k^{* *}}, \frac{1}{2} \sqrt{k^{* *}}+\sqrt{k-k^{*}+\frac{5}{4} k^{* *}}\right\}$ and plugging it into the RHS of (C.12), we have

$$
\begin{equation*}
\frac{\left\|\boldsymbol{w}^{\prime}-\boldsymbol{w}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}}{\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2}} \leq \max \left\{\frac{k^{* *}}{k-k^{*}+k^{* *}}, \frac{2 \sqrt{k^{* *}}}{2 \sqrt{k-k^{*}+\frac{5}{4} k^{* *}}-\sqrt{k^{* *}}}\right\} \tag{C.13}
\end{equation*}
$$

Combining (C.6), (C.9) and (C.13), and taking $k>k^{*}$ and $k^{*} \geq k^{* *} \geq 1$ into consideration, we have

$$
\begin{aligned}
\max \left\{\frac{1}{k-k^{*}}, \frac{k^{* *}}{k-k^{*}+k^{* *}}, \frac{2 \sqrt{k^{* *}}}{2 \sqrt{k-k^{*}+\frac{5}{4} k^{* *}}-\sqrt{k^{* *}}}\right\} & \leq \frac{2 \sqrt{k^{* *}}}{2 \sqrt{k-k^{*}+\frac{5}{4} k^{* *}}-\sqrt{k^{* *}}} \\
& \leq \frac{2 \sqrt{k^{*}}}{2 \sqrt{k-k^{*}}-\sqrt{k^{*}}} \leq \frac{2 \sqrt{k^{*}}}{\sqrt{k-k^{*}}}
\end{aligned}
$$

which proves the result.

## D. Proof of Lemma 4.3

Remind that the stochastic variance reduced gradient is

$$
\begin{equation*}
\mathbf{g}^{(t)}\left(\boldsymbol{w}^{(t)}\right)=\nabla f_{i_{t}}\left(\boldsymbol{w}^{(t)}\right)-\nabla f_{i_{t}}(\widetilde{\boldsymbol{w}})+\widetilde{\boldsymbol{\mu}} \tag{D.1}
\end{equation*}
$$

where $\widetilde{\boldsymbol{\mu}}=\nabla \mathcal{F}(\widetilde{\boldsymbol{w}})=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\widetilde{\boldsymbol{w}})$.
It is straightforward that the stochastic variance reduced gradient (D.1) satisfies

$$
\mathbb{E} \mathbf{g}^{(t)}\left(\boldsymbol{w}^{(t)}\right)=\mathbb{E} \nabla f_{i_{t}}\left(\boldsymbol{w}^{(t)}\right)-\mathbb{E} \nabla f_{i_{t}}(\widetilde{\boldsymbol{w}})+\widetilde{\boldsymbol{\mu}}=\nabla \mathcal{F}\left(\boldsymbol{w}^{(t)}\right)
$$

Thus $\mathbf{g}^{(t)}\left(\boldsymbol{w}^{(t)}\right)$ is a unbiased estimate of $\nabla \mathcal{F}\left(\boldsymbol{w}^{(t)}\right)$ and the first claim is verified.
Next, we bound $\mathbb{E}\left\|\mathbf{g}_{\mathcal{I}}^{(t)}\left(\boldsymbol{w}^{(t)}\right)\right\|_{2}^{2}$. For any $i \in[n]$ and $\boldsymbol{w}$ with $\operatorname{supp}(\boldsymbol{w}) \subseteq \mathcal{I}$, consider

$$
\phi_{i}(\boldsymbol{w})=f_{i}(\boldsymbol{w})-f_{i}\left(\boldsymbol{w}^{*}\right)-\left\langle\nabla f_{i}\left(\boldsymbol{w}^{*}\right), \boldsymbol{w}-\boldsymbol{w}^{*}\right\rangle .
$$

Since $\nabla \phi_{i}\left(\boldsymbol{w}^{*}\right)=\nabla f_{i}\left(\boldsymbol{w}^{*}\right)-\nabla f_{i}\left(\boldsymbol{w}^{*}\right)=\mathbf{0}$, we have that $\phi_{i}\left(\boldsymbol{w}^{*}\right)=\min _{\boldsymbol{w}} \phi_{i}(\boldsymbol{w})$, which implies

$$
\begin{align*}
0 & =\phi_{i}\left(\boldsymbol{w}^{*}\right) \leq \min _{\eta} \phi_{i}\left(\boldsymbol{w}-\eta \nabla \phi_{i}(\boldsymbol{w})\right) \leq \min _{\eta} \phi_{i}(\boldsymbol{w})-\eta\left\|\nabla \phi_{i}(\boldsymbol{w})\right\|_{2}^{2}+\frac{\rho_{s}^{+} \eta^{2}}{2}\left\|\nabla \phi_{i}(\boldsymbol{w})\right\|_{2}^{2} \\
& =\phi_{i}(\boldsymbol{w})-\frac{1}{2 \rho_{s}^{+}}\left\|\nabla \phi_{i}(\boldsymbol{w})\right\|_{2}^{2} \tag{D.2}
\end{align*}
$$

where the last inequality follows from the RSS condition and the last equality follows from the fact that $\eta=1 / \rho_{s}^{+}$ minimizes the function. By (D.2), we have

$$
\begin{align*}
\left\|\nabla_{\mathcal{I}} f_{i}(\boldsymbol{w})-\nabla_{\mathcal{I}} f_{i}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2} & \leq\left\|\nabla f_{i}(\boldsymbol{w})-\nabla f_{i}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2} \\
& \leq 2 \rho_{s}^{+}\left[f_{i}(\boldsymbol{w})-f_{i}\left(\boldsymbol{w}^{*}\right)-\left\langle\nabla f_{i}\left(\boldsymbol{w}^{*}\right), \boldsymbol{w}-\boldsymbol{w}^{*}\right\rangle\right] \\
& =2 \rho_{s}^{+}\left[f_{i}(\boldsymbol{w})-f_{i}\left(\boldsymbol{w}^{*}\right)-\left\langle\nabla_{\mathcal{I}} f_{i}\left(\boldsymbol{w}^{*}\right), \boldsymbol{w}-\boldsymbol{w}^{*}\right\rangle\right] \tag{D.3}
\end{align*}
$$

Since the sampling of $i$ from $[n]$ is uniform sampling, we have from (D.3)

$$
\begin{align*}
\mathbb{E}\left\|\nabla_{\mathcal{I}} f_{i}(\boldsymbol{w})-\nabla_{\mathcal{I}} f_{i}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla_{\mathcal{I}} f_{i}(\boldsymbol{w})-\nabla_{\mathcal{I}} f_{i}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2} \\
& \leq 2 \rho_{s}^{+}\left[\mathcal{F}(\boldsymbol{w})-\mathcal{F}\left(\boldsymbol{w}^{*}\right)-\left\langle\nabla_{\mathcal{I}} \mathcal{F}\left(\boldsymbol{w}^{*}\right), \boldsymbol{w}-\boldsymbol{w}^{*}\right\rangle\right] \\
& \leq 2 \rho_{s}^{+}\left[\mathcal{F}(\boldsymbol{w})-\mathcal{F}\left(\boldsymbol{w}^{*}\right)+\left|\left\langle\nabla_{\mathcal{I}} \mathcal{F}\left(\boldsymbol{w}^{*}\right), \boldsymbol{w}-\boldsymbol{w}^{*}\right\rangle\right|\right] \\
& \leq 4 \rho_{s}^{+}\left[\mathcal{F}(\boldsymbol{w})-\mathcal{F}\left(\boldsymbol{w}^{*}\right)\right] \tag{D.4}
\end{align*}
$$

where the last inequality is from the RSC condition of $\mathcal{F}(\boldsymbol{w})$.
By the definition of $\mathbf{g}_{\mathcal{I}}^{(t)}$ in (D.1), we can verify the second claim as

$$
\begin{aligned}
\mathbb{E}\left\|\mathbf{g}_{\mathcal{I}}^{(t)}\left(\boldsymbol{w}^{(t)}\right)\right\|_{2}^{2} \leq & 3 \mathbb{E}\left\|\left[\nabla_{\mathcal{I}} f_{i_{t}}(\widetilde{\boldsymbol{w}})-\nabla_{\mathcal{I}} f_{i_{t}}\left(\boldsymbol{w}^{*}\right)\right]-\nabla_{\mathcal{I}} \mathcal{F}(\widetilde{\boldsymbol{w}})+\nabla_{\mathcal{I}} \mathcal{F}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2} \\
& +3 \mathbb{E}\left\|\nabla_{\mathcal{I}} f_{i_{t}}\left(\boldsymbol{w}^{(t)}\right)-\nabla_{\mathcal{I}} f_{i_{t}}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2}+3\left\|\nabla_{\mathcal{I}} \mathcal{F}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2} \\
\leq & 3 \mathbb{E}\left\|\nabla_{\mathcal{I}} f_{i_{t}}\left(\boldsymbol{w}^{(t)}\right)-\nabla_{\mathcal{I}} f_{i_{t}}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2}+3 \mathbb{E}\left\|\nabla_{\mathcal{I}} f_{i_{t}}(\widetilde{\boldsymbol{w}})-\nabla_{\mathcal{I}} f_{i_{t}}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2}+3\left\|\nabla_{\mathcal{I}} \mathcal{F}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2} \\
\leq & 12 \rho_{s}^{+}\left[\mathcal{F}\left(\boldsymbol{w}^{(t)}\right)-\mathcal{F}\left(\boldsymbol{w}^{*}\right)+\mathcal{F}(\widetilde{\boldsymbol{w}})-\mathcal{F}\left(\boldsymbol{w}^{*}\right)\right]+3\left\|\nabla_{\mathcal{I}} \mathcal{F}\left(\boldsymbol{w}^{*}\right)\right\|_{2}^{2}
\end{aligned}
$$

where the first inequality follows from $\|\mathbf{a}+\boldsymbol{b}+\mathbf{c}\|_{2}^{2} \leq 3\|\mathbf{a}\|_{2}^{2}+3\|\boldsymbol{b}\|_{2}^{2}+3\|\mathbf{c}\|_{2}^{2}$, the second inequality follows from $\mathbb{E}\|\mathbf{x}-\mathbb{E} \mathbf{x}\|_{2}^{2} \leq \mathbb{E}\|\mathbf{x}\|_{2}^{2}$ with $\mathbb{E}\left[\nabla_{\mathcal{I}} f_{i_{t}}(\widetilde{\boldsymbol{w}})-\nabla_{\mathcal{I}} f_{i_{t}}\left(\boldsymbol{w}^{*}\right)\right]=\nabla_{\mathcal{I}} \mathcal{F}(\widetilde{\boldsymbol{w}})-\nabla_{\mathcal{I}} \mathcal{F}\left(\boldsymbol{w}^{*}\right)$, and the last inequality follows from (D.4).

