
Gauss quadrature for matrix inverse forms with applications

A. Further Background on Gauss Quadrature
We present below a more detailed summary of material on Gauss quadrature to make the paper self-contained.

A.1. Selecting weights and nodes

We’ve described that the Riemann-Stieltjes integral could be expressed as

I[f] := Q
n

+R
n

=

X

n

i=1

!
i

f(✓
i

) +

X

m

i=1

⌫
i

f(⌧
i

) +R
n

[f],

where Q
n

denotes the nth degree approximation and R
n

denotes a remainder term. The weights {!
i

}n
i=1

, {⌫
i

}m
i=1

and
nodes {✓

i

}n
i=1

are chosen such that for all polynomials of degree less than 2n+m�1, denoted f 2 P2n+m�1, we have exact
interpolation I[f] = Q

n

. One way to compute weights and nodes is to set f(x) = xi for i  2n+m� 1 and then use this
exact nonlinear system. But there is an easier way to obtain weights and nodes, namely by using polynomials orthogonal
with respect to the measure ↵. Specifically, we construct a sequence of orthogonal polynomials p

0

(�), p
1

(�), . . . such that
p
i

(�) is a polynomial in � of degree exactly k, and p
i

, p
j

are orthogonal, i.e., they satisfy

Z

�

max

�

min

p
i

(�)p
j

(�)d↵(�) =

⇢

1, i = j
0, otherwise.

The roots of p
n

are distinct, real and lie in the interval of [�
min

,�
max

], and form the nodes {✓
i

}n
i=1

for Gauss quadra-
ture (see, e.g., (Golub & Meurant, 2009, Ch. 6)).

Consider the two monic polynomials whose roots serve as quadrature nodes:

⇡
n

(�) =
Y

n

i=1

(�� ✓
i

), ⇢
m

(�) =
Y

m

i=1

(�� ⌧
i

),

where ⇢
0

= 1 for consistency. We further denote ⇢+
m

= ±⇢
m

, where the sign is taken to ensure ⇢+
m

� 0 on [�
min

,�
max

].
Then, for m > 0, we calculate the quadrature weights as

!
i

= I



⇢+
m

(�)⇡
n

(�)

⇢+
m

(✓
i

)⇡0
n

(✓
i

)(�� ✓
i

)

�

, ⌫
j

= I



⇢+
m

(�)⇡
n

(�)

(⇢+
m

)

0
(⌧

j

)⇡
n

(⌧
j

)(�� ⌧
j

)

�

,

where f 0
(�) denotes the derivative of f with respect to �. When m = 0 the quadrature degenerates to Gauss quadrature

and we have

!
i

= I



⇡
n

(�)

⇡0
n

(✓
i

)(�� ✓
i

)

�

.

Although we have specified how to select nodes and weights for quadrature, these ideas cannot be applied to our problem
because the measure ↵ is unknown. Indeed, calculating the measure explicitly would require knowing the entire spectrum
of A, which is as good as explicitly computing f(A), hence untenable for us. The next section shows how to circumvent
the difficulties due to unknown ↵.

A.2. Gauss Quadrature Lanczos (GQL)

The key idea to circumvent our lack of knowledge of ↵ is to recursively construct polynomials called Lanczos polynomials.
The construction ensures their orthogonality with respect to ↵. Concretely, we construct Lanczos polynomials via the
following three-term recurrence:

�
i

p
i

(�) = (�� ↵
i

)p
i�1

(�)� �
i�1

p
i�2

(�), i = 1, 2, . . . , n

p�1

(�) ⌘ 0; p
0

(�) ⌘ 1,
(A.1)

while ensuring
R

�

max

�

min

d↵(�) = 1. We can express (A.1) in matrix form by writing

�P
n

(�) = J
n

P
n

(�) + �
n

p
n

(�)e
n

,

Gauss quadrature for matrix inverse forms with applications

where P
n

(�) := [p
0

(�), . . . , p
n�1

(�)]>, e
n

is nth canonical unit vector, and J
n

is the tridiagonal matrix

J
n

=

2

6

6

6

6

6

6

4

↵
1

�
1

�
1

↵
2

�
2

�
2

.

. . . ↵
n�1

�
n�1

�
n�1

↵
n

3

7

7

7

7

7

7

5

. (A.2)

This matrix is known as the Jacobi matrix, and is closed related to Gauss quadrature. The following well-known theorem
makes this relation precise.

Theorem 10 ((Wilf, 1962; Golub & Welsch, 1969)). The eigenvalues of J
n

form the nodes {✓
i

}n
i=1

of Gauss-type quadra-
tures. The weights {!

i

}n
i=1

are given by the squares of the first elements of the normalized eigenvectors of J
n

.

Thus, if J
n

has the eigendecomposition J
n

= P>
n

�P
n

, then for Gauss quadrature Theorem 10 yields

Q
n

=

X

n

i=1

!
i

f(✓
i

) = e>
1

P>
n

f(�)P
n

e
1

= e>
1

f(J
n

)e
1

. (A.3)

Specialization. We now specialize to our main focus, f(A) = A�1, for which we prove more precise results. In this
case, (A.3) becomes Q

n

= [J�1

n

]

1,1

. The task now is to compute Q
n

, and given A, u to obtain the Jacobi matrix J
n

.

Fortunately, we can efficiently calculate J
n

iteratively using the Lanczos Algorithm (Lanczos, 1950). Suppose we have
an estimate J

i

, in iteration (i + 1) of Lanczos, we compute the tridiagonal coefficients ↵
i+1

and �
i+1

and add them to
this estimate to form J

i+1

. As to Q
n

, assuming we have already computed [J�1

i

]

1,1

, letting j
i

= J�1

i

e
i

and invoking the
Sherman-Morrison identity (Sherman & Morrison, 1950) we obtain the recursion:

[J�1

i+1

]

1,1

= [J�1

i

]

1,1

+

�2

i

([j
i

]

1

)

2

↵
i+1

� �2

i

[j
i

]

i

, (A.4)

where [j
i

]

1

and [j
i

]

i

can be recursively computed using a Cholesky-like factorization of J
i

(Golub & Meurant, 2009, p.31).

For Gauss-Radau quadrature, we need to modify J
i

so that it has a prescribed eigenvalue. More precisely, we extend J
i

to J lr
i

for left Gauss-Radau (J rr
i

for right Gauss-Radau) with �
i

on the off-diagonal and ↵lr
i

(↵rr
i

) on the diagonal, so that
J lr
i

(J rr
i

) has a prescribed eigenvalue of �
min

(�
max

).

For Gauss-Lobatto quadrature, we extend J
i

to J lo
i

with values �lo
i

and ↵lo
i

chosen to ensure that J lo
i

has the prescribed
eigenvalues �

min

and �
max

. For more detailed on the construction, see (Golub, 1973).

For all methods, the approximated values are calculated as [(J 0
i

)

�1

]

1,1

, where J 0
i

2 {J lr
i

, J rr
i

, J lo
i

} is the modified Jacobi
matrix. Here J 0

i

is constructed at the i-th iteration of the algorithm.

The algorithm for computing Gauss, Gauss-Radau, and Gauss-Lobatto quadrature rules with the help of Lanczos itera-
tion is called Gauss Quadrature Lanczos (GQL) and is shown in (Golub & Meurant, 1997). We recall its pseudocode
in Algorithm 1 to make our presentation self-contained (and for our proofs in Section 4).

The error of approximating I[f] by Gauss-type quadratures can be expressed as

R
n

[f] =
f (2n+m)

(⇠)

(2n+m)!

I[⇢
m

⇡2

n

],

for some ⇠ 2 [�
min

,�
max

] (see, e.g., (Stoer & Bulirsch, 2013)). Note that ⇢
m

does not change sign in [�
min

,�
max

]; but with
different values of m and ⌧

j

we obtain different (but fixed) signs for R
n

[f] using f(�) = 1/� and �
min

> 0. Concretely,
for Gauss quadrature m = 0 and R

n

[f] � 0; for left Gauss-Radau m = 1 and ⌧
1

= �
min

, so we have R
n

[f]  0; for right
Gauss-Radau we have m = 1 and ⌧

1

= �
max

, thus R
n

[f] � 0; while for Gauss-Lobatto we have m = 2, ⌧
1

= �
min

and
⌧
2

= �
max

, so that R
n

[f]  0. This behavior of the errors clearly shows the ordering relations between the target values
and the approximations made by the different quadrature rules. Lemma 2 (see e.g., (Meurant, 1997)) makes this claim
precise.

Gauss quadrature for matrix inverse forms with applications

Algorithm 5 Gauss Quadrature Lanczos (GQL)
Input: u and A the corresponding vector and matrix, �

min

and �
max

lower and upper bounds for the spectrum of A
Output: g

i

, grr
i

, glr
i

and glo
i

the Gauss, right Gauss-Radau, left Gauss-Radau and Gauss-Lobatto quadrature computed at
i-th iteration

Initialize: u�1

= 0, u
0

= u/kuk, ↵
1

= u>
0

Au
0

, �
1

= k(A�↵
1

I)u
0

k, g
1

= kuk/↵
1

, c
1

= 1, �
1

= ↵
1

, �lr
1

= ↵
1

��
min

,
�rr
1

= ↵
1

� �
max

, u
1

= (A� ↵
1

I)u
0

/�
1

, i = 2

while i  N do
↵
i

= u>
i�1

Au
i�1

{Lanczos Iteration}
ũ
i

= Au
i�1

� ↵
i

u
i�1

� �
i�1

u
i�2

�
i

= kũ
i

k
u
i

= ũ
i

/�
i

g
i

= g
i�1

+

kuk�2

i�1

c

2

i�1

�i�1

(↵i�i�1

��

2

i�1

)

{Update g
i

with Sherman-Morrison formula}
c
i

= c
i�1

�
i�1

/�
i�1

�
i

= ↵
i

� �

2

i�1

�i�1

, �lr
i

= ↵
i

� �
min

� �

2

i�1

�

lr
i�1

, �rr
i

= ↵
i

� �
max

� �

2

i�1

�

rr
i�1

↵lr
i

= �
min

+

�

2

i

�

lr
i

, ↵rr
i

= �
max

+

�

2

i
�

rr
i
{Solve for J lr

i

and J rr
i

}
↵lo
i

=

�

lr
i �

rr
i

�

rr
i��

lr
i
(

�

max

�

lr
i

� �

min

�

rr
i
), (�lo

i

)

2

=

�

lr
i �

rr
i

�

rr
i��

lr
i
(�

max

� �
min

) {Solve for J lo
i

}
glr
i

= g
i

+

�

2

i c
2

i kuk
�i(↵

lr
i�i��

2

i)
, grr

i

= g
i

+

�

2

i c
2

i kuk
�i(↵

rr
i �i��

2

i)
, glo

i

= g
i

+

(�

lo
i)

2

c

2

i kuk
�i(↵

lo
i �i�(�

lo
i)

2

)

{Update grr
i

, glr
i

and glo
i

with Sherman-Morrison
formula}

i = i+ 1

end while

Lemma 11. Let g
i

, glr
i

, grr
i

, and glo
i

be the approximations at the i-th iteration of Gauss, left Gauss-Radau, right Gauss-
Radau, and Gauss-Lobatto quadrature, respectively. Then, g

i

and grr
i

provide lower bounds on u>A�1u, while glr
i

and glo
i

provide upper bounds.

The final connection we recall as background is the method of conjugate gradients. This helps us analyze the speed at
which quadrature converges to the true value (assuming exact arithmetic).

A.3. Relation with Conjugate Gradient

While Gauss-type quadratures relate to the Lanczos algorithm, Lanczos itself is closely related to conjugate gradient
(CG) (Hestenes & Stiefel, 1952), a well-known method for solving Ax = b for positive definite A.

We recap this connection below. Let x
k

be the estimated solution at the k-th CG iteration. If x⇤ denotes the true solution
to Ax = b, then the error "

k

and residual r
k

are defined as

"
k

:= x⇤ � x
k

, r
k

= A"
k

= b�Ax
k

, (A.5)

At the k-th iteration, x
k

is chosen such that r
k

is orthogonal to the k-th Krylov space, i.e., the linear space K
k

spanned
by {r

0

, Ar
0

, . . . , Ak�1r
0

}. It can be shown (Meurant, 2006) that r
k

is a scaled Lanczos vector from the k-th iteration of
Lanczos started with r

0

. Noting the relation between Lanczos and Gauss quadrature applied to appoximate r>
0

A�1r
0

, one
obtains the following theorem that relates CG with GQL.

Theorem 12 (CG and GQL; (Meurant, 1999)). Let "
k

be the error as in (A.5), and let k"
k

k2
A

:= "T
k

A"
k

. Then, it holds
that

k"
k

k2
A

= kr
0

k2([J�1

N

]

1,1

� [J�1

k

]

1,1

),

where J
k

is the Jacobi matrix at the k-th Lanczos iteration starting with r
0

.

Finally, the rate at which k"
k

k2
A

shrinks has also been well-studied, as noted below.

Theorem 13 (CG rate, see e.g. (Shewchuk, 1994)). Let "
k

be the error made by CG at iteration k when started with x
0

.

Gauss quadrature for matrix inverse forms with applications

Let  be the condition number of A, i.e.,  = �
1

/�
N

. Then, the error norm at iteration k satisfies

k"
k

k
A

 2

⇣

p
� 1p
+ 1

⌘

k

k"
0

k
A

.

Due to these explicit relations between CG and Lanczos, as well as between Lanczos and Gauss quadrature, we readily
obtain the following convergence rate for relative error of Gauss quadrature.
Theorem 14 (Gauss quadrature rate). The i-th iterate of Gauss quadrature satisfies the relative error bound

g
N

� g
i

g
N

 2

⇣

p
� 1p
+ 1

⌘

i

.

Proof. This is obtained by exploiting relations among CG, Lanczos and Gauss quadrature. Set x
0

= 0 and b = u. Then,
"
0

= x⇤ and r
0

= u. An application of Theorem 12 and Theorem 13 thus yields the bound

k"
i

k2
A

= kuk2([J�1

N

]

1,1

� [J�1

i

]

1,1

) = g
N

� g
i

 2

⇣

p
� 1p
+ 1

⌘

i

k"
0

k
A

= 2

⇣

p
� 1p
+ 1

⌘

i

u>A�1u = 2

⇣

p
� 1p
+ 1

⌘

i

g
N

where the last equality draws from Lemma 15.

In other words, Theorem 14 shows that the iterates of Gauss quadrature converge linearly.

B. Proofs for Main Theoretical Results
We begin by proving an exactness property of Gauss and Gauss-Radau quadrature.
Lemma 15 (Exactness). With A being symmetric positive definite with simple eigenvalues, the iterates g

N

, glr
N

, and grr
N

are exact. Namely, after N iterations they satisfy

g
N

= glr
N

= grr
N

= u>A�1u.

Proof. Observe that the Jacobi tridiagonal matrix can be computed via Lanczos iteration, and Lanczos is essentially es-
sentially an iterative tridiagonalization of A. At the i-th iteration we have J

i

= V >
i

AV
i

, where V
i

2 RN⇥i are the first i
Lanczos vectors (i.e., a basis for the i-th Krylov space). Thus, J

N

= V >
N

AV
N

where V
N

is an N ⇥N orthonormal matrix,
showing that J

N

has the same eigenvalues as A. As a result ⇡
N

(�) =
Q

N

i=1

(�� �
i

), and it follows that the remainder

R
N

[f] =
f (2N)

(⇠)

(2N)!

I[⇡2

N

] = 0,

for some scalar ⇠ 2 [�
min

,�
max

], which shows that g
N

is exact for u>A�1u. For left and right Gauss-Radau quadrature,
we have �

N

= 0, ↵lr
N

= �
min

, and ↵rr
N

= �
max

, while all other elements of the (N +1)-th row or column of J 0
N

are zeros.
Thus, the eigenvalues of J 0

N

are �
1

, . . . ,�
N

, ⌧
1

, and ⇡
N

(�) again equals
Q

N

i=1

(���
i

). As a result, the remainder satisfies

R
N

[f] =
f (2N)

(⇠)

(2N)!

I[(�� ⌧
1

)⇡2

N

] = 0,

from which it follows that both grr
N

and glr
N

are exact.

The convergence rate in Theorem 13 and the final exactness of iterations in Lemma 15 does not necessarily indicate that
we are making progress at each iterations. However, by exploiting the relations to CG we can indeed conclude that we are
making progress in each iteration in Gauss quadrature.
Theorem 16. The approximation g

i

generated by Gauss quadrature is monotonically nondecreasing, i.e.,

g
i

 g
i+1

, for i < N.

Gauss quadrature for matrix inverse forms with applications

Proof. At each iteration r
i

is taken to be orthogonal to the i-th Krylov space: K
i

= span{u,Au, . . . , Ai�1u}. Let ⇧
i

be
the projection onto the complement space of K

i

. The residual then satisfies

k"
i+1

k2
A

= "T
i+1

A"
i+1

= r>
i+1

A�1r
i+1

= (⇧

i+1

r
i

)

>A�1

⇧

i+1

r
i

= r>
i

(⇧

>
i+1

A�1

⇧

i+1

)r
i

 r
i

A�1r
i

,

where the last inequality follows from ⇧

>
i+1

A�1

⇧

i+1

� A�1. Thus k"
i

k2
A

is monotonically nonincreasing, whereby
g
N

� g
i

� 0 is monotonically decreasing and thus g
i

is monotonically nondecreasing.

Before we proceed to Gauss-Radau, let us recall a useful theorem and its corollary.
Theorem 17 (Lanczos Polynomial (Golub & Meurant, 2009)). Let u

i

be the vector generated by Algorithm 1 at the i-th
iteration; let p

i

be the Lanczos polynomial of degree i. Then we have

u
i

= p
i

(A)u
0

, where p
i

(�) = (�1)

i

det(J
i

� �I)
Q

i

j=1

�
j

.

From the expression of Lanczos polynomial we have the following corollary specifying the sign of the polynomial at
specific points.
Corollary 18. Assume i < N . If i is odd, then p

i

(�
min

) < 0; for even i, p
i

(�
min

) > 0, while p
i

(�
max

) > 0 for any
i < N .

Proof. Since J
i

= V >
i

AV
i

is similar to A, its spectrum is bounded by �
min

and �
max

from left and right. Thus, J
i

� �
min

is positive semi-definite, and J
i

� �
max

is negative semi-definite. Taking (�1)

i into consideration we will get the desired
conclusions.

We are ready to state our main result that compares (right) Gauss-Radau with Gauss quadrature.
Theorem 19 (Theorem 4 in the main text). Let i < N . Then, grr

i

gives better bounds than g
i

but worse bounds than g
i+1

;
more precisely,

g
i

 grr
i

 g
i+1

, i < N. (B.1)

Proof. We prove inequality (B.1) using the recurrences satisfied by g
i

and grr
i

(see Alg. 1)

Upper bound: grr
i

 g
i+1

. The iterative quadrature algorithm uses the recursive updates

grr
i

= g
i

+

�2

i

c2
i

�
i

(↵rr
i

�
i

� �2

i

)

,

g
i+1

= g
i

+

�2

i

c2
i

�
i

(↵
i+1

�
i

� �2

i

)

.

It suffices to thus compare ↵rr
i

and ↵
i+1

. The three-term recursion for Lanczos polynomials shows that

�
i+1

p
i+1

(�
max

) = (�
max

� ↵
i+1

)p
i

(�
max

)� �
i

p
i�1

(�
max

) > 0,

�
i+1

p⇤
i+1

(�
max

) = (�
max

� ↵rr
i

)p
i

(�
max

)� �
i

p
i�1

(�
max

) = 0,

where p
i+1

is the original Lanczos polynomial, and p⇤
i+1

is the modified polynomial that has �
max

as a root. Noting that
p
i

(�
max

) > 0, we see that ↵
i+1

 ↵rr
i

. Moreover, from Theorem 16 we know that the g
i

’s are monotonically increasing,
whereby �

i

(↵
i+1

�
i

� �2

i

) > 0. It follows that

0 < �
i

(↵
i+1

�
i

� �2

i

)  �
i

(↵rr
i

�
i

� �2

i

),

and from this inequality it is clear that grr
i

 g
i+1

.

Lower-bound: g
i

 grr
i

. Since �2

i

c2
i

� 0 and �
i

(↵rr
i

�
i

� �2

i

) � �
i

(↵
i+1

�
i

� �2

i

) > 0, we readily obtain

g
i

 g
i

+

�2

i

c2
i

�
i

(↵rr
i

�
i

� �2

i

)

= grr
i

.

Gauss quadrature for matrix inverse forms with applications

Combining Theorem 19 with the convergence rate of relative error for Gauss quadrature (Theorem 14) immediately yields
the following convergence rate for right Gauss-Radau quadrature:

Theorem 20 (Relative error of right Gauss-Radau, Theorem 5 in the main text). For each i, the right Gauss-Radau grr
i

iterates satisfy
g
N

� grr
i

g
N

 2

⇣

p
� 1p
+ 1

⌘

i

.

This results shows that with the same number of iterations, right Gauss-Radau gives superior approximation over Gauss
quadrature, though they share the same relative error convergence rate.

Our second main result compares Gauss-Lobatto with (left) Gauss-Radau quadrature.
Theorem 21 (Theorem 6 in the main text). Let i < N . Then, glr

i

gives better upper bounds than glo
i

but worse than glo
i+1

;
more precisely,

glo
i+1

 glr
i

 glo
i

, i < N.

Proof. We prove these inequalities using the recurrences for glr
i

and glo
i

from Algorithm 5.

glr
i

 glo
i

: From Algorithm 5 we observe that ↵lo
i

= �
min

+

(�

lo
i)

2

�

lr
i

. Thus we can write glr
i

and glo
i

as

glr
i

= g
i

+

�2

i

c2
i

�
i

(↵lr
i

�
i

� �2

i

)

= g
i

+

�2

i

c2
i

�
min

�2
i

+ �2

i

(�2
i

/�lr
i

� �
i

)

glo
i

= g
i

+

(�lo
i

)

2c2
i

�
i

(↵lo
i

�
i

� (�lo
i

)

2

)

= g
i

+

(�lo
i

)

2c2
i

�
min

�2
i

+ (�lo
i

)

2

(�2
i

/�lr
i

� �
i

)

To compare these quantities, as before it is helpful to begin with the original three-term recursion for the Lanczos polyno-
mial, namely

�
i+1

p
i+1

(�) = (�� ↵
i+1

)p
i

(�)� �
i

p
i�1

(�).

In the construction of Gauss-Lobatto, to make a new polynomial of order i + 1 that has roots �
min

and �
max

, we add
�
1

p
i

(�) and �
2

p
i�1

(�) to the original polynomial to ensure
⇢

�
i+1

p
i+1

(�
min

) + �
1

p
i

(�
min

) + �
2

p
i�1

(�
min

) = 0,
�
i+1

p
i+1

(�
max

) + �
1

p
i

(�
max

) + �
2

p
i�1

(�
max

) = 0.

Since �
i+1

, p
i+1

(�
max

), p
i

(�
max

) and p
i�1

(�
max

) are all greater than 0, �
1

p
i

(�
max

) + �
2

p
i�1

(�
max

) < 0. To determine
the sign of polynomials at �

min

, consider the two cases:

1. Odd i. In this case p
i+1

(�
min

) > 0, p
i

(�
min

) < 0, and p
i�1

(�
min

) > 0;

2. Even i. In this case p
i+1

(�
min

) < 0, p
i

(�
min

) > 0, and p
i�1

(�
min

) < 0.

Thus, if S = (sgn(�
1

), sgn(�
2

)), where the signs take values in {0,±1}, then S 6= (1, 1), S 6= (�1, 1) and S 6= (0, 1).
Hence, �

2

 0 must hold, and thus (�lo
i

)

2

= (�
i

� �
2

)

2 � �2

i

given that �2

i

> 0 for i < N .

Using (�lo
i

)

2 � �2

i

with �
min

c2
i

(�
i

)

2 � 0, an application of monotonicity of the univariate function g(x) =

ax

b+cx

for
ab � 0 to the recurrences defining glr

i

and glo
i

yields the desired inequality glr
i

 glo
i

.

glo
i+1

 glr
i

: From recursion formulas we have

glr
i

= g
i

+

�2

i

c2
i

�
i

(↵lr
i

�
i

� �2

i

)

,

glo
i+1

= g
i+1

+

(�lo
i+1

)

2c2
i+1

�
i+1

(↵lo
i+1

�
i+1

� (�lo
i+1

)

2

)

.

Gauss quadrature for matrix inverse forms with applications

Establishing glr
i

� glo
i+1

thus amounts to showing that (noting the relations among g
i

, glr
i

and glo
i

):

�2

i

c2
i

�
i

(↵lr
i

�
i

� �2

i

)

� �2

i

c2
i

�
i

(↵
i+1

�
i

� �2

i

)

� (�lo
i+1

)

2c2
i+1

�
i+1

(↵lo
i+1

�
i+1

� (�lo
i+1

)

2

)

() �2

i

c2
i

�
i

(↵lr
i

�
i

� �2

i

)

� �2

i

c2
i

�
i

(↵
i+1

�
i

� �2

i

)

� (�lo
i+1

)

2c2
i

�2

i

(�
i

)

2�
i+1

(↵lo
i+1

�
i+1

� (�lo
i+1

)

2

)

() 1

↵lr
i

�
i

� �2

i

� 1

↵
i+1

�
i

� �2

i

� (�lo
i+1

)

2

�
i

�
i+1

(↵lo
i+1

�
i+1

� (�lo
i+1

)

2

)

() 1

(↵
i+1

� �lr
i+1

)� �2

i

/�
i

� 1

↵
i+1

� �2

i

/�
i

� 1

�
i+1

(↵lo
i+1

�
i+1

/(�lo
i+1

)

2 � 1)

(Lemma 23)

() 1

�
i+1

� �lr
i+1

� 1

�
i+1

� 1

�
i+1

(

�

min

�i+1

(�

lo
i+1

)

2

+

�i+1

�

lr
i+1

� 1)

() �
min

�
i+1

(�lo
i+1

)

2

+

�
i+1

�lr
i+1

� 1 � �
i+1

�lr
i+1

� 1

() �
min

�
i+1

(�lo
i+1

)

2

� 0,

where the last inequality is obviously true; hence the proof is complete.

In summary, we have the following corollary for all the four quadrature rules:
Corollary 22 (Monotonicity of Lower and Upper Bounds, Corr. 7 in the main text). As the iteration proceeds, g

i

and grr
i

gives increasingly better asymptotic lower bounds and glr
i

and glo
i

gives increasingly better upper bounds, namely

g
i

 g
i+1

; grr
i

 grr
i+1

glr
i

� glr
i+1

; glo
i

� glo
i+1

.

Proof. Directly drawn from Theorem 16, Theorem 19 and Theorem 21.

Before proceeding further to our analysis of convergence rates of left Gauss-Radau and Gauss-Lobatto, we note two
technical results that we will need.
Lemma 23. Let ↵

i+1

and ↵lr
i

be as in Alg. 1. The difference �

i+1

= ↵
i+1

� ↵lr
i

satisfies �
i+1

= �lr
i+1

.

Proof. From the Lanczos polynomials in the definition of left Gauss-Radau quadrature we have

�
i+1

p⇤
i+1

(�
min

) =

�

�
min

� ↵lr
i

�

p
i

(�
min

)� �
i

p
i�1

(�
min

)

=

�

�
min

� (↵
i+1

��

i+1

)

�

p
i

(�
min

)� �
i

p
i�1

(�
min

)

= �
i+1

p
i+1

(�
min

) +�

i+1

p
i

(�
min

) = 0.

Rearrange this equation to write �

i+1

= ��
i+1

pi+1

(�

min

)

pi(�min

)

, which can be further rewritten as

�

i+1

Theorem 17
= ��

i+1

(�1)

i+1

det(J
i+1

� �
min

I)/
Q

i+1

j=1

�
j

(�1)

i

det(J
i

� �
min

I)/
Q

i

j=1

�
j

=

det(J
i+1

� �
min

I)

det(J
i

� �
min

I)
= �lr

i+1

.

Remark 24. Lemma 23 has an implication beyond its utility for the subsequent proofs: it provides a new way of calculating
↵
i+1

given the quantities �lr
i+1

and ↵lr
i

; this saves calculation in Algorithm 5.

The following lemma relates �
i

to �lr
i

, which will prove useful in subsequent analysis.
Lemma 25. Let �lr

i

and �
i

be computed in the i-th iteration of Algorithm 1. Then, we have the following:

�lr
i

< �
i

, (B.2)

�lr
i

�
i

 1� �
min

�
N

. (B.3)

Gauss quadrature for matrix inverse forms with applications

Proof. We prove (B.2) by induction. Since �
min

> 0, �
1

= ↵
1

> �
min

and �lr
1

= ↵��
min

we know that �lr
1

< �
1

. Assume
that �lr

i

< �
i

is true for all i  k and considering the (k + 1)-th iteration:

�lr
k+1

= ↵
k+1

� �
min

� �2

k

�lr
k

< ↵
k+1

� �2

k

�
k

= �
k+1

.

To prove (B.3), simply observe the following

�lr
i

�
i

=

↵
i

� �
min

� �2

i�1

/�lr
i�1

↵
i

� �2

i�1

/�i�1

(B.2)
 ↵

i

� �
min

↵
i

 1� �
min

�
N

.

With aforementioned lemmas we will be able to show how fast the difference between glr
i

and g
i

decays. Note that glr
i

gives
an upper bound on the objective while g

i

gives a lower bound.

Lemma 26. The difference between glr
i

and g
i

decreases linearly. More specifically we have

glr
i

� g
i

 2+

(

p
� 1p
+ 1

)

ig
N

where +

= �
N

/�
min

and  is the condition number of A, i.e.,  = �
N

/�
1

.

Proof. We rewrite the difference glr
i

� g
i

as follows

glr
i

� g
i

=

�2

i

c2
i

�
i

(↵lr
i

�
i

� �2

i

)

=

�2

i

c2
i

�
i

(↵
i+1

�
i

� �2

i

)

�
i

(↵
i+1

�
i

� �2

i

)

�
i

(↵lr
i

�
i

� �2

i

)

=

�2

i

c2
i

�
i

(↵
i+1

�
i

� �2

i

)

1

�

↵lr
i

� �2

i

/�
i

���

↵
i+1

� �2

i

/�
i

�

=

�2

i

c2
i

�
i

(↵
i

�
i

� �2

i

)

1

1��

i+1

/�
i+1

,

where �

i+1

= ↵
i+1

� ↵lr
i

. Next, recall that gN�gi

gN
 2

⇣p
�1p
+1

⌘

i

. Since g
i

lower bounds g
N

, we have

⇣

1� 2

⇣

p
� 1p
+ 1

⌘

i

⌘

g
N

 g
i

 g
N

,

⇣

1� 2

⇣

p
� 1p
+ 1

⌘

i+1

⌘

g
N

 g
i+1

 g
N

.

Thus, we can conclude that

�2

i

c2
i

�
i

(↵
i

�
i

� �2

i

)

= g
i+1

� g
i

 2

⇣

p
� 1p
+ 1

⌘

i

g
N

.

Now we focus on the term
�

1��

i+1

/�
i+1

��1. Using Lemma 23 we know that �
i+1

= �lr
i+1

. Hence,

1��

i+1

/�
i+1

= 1� �lr
i+1

/�
i+1

� 1� (1� �
min

/�
N

) = �
min

/�
N

, 1

+

.

Finally we have

glr
i

� g
i

=

�2

i

c2
i

�
i

(↵
i

�
i

� �2

i

)

1

1��

i+1

/�
i+1

 2+

⇣

p
� 1p
+ 1

⌘

i

g
N

.

Gauss quadrature for matrix inverse forms with applications

Theorem 27 (Relative error of left Gauss-Radau, Theorem 8 in the main text). For left Gauss-Radau quadrature where
the preassigned node is �

min

, we have the following bound on relative error:

glr
i

� g
N

g
N

 2+

⇣

p
� 1p
+ 1

⌘

i

,

where +

:= �
N

/�
min

, i < N .

Proof. Write glr
i

= g
i

+ (glr
i

� g
i

). Since g
i

 g
N

, using Lemma 26 to bound the second term we obtain

glr
i

 g
N

+ 2+

⇣

p
� 1p
+ 1

⌘

i

g
N

,

from which the claim follows upon rearrangement.

Due to the relations between left Gauss-Radau and Gauss-Lobatto, we have the following corollary:

Corollary 28 (Relative error of Gauss-Lobatto, Corr. 9 in the main text). For Gauss-Lobatto quadrature, we have the
following bound on relative error:

glo
i

� g
N

g
N

 2+

⇣

p
� 1p
+ 1

⌘

i�1

, (B.4)

where +

:= �
N

/�
min

and i < N .

C. Generalization: Symmetric Matrices
In this section we consider the case where u lies in the column space of several top eigenvectors of A, and discuss how the
aforementioned theorems vary. In particular, note that the previous analysis assumes that A is positive definite. With our
analysis in this section we relax this assumption to the more general case where A is symmetric with simple eigenvalues,
though we require u to lie in the space spanned by eigenvectors of A corresponding to positive eigenvalues.

We consider the case where A is symmetric and has the eigendecomposition of A = Q⇤Q>
=

P

N

i=1

�
i

q
i

q>
i

where �
i

’s
are eigenvalues of A increasing with i and q

i

’s are corresponding eigenvectors. Assume that u lies in the column space
spanned by top k eigenvectors of A where all these k eigenvectors correspond to positive eigenvalues. Namely we have
u 2 Span{{q

i

}N
i=N�k+1

} and 0 < �
N�k+1

.

Since we only assume that A is symmetric, it is possible that A is singular and thus we consider the value of u>A†u, where
A† is the pseudo-inverse of A. Due to the constraints on u we have

u>A†u = u>Q⇤

†Q>u = u>Q
k

⇤

†
k

Q>
k

u = u>B†u,

where B =

P

N

i=N�k+1

�
i

q
i

q>
i

. Namely, if u lies in the column space spanned by the top k eigenvectors of A then it is
equivalent to substitute A with B, which is the truncated version of A at top k eigenvalues and corresponding eigenvectors.

Another key observation is that, given that u lies only in the space spanned by {q
i

}N
i=N�k+1

, the Krylov space starting at
u becomes

Span{u,Au,A2u, . . .} = Span{u,Bu,B2u, . . . , Bk�1u} (C.1)

This indicates that Lanczos iteration starting at matrix A and vector u will finish constructing the corresponding Krylov
space after the k-th iteration. Thus under this condition, Algorithm 1 will run at most k iterations and then stop. At that
time, the eigenvalues of J

k

are exactly the eigenvalues of B, thus they are exactly {�
i

}N
i=N�k+1

of A. Using similar proof
as in Lemma 15, we can obtain the following generalized exactness result.

Corollary 29 (Generalized Exactness). g
k

, grr
k

and glr
k

are exact for u>A†u = u>B†u, namely

g
k

= grr
k

= glr
k

= u>A†u = u>B†u.

Gauss quadrature for matrix inverse forms with applications

The monotonicity and the relations between bounds given by various Gauss-type quadratures will still be the same as
in the original case in Section 4, but the original convergence rate cannot apply in this case because now we probably
have �

min

(B) = 0, making  undefined. This crash of convergence rate results from the crash of the convergence of the
corresponding conjugate gradient algorithm for solving Ax = u. However, by looking at the proof of, e.g., (Shewchuk,
1994), and by noting that �

1

(B) = . . . = �
N�k

(B) = 0, with a slight modification of the proof we actually obtain the
bound

k"ik2
A

 min

Pi

max

�2{�i}N
i=N�k+1

[P
i

(�)]2k"0k2
A

,

where P
i

is a polynomial of order i. By using properties of Chebyshev polynomials and following the original
proof (e.g., (Golub & Meurant, 2009) or (Shewchuk, 1994)) we obtain the following lemma for conjugate gradient.

Lemma 30. Let "k be as before (for conjugate gradient). Then,

k"kk
A

 2

⇣

p
0 � 1p
0

+ 1

)

kk"
0

k
A

, where 0
:= �

N

/�
N�k+1

.

Following this new convergence rate and connections between conjugate gradient, Lanczos iterations and Gauss quadrature
mentioned in Section 4, we have the following convergence bounds.

Corollary 31 (Convergence Rate for Special Case). Under the above assumptions on A and u, due to the connection
Between Gauss quadrature, Lanczos algorithm and Conjugate Gradient, the relative convergence rates of g

i

, grr
i

, glr
i

and
glo
i

are given by

g
k

� g
i

g
k

 2

⇣

p
0 � 1p
0

+ 1

⌘

i

g
k

� grr
i

g
k

 2

⇣

p
0 � 1p
0

+ 1

⌘

i

glr
i

� g
k

g
k

 20
m

⇣

p
0 � 1p
0

+ 1

⌘

i

glo
i

� g
k

g
k

 20
m

⇣

p
0 � 1p
0

+ 1

⌘

i

,

where 0
m

= �
N

/�0
min

and 0 < �0
min

< �
N�k+1

is a lowerbound for nonzero eigenvalues of B.

D. Accelerating MCMC for k-DPP

We present details of a Retrospective Markov Chain Monte Carlo (MCMC) in Algorithm 6 and Algorithm 7 that samples
for efficiently drawing samples from a k-DPP, by accelerating it using our results on Gauss-type quadratures.

Algorithm 6 Gauss-kDPP (L, k)

Input: L the kernel matrix we want to sample DPP from, k the size of subset and Y = [N] the ground set
Output: Y sampled from exact kDPP (L) where |Y | = k
Randomly Initialize Y ✓ Y where |Y | = k
while not mixed do

Pick v 2 Y and u 2 Y\Y uniformly randomly
Pick p 2 (0, 1) uniformly randomly
Y 0

= Y \{v}
Get lower and upper bounds �

min

, �
max

of the spectrum of L
Y

0

if k-DPP-JudgeGauss(pL
v,v

� L
u,u

, p, L
Y

0
,u

, L
Y

0
,v

,�
min

,�
max

) = True then
Y = Y 0 [{u}

end if
end while

Gauss quadrature for matrix inverse forms with applications

Algorithm 7 kDPP-JudgeGauss(t, p, u, v, A,�
min

,�
max

)
Input: t the target value, p the scaling factor, u, v and A the corresponding vectors and matrix, �

min

and �
max

lower and
upper bounds for the spectrum of A

Output: Return True if t < p(v>A�1v)� u>A�1u, False if otherwise
u�1

= 0, u
0

= u/kuk, iu = 1, �u

0

= 0, du = 1
v�1

= 0, v
0

= v/kvk, iv = 1, �v

0

= 0, dv = 1
while True do

if du > pdv then
Run one more iteration of Gauss-Radau on u>A�1u to get tighter (glr

)

u and (grr
)

u

du = (glr
)

u � (grr
)

u

else
Run one more iteration of Gauss-Radau on v>A�1v to get tighter (glr

)

v and (grr
)

v

dv = (glr
)

v � (grr
)

v

end if
if t < pkvk2(grr

)

v � kuk2(glr
)

u then
Return True

else if t � pkvk2(glr
)

v � kuk2(grr
)

u then
Return False

end if
end while

E. Accelerating Stochastic Double Greedy
We present details of Retrospective Stochastic Double Greedy in Algorithm 8 and Algorithm 9 that efficiently select a
subset Y 2 Y that approximately maximize log det(L

Y

).

Algorithm 8 Gauss-DG (L)

Input: L the kernel matrix and Y = [N] the ground set
Output: X 2 Y that approximately maximize log det(L

Y

)

X
0

= ;, Y
0

= Y
for i = 1, 2, . . . , N do

Y 0
i

= Y
i�1

\{i}
Sample p 2 (0, 1) uniformly randomly
Get lower and upper bounds ��

min

,��
max

,�+

min

,�+

max

of the spectrum of L
Xi�1

and L
Y

0
i

respectively
if DG-JudgeGauss(L

Xi�1

, L
Y

0
i
, L

Xi�1

,i

, L
Y

0
i ,i

, L
i,i

, p,��
min

,��
max

,�+

min

,�+

max

) = True then
X

i

= X
i�1

[{i}
else
Y
i

= Y 0
i

end if
end for

Gauss quadrature for matrix inverse forms with applications

Algorithm 9 DG-JudgeGauss(A,B, u, v, t, p,�A

min

,�A

max

,�B

min

,�B

max

)

Input: t the target value, p the scaling factor, u, v, A and B the corresponding vectors and matrix, �A

min

, �A

max

, �B

min

, �B

max

lower and upper bounds for the spectrum of A and B
Output: Return True if p| log(t� u>A�1u)|

+

 (1� p)|� log(t� v>B�1v)|
+

, False if otherwise
du = 1, dv = 1
while True do

if pdu > (1� p)dv then
Run one more iteration of Gauss-Radau on u>A�1u to get tighter lower and upper bounds lu, uu for | log(t �
u>A�1u)|

+

du = uu � lu

else
Run one more iteration of Gauss-Radau on v>B�1v to get tighter lower and upper bounds lv , uv for | log(t �
v>B�1v)|

+

dv = uv � lv

end if
if puu  (1� p)lv then

Return True
else if plu > (1� p)uv then

Return False
end if

end while

