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Abstract
The Nyström method has long been popular for
scaling up kernel methods. Its theoretical guaran-
tees and empirical performance rely critically on
the quality of the landmarks selected. We study
landmark selection for Nyström using Determi-
nantal Point Processes (DPPs), discrete probabil-
ity models that allow tractable generation of di-
verse samples. We prove that landmarks selected
via DPPs guarantee bounds on approximation er-
rors; subsequently, we analyze implications for
kernel ridge regression. Contrary to prior reser-
vations due to cubic complexity of DPP sam-
pling, we show that (under certain conditions)
Markov chain DPP sampling requires only lin-
ear time in the size of the data. We present sev-
eral empirical results that support our theoreti-
cal analysis, and demonstrate the superior per-
formance of DPP-based landmark selection com-
pared with existing approaches.

1. Introduction
Low-rank matrix approximation is an important ingredient
of modern machine learning methods. Numerous learning
tasks rely on multiplication and inversion of matrices, oper-
ations that scale cubically in the number of data points N ,
and therefore quickly become a bottleneck for large data.
In such cases, low-rank matrix approximations promise
speedups with a tolerable loss in accuracy.

A notable instance is the Nyström method (Nyström, 1930;
Williams & Seeger, 2001), which takes a positive semidef-
inite matrix K 2 RN⇥N as input, selects from it a small
subset C of columns K·,C , and constructs the approxima-
tion ˜

K = K·,CK
†
C,CKC,·. The matrix ˜

K is then used in
place of K, which can decrease runtimes from O(N

3

) to
O(N |C|3), a huge savings (since typically |C|⌧ N ).
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Since its introduction into machine learning, the Nyström
method has been applied to a wide spectrum of problems,
including kernel ICA (Bach & Jordan, 2003; Shen et al.,
2009), kernel and spectral methods in computer vision
(Belabbas & Wolfe, 2009a; Fowlkes et al., 2004), man-
ifold learning (Talwalkar et al., 2008; 2013), regulariza-
tion (Rudi et al., 2015), and efficient approximate sampling
(Affandi et al., 2013). Recent work (Cortes et al., 2010;
Bach, 2013; Alaoui & Mahoney, 2015) shows risk bounds
for Nyström applied to various kernel methods.

The most important step of the Nyström method is
the selection of the subset C, the so-called landmarks.
This choice governs the approximation error and subse-
quent performance of the approximated learning meth-
ods (Cortes et al., 2010). The most basic strategy is
to sample landmarks uniformly at random (Williams &
Seeger, 2001). More sophisticated non-uniform selection
strategies include deterministic greedy schemes (Smola
& Schölkopf, 2000), incomplete Cholesky decomposition
(Fine & Scheinberg, 2002; Bach & Jordan, 2005), sampling
with probabilities proportional to diagonal values (Drineas
& Mahoney, 2005) or to column norms (Drineas et al.,
2006), sampling based on leverage scores (Gittens & Ma-
honey, 2013), via K-means (Zhang et al., 2008), or using
submatrix determinants (Belabbas & Wolfe, 2009b).

We study landmark selection using Determinantal Point
Processes (DPP), discrete probability models that al-
low tractable sampling of diverse non-independent sub-
sets (Macchi, 1975; Kulesza & Taskar, 2012). Our work
generalizes the determinant based scheme of Belabbas &
Wolfe (2009b).1 We refer to our scheme as DPP-Nyström,
and analyze it from several perspectives.

A key quantity in our analysis is the error of the Nyström
approximation. Suppose k is the target rank; then for se-
lecting c � k landmarks, Nyström’s error is typically mea-
sured using the Frobenius or spectral norm relative to the

1The authors do not make any connection to DPPs.
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best achievable error via rank-k SVD Kk; i.e., we measure

kK �K·,CK
†
C,CKC,·kF

kK �KkkF or
kK �K·,CK

†
C,CKC,·k2

kK �Kkk2 .

Several authors also use additive instead of relative bounds.
However, such bounds are very sensitive to scaling, and
become loose even if a single entry of the matrix is large.
Thus, we focus on the above relative error bounds.

First, we analyze this approximation error. Previous anal-
yses (Belabbas & Wolfe, 2009b) fix a cardinality c = k;
we allow the general case of selecting c � k columns. Our
relative error bounds rely on the properties of characteristic
polynomials. Empirically, DPP-Nyström obtains approxi-
mations competitive to state-of-the-art methods.

Second, we consider its impact on kernel methods. Specif-
ically, we address the impact of Nyström-based kernel ap-
proximations on kernel ridge regression. This task has been
noted as the main application in (Bach, 2013; Alaoui & Ma-
honey, 2015). We show risk bounds of DPP-Nyström that
hold in expectation. Empirically, it achieves the best per-
formance among competing methods.

Third, we consider the efficiency of DPP-Nyström; specifi-
cally, its tradeoff between error and running time. Since its
proposal, determinantal sampling has so far not been used
widely in practice due to valid concerns about its scalabil-
ity. We consider a Gibbs sampler for k-DPP, and analyze its
mixing time using a path coupling (Bubley & Dyer, 1997)
argument. We prove that under certain conditions the chain
is fast mixing, which implies a linear running time for DPP
sampling of landmarks. Empirical results indicate that the
chain yields favorable results within a small number of iter-
ations, and the best efficiency-accuracy traedoffs compared
to state-of-art methods (Figure 6).

2. Background and Notation
Throughout, we are approximating a given positive semid-
ifinite (PSD) matrix K 2 RN⇥N with eigendecomposition
K = U⇤U

> and eigenvalues �
1

� . . . � �N . We use Ki,·
for the i-th row and K·,j for the j-th column, and, likewise,
KC,· for the rows of K and K·,C for the columns of K

indexed by C ✓ [N ]. Finally, KC,C is the submatrix of
K with rows and columns indexed by C. In this notation,
Kk = U·,[k]⇤[k],[k]U

>
·,[k] is the best rank-k approximation

to K in both Frobenius and spectral norm. We write r(·)
for the rank and (·)† for the pseudoinverse, and denote a
decomposition of K by B

>
B, where B 2 Rr(K)⇥N .

The Nyström Method. The standard Nyström method se-
lects a subset C ✓ [N ] of c = |C| landmarks, and approxi-
mates K with K·,CK

†
C,CKC,·. The actual set of landmarks

affects the approximation quality, and is hence the subject
of a substantial body of research (Cortes et al., 2010; Smola

& Schölkopf, 2000; Fine & Scheinberg, 2002; Bach & Jor-
dan, 2005; Drineas & Mahoney, 2005; Drineas et al., 2006;
Gittens & Mahoney, 2013; Zhang et al., 2008; Belabbas &
Wolfe, 2009b). Besides various landmark selection meth-
ods, there exist variations of the standard Nyström method.
The ensemble Nyström method (Kumar et al., 2009), for
instance, uses a weighted combination of approximations.
The modified Nyström method constructs an approximation
K·,CK

†
·,CKK

†
C,·KC,· (Sun et al., 2015). In this paper, we

focus on the standard Nyström method.

Determinantal Point Processes. A determinantal point
process DPP(K) is a distribution over all subsets of a
ground set Y of cardinality N that is determined by a PSD
kernel K 2 RN⇥N . The probability of observing a subset
C ✓ [N ] is proportional to det(KC,C), that is,

Pr(C) = det(KC,C)/ det(K + I). (2.1)

When conditioning on a fixed cardinality, one obtains a k-
DPP (Kulesza & Taskar, 2011). To avoid confusion with
the target rank k, and since we use cardinality c = |C|, we
will refer to this distribution as c-DPP2, and note that

Pr(C | |C| = c) = det(KC,C)ec(K)

�1J |C| = cK,

where ec(K) is the c-th coefficient of the characteristic
polynomial det(�I �K) =

PN
j=0

(�1)jej(K)�

N�j .

Sampling from a (c-)DPP can be done in polynomial time,
but requires a full eigendecomposition of K (Hough et al.,
2006), which is prohibitive for large N . A number of ap-
proaches have been proposed for more efficient sampling
(Affandi et al., 2013; Wang et al., 2014; Li et al., 2016a).
We follow an alternative approach based on Gibbs sam-
pling and show that it can offer fast polynomial-time DPP
sampling and Nyström approximations.

3. DPP for the Nyström Method
Next, we consider sampling c landmarks C ✓ [N ] from c-
DPP(K), and use the approximation ˜

K = K·,CK
†
C,CKC,·.

We call this approach DPP-Nyström. It was essentially in-
troduced in (Belabbas & Wolfe, 2009b), but without mak-
ing the explicit connection to DPPs. Our analysis builds on
this connection and subsumes existing results that only ap-
ply to c being the rank k of the target approximation. We
begin with error bounds for matrix approximations:
Theorem 1 (Relative Error). If C ⇠ c-DPP(K), then DPP-
Nyström satisfies the relative error bounds

EC


kK �K·C(KC,C)

†KC·kF
kK �KkkF

�


✓
c+ 1

c+ 1� k

◆p
N � k,

EC


kK �K·C(KC,C)

†KC·k2
kK �Kkk2

�


✓
c+ 1

c+ 1� k

◆
(N � k).

2Note that we refer to DPP-Nyström as kDPP in experimental
parts.
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These bounds hold in expectation. An additional argument
based on (Pemantle & Peres, 2014) yields high probability
bounds, too (Appendix A).

To show Theorem 1, we exploit a property of characteristic
polynomials observed in (Guruswami & Sinop, 2012). But
first recall that the coefficients of characteristic polynomi-
als satisfy ec(K) =

P
|S|=c det(B

>
·,SB·,S) = ec(⇤).

Lemma 2 (Guruswami & Sinop (2012)). For any c � k >

0, it holds that

ec+1

(K)

ec(K)

 1

c+ 1� k

X

i>k

�i.

With Lemma 2 in hand, we are ready to prove Theorem 1.

Proof (Thm. 1). We begin with the Frobenius norm error,
and then show the spectral norm result. Using the decom-
position K = B

>
B, it holds that

EC

h
kK �K·CK

†
C,CKC·kF

i

= EC

⇥kB>
B �B

>
B·,C(B

>
·,CB·,C)

†
B

>
·,CBkF

⇤

= EC

⇥kB>
(I �B·,C(B

>
·,CB·,C)

†
B

>
·,C)BkF

⇤

= EC

⇥kB>
(I � U

C
(U

C
)

>
)BkF

⇤
,

where U

C
⌃

C
(V

C
)

> is the SVD of B·,C . Next, we extend
U

C 2 Rr(K)⇥c to an orthogonal basis [U

C
(U

C
)

?
] 2

Rr(K)⇥r(K) of RN . Using that I � U

C
(U

C
)

>
=

(U

C
)

?
((U

C
)

?
)

> and applying Cauchy-Schwartz yields

EC

h
kB>

(I � UC
(UC

)

>
)BkF

i

= EC

h
kB>

(UC
)

?
((UC

)

?
)

>BkF
i

= EC

rX
i,j
(b>i (U

C
)

?
((UC

)

?
)

>bj)2
�

 EC

r
(

X
i,j

kb>i (UC
)

?k22kb>j (UC
)

?k22)
�

= EC

hX
i
kb>i (UC

)

?k22
i

=

1

ec(K)

X
|C|=c

X
i
det(B>

·,CB·,C)kb>i (UC
)

?k22

(a)
=

1

ec(K)

X
|C|=c

X
i/2C

det(B·,C[{i}B
>
·,C[{i})

(b)
= (c+ 1)

ec+1(K)

ec(K)

.

In (a), we use that (UC
)

? projects vectors onto the null
(column) space of B, and (b) uses the definition of ec. With
Lemma 2, it follows that

(c+ 1)

ec+1(K)

ec(K)

 c+1

c+1�k

X
i>k

�i

 c+1

c+1�k

p
N � k

rX
i>k

�

2

i

=

c+1

c+1�k

p
N � kkK �KkkF .

The bound on the Frobenius norm immediately implies the
bound on the spectral norm:

EC

h
kK �K·C(KC,C)

†KC·k2
i

 EC

h
kK �K·CK

†
C,CKC·kF

i

 c+ 1

c+ 1� k

p
N � kkK �KkkF

 c+ 1

c+ 1� k
(N � k)kK �Kkk2

Remarks. Compared to previous bounds (e.g., (Gittens
& Mahoney, 2013) on uniform and leverage score sam-
pling), our bounds seem somewhat weaker asymptotically
(since as c ! N they do not converge to 1). This sug-
gests that there is an opportunity for further tightening
our bounds, which may be worthwhile, given than in Sec-
tion Sec. 6.1 our extensive experiments on various datasets
with DPP-Nyström show that it attains superior accuracies
compared with various state-of-art methods.

4. Low-rank Kernel Ridge Regression
Our theoretical (Section 3) and empirical (Section 6.1) re-
sults suggest that DPP-Nyström is well-suited for scaling
kernel methods. In this section, we analyze its implications
on kernel ridge regression. The experiments in Section 6
confirm our results empirically.

We have N training samples {(xi, yi)}Ni=1

, where yi = zi+

✏i are the observed labels under zero-mean noise with finite
covariance. We minimize a regularized empirical loss

min

f2F

1

N

NX

i=1

`(yi, f(xi)) +
�

2

kfk2

over an RKHS F . Equivalently, we solve the problem

min

↵2RN

1

N

NX

i=1

`(yi, (K↵)i) +
�

2

↵

>
K↵,

for the corresponding kernel matrix K. With the squared
loss `(y, f(x)) = 1

2

(y � f(x))

2, the resulting estimator is

ˆ

f(x) =

NX

i=1

↵̂ik(x, xi), ↵̂ = (K + n�I)

�1

y, (4.1)

and the prediction for {xi}Ni=1

is given by ẑ = K(K +

N�I)

�1

y 2 RN . Denoting the noise covariance by F , we
obtain the risk

R(ẑ) =

1

NE"kẑ � zk2
= N�

2

z

>
(K +N�I)

�2

z +

1

N tr(FK

2

(K +N�I)

�2

)

= bias(K) + var(K). (4.2)
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Observe that the bias term is matrix-decreasing (in K)
while the variance term is matrix-increasing. Since the
estimator (4.1) requires expensive matrix inversions, it is
common to replace K in (4.1) by an approximation ˜

K. If
˜

K is constructed via Nyström we have ˜

K � K, and it
directly follows that the variance shrinks with this substi-
tution, while the bias increases. Denoting the predictions
from ˜

K by ẑ

˜K , Theorem 3 completes the picture of how
using ˜

K affects the risk.
Theorem 3. If ˜

K is constructed via DPP-Nyström, then

EC

"s
R(ẑ

˜K)

R(ẑ)

#
 1 +

(c+ 1)

N�

ec+1

(K)

ec(K)

.

Again, using (Pemantle & Peres, 2014), we obtain bounds
that hold with high probability (Appendix A).

Proof. We build on (Bach, 2013; Alaoui & Mahoney,
2015). Knowing that var(

˜

K)  var(K) as ˜

K � K,
it remains to bound the bias. Using K = B

>
B and

˜

K = B

>
B·,C(B

>
·,CB·,C)

†
B

>
·,CB, we obtain

K � ˜K = B>
(I �B·,C(B

>
·,CB·,C)

†B>
·,C)B

= B>
(UC

)

?
((UC

)

?
)

>B � kB>
(UC

)

?
((UC

)

?
)

>BkF I

=

rX
i,j
(b>i (U

C
)

?
((UC

)

?
)

>bj)2I

�
r

(

X
i,j

kb>i (UC
)

?k22kb>j (UC
)

?k22)I

=

X
i
kb>i (UC

)

?k22I = ⌫CI,

where ⌫C =

P
i kb>i (UC

)

?k2
2

 P
i kb>i k22 = tr(K).

Since (K � ˜

K) and ⌫CI commute, we have

k( ˜K+N�I)�1
(K � ˜K)k22

= k( ˜K +N�I)�1
(K � ˜K)

2
(

˜K +N�I)�1k2

 ⌫2
Ck( ˜K +N�I)�2k2 

⇣ ⌫C
N�

⌘2
.

It follows that

k( ˜K+N�I)�1z � (K +N�I)�1zk2
= k( ˜K +N�I)�1

(K � ˜K)(K +N�I)�1zk2
 k( ˜K +N�I)�1

(K � ˜K)k2k(K +N�I)�1zk2

 ⌫C
N�

k(K +N�I)�1zk2.

Hence,
q

z>( ˜K +N�I)�2z = k( ˜K +N�I)�1zk2
 k(K +N�I)�1zk2 + k( ˜K +N�I)�1z � (K +N�I)�1zk2

 (1 +

⌫C
N�

)k(K +N�I)�1zk2

= (1 +

⌫C
N�

)

p
z>(K +N�I)�2z.

Finally, this inequality implies that
s

bias(

˜K)

bias(K)

 (1 +

⌫C
N�

).

Taking the expectation over C ⇠ c-DPP(K) yields

EC

2

4
s

bias(

˜K)

bias(K)

3

5  1 + EC


⌫C
N�

�
= 1 +

(c+ 1)

N�
ec+1(K)

ec(K)

.

Together with the fact that var( ˜K)  var(K), we obtain

EC

"s
R(ẑK̃)

R(ẑ)

#
= EC

2

4
s

bias(

˜K) + var(

˜K)

bias(K) + var(K)

3

5

 1 +

(c+ 1)

N�
ec+1(K)

ec(K)

(4.3)

for any k  c.

Remarks. Theorem 3 quantifies how the learning results
depend on the decay of the spectrum of K. In particu-
lar, the ratio ec+1

(K)/ec(K) closely relates to the effective
rank of K: if �c > a and �c+1

⌧ a, this ratio is almost
zero, resulting in near-perfect approximations and no loss
in learning.

There exist works that consider Nyström methods in this
scenario (Bach, 2013; Alaoui & Mahoney, 2015). Our the-
oretical bounds could also be tightened in this setting, pos-
sibly by a tighter bound on the elementary symmetric poly-
nomial ratio. This theoretical exercise may be worthwhile
given our extensive experiments comparing DPP-Nyström
against other state-of-art methods in Sec. 6.2 that reveal the
superior performance of DPP-Nyström.

5. Fast Mixing Markov Chain DPP

Despite its excellent empirical performance and strong the-
oretical results, determinantal sampling for Nyström has
rarely been used in applications due to the computational
cost of O(N

3

) for directly sampling from a DPP, which
involves an eigendecomposition. Instead, we follow a dif-
ferent route: an MCMC sampler, which offers a promising
alternative if the chain mixes fast enough. Recent empiri-
cal results provide initial evidence (Kang, 2013), but with-
out a theoretical analysis3; other recent works (Rebeschini
& Karbasi, 2015; Gotovos et al., 2015) do not apply to our
cardinality-constrained setting. We offer a theoretical anal-
ysis that confirms fast mixing (i.e., polynomial or even lin-
ear-time sampling) under certain conditions, and connect
it to our empirical results. The empirical results in Sec-
tion 6 illustrate the favorable performance of DPP-Nyström

3The analysis in (Kang, 2013) is not correct.
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in trading off time and error. Concurrently with this paper,
Anari et al. (2016) derived a different, general analysis of
fast mixing that also confirms our observations.

Algorithm 1 shows a Gibbs sampler for k-DPP. Starting
with a uniformly random set Y

0

, at iteration t, we try to
swap an element yin 2 Yt with an element yout

/2 Yt, ac-
cording to Pr(Yt) and Pr(Yt [ {yout} \ {yin}). The sta-
tionary distribution of this chain is exactly the desired k-
DPP(K).

Algorithm 1 Gibbs sampler for c-DPP

input K the kernel matrix, Y = [N ] the ground set
output Y sampled from exact c-DPP(K)

Randomly Initialize Y ✓ Y , |Y | = c

while not mixed do
Sample b from uniform Bernoulli distribution
if b = 1 then

Pick y

in 2 Y and y

out 2 Y\Y uniformly randomly
q(y

in
, y

out
, Y ) det(KY [{yout}\{yin})

detKY [{yout}\{yin}+det(KY )

Y  Y [ {yout}\{yin} with prob. q(yin
, y

out
, Y )

end if
end while

The mixing time ⌧(") of the chain is the number of it-
erations until the distribution over the states (subsets) is
close to the desired one, as measured by total variation:
⌧(") = min{t|maxY0 TV(Yt,⇡)  ✏}. We bound ⌧(")

via coupling techniques. Given a Markov chain (Yt) on a
state space ⌦ with transition matrix P , a coupling is a new
chain (Yt, Zt) on ⌦ ⇥ ⌦ such that both (Yt) and (Zt), if
considered marginally, are Markov chains with the same
transition matrix P . The key point of coupling is to con-
struct such a new chain to encourage Yt and Zt to coa-
lesce quickly. If, in the new chain, Pr(Yt 6= Zt)  " for
some fixed t regardless of the starting state (Y

0

, Z

0

), then
⌧(")  t (Aldous, 1982).

Such coalescing chains can be difficult to construct. Path
coupling (Bubley & Dyer, 1997) relieves this burden by
reducing the coupling to adjacent states in an appropriately
constructed state graph. The coupling of arbitrary states
follows by aggregation over a path between the states. Path
coupling is formalized in the following lemma.
Lemma 4. (Bubley & Dyer, 1997; Dyer & Greenhill,
1998) Let � be an integer-valued metric on ⌦ ⇥ ⌦ where
�(·, ·)  D. Let E be a subset of ⌦ ⇥ ⌦ such that for all
(Yt, Zt) 2 ⌦⇥⌦ there exists a path Yt = X

0

, . . . , Xr = Zt

between Yt and Zt where (Xi, Xi+1

) 2 E for i 2 [r � 1]

and
P

i �(Xi, Xi+1

) = �(Yt, Zt). Suppose a coupling
(R, T ) ! (R

0
, T

0
) of the Markov chain is defined on all

pairs in E such that there exists an ↵ < 1 such that
E[�(R0

, T

0
)]  ↵�(R, T ) for all (R, T ) 2 E, then we have

⌧(")  log(D"�1
)

(1�↵) .

The lemma says that if we have a contraction of the two
chains in expectation (↵ < 1), then the chain mixes fast.
With the path coupling lemma, we obtain a bound on the
mixing time that can be linear in the data set size N .

The actual mixing time depends on three quantities that re-
late to how sensitive the transition probabilities are to swap-
ping a single element in a set of size c. Consider an arbi-
trary set S of columns, |S| = c� 1, and complete it to two
c-sets R = S [ {r} and T = S [ {t} that differ in exactly
one element. Our quantities are, for u /2 R[T , and v 2 S:

p

1

(S, r, t, u) = min{q(r, u,R), q(t, u, T )}
p

2

(S, r, t, u) = min{q(v, t, R), q(v, u, T )}
p

3

(S, r, t, v, u) = |q(v, u,R)� q(v, u, T )|.

Theorem 5. Let the contraction coefficient ↵ be given by

↵ = max

|S|=c�1,r,t2[n]\S,r 6=t

X

u32S,u4 /2S[{r,t}

p3(S, r, t, u3, u4)�

X

u1 /2S[{r,t}

p1(S, r, t, u1)�
X

u22S

p2(S, r, t, u2).

When ↵ < 1, the mixing time for the Gibbs sampler in
Algorithm 1 is bounded as

⌧(")  2c(N � c) log(c"

�1

)

(1� ↵)

.

Proof. We bound the mixing time via path coupling. Let
�(R, T ) = |R�T |/2 be half the Hamming distance on the
state space, and define E to consist of all state pairs (R, T )

in ⌦ ⇥ ⌦ such that �(R, T ) = 1. We intend to show that
for all states (R, T ) 2 E and next states (R0

, T

0
) 2 E, we

have E[�(R0
, T

0
)]  ↵�(R, T ) for an appropriate ↵.

Since �(R, T ) = 1, the sets R and T differ in only two
entries. Let S = R \ T , so |S| = c � 1 and R = S [ {r}
and T = S [ {t}. For a state transition, we sample an
element rin 2 R and r

out 2 [n]\R as switching candidates
for R, and elements tin 2 T and t

out 2 [n]\T as switching
candidates for T . Let bR and bT be the Bernoulli random
variables indicating whether we try to make a transition. In
our coupling we always set bR = bT . Hence, if bR = 0 then
both chains will not transition and the distance of states
remains. For bR = bT = 1, we distinguish four cases:

Case C1 If r

in
= r and r

out
= t, we let tin

= t and
t

out
= r. As a result, �(R0

, T

0
) = 0.

Case C2 If r

in
= r and r

out
= u

1

/2 S [ {r, t},
we let t

in
= t and t

out
= u

1

. In this case, if both
chains transition, then the resulting distance is zero, oth-
erwise it remains one. With probability p

1

(S, r, t, u

1

) =

min{q(r, u
1

, R), q(t, u

1

, T )} both chains transition.
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Case C3 If r

in
= u

2

2 S and r

out
= t, we let

t

in
= u

2

and t

out
= r. Again, if both chains transi-

tion, then the resulting distance is �(R

0
, T

0
) = 0, oth-

erwise it remains one. With probability p

2

(S, r, t, u

2

) =

min{q(u
2

, t, R), q(u

2

, u

1

, T )} both chains transition.

Case C4 If rin
= u

3

2 S and r

out
= u

4

/2 S [ {r, t},
we let t

in
= u

3

and t

out
= u

4

. If both chains make
the same transition (both move or do not move), the re-
sulting distance is one, otherwise it increases to 2. The
distance increases with probability p

3

(S, r, t, u

3

, u

4

) =

|q(u
3

, u

4

, R)� q(u

3

, u

4

, T )|.
With those four cases, we can now bound E[�(R0

, T

0
)]. For

all (R, T ) 2 E, i.e., �(R, T ) = 1:

E[�(R0, T 0
)]

E[�(R, T )]
=

1

2

+ Pr(C2)E[�(R0, T 0
)|C2]

+ Pr(C3)E[�(R0, T 0
)|C3] + Pr(C4)E[�(R0, T 0

)|C4]

=

1

2

+

1

2c(n� c)

� X

u1 /2S[{r,t}

(1� p1(u1))+

X

u22S

(1� p2(u2)) +

X

u32S,
u4 /2S[{r,t}

(1 + p3(u3, u4))
�

=

1

2c(n� c)

�
2c(n� 1) +

X

u32S,
u4 /2S[{r,t}

p3(u3, u4)�

X

u1 /2S[{r,t}

p1(u1)�
X

u22S

p2(u2)� 1

�
,

where we did not explicitly write the arguments S, r, t to
p

1

, p

2

, p

3

. For

↵ = max

|S|=c�1,
r,t2[n]\S,

r 6=t

X

u32S,
u4 /2S[{r,t}

p3(u3, u4)�

X

u1 /2S[{r,t}

p1(u1)�
X

u22S

p2(u2)

and ↵ < 1 the Path Coupling Lemma 4 implies that

⌧(")  2c(N � c) log(c"

�1

)

(1� ↵)

.

Remarks. If ↵ < 1 is fixed, then the mixing time (run-
ning time) depends only linearly on N . The coefficient ↵
itself depends on our three quantities. In particular, fast
mixing requires p

3

(the difference between transition prob-
abilities) to be very small compared to p

1

, p

2

, at least
on average. The difference p

3

measures how exchange-
able two points r and t are. This notion of symmetry is
closely related to a symmetry that determines the complex-
ity of submodular maximization (Vondrák, 2013) (indeed,
F (S) = log detKS is a submodular function). This sym-
metry only needs to hold for most pairs r, t, and most swap-
ping points u, v. It holds for kernels with sufficiently fast-
decaying similarities, similar to the conditions in (Rebes-
chini & Karbasi, 2015) for unconstrained sampling.
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Figure 1: Relative Frobenius/spectral norm errors from different
kernel approximations (Ailerons data).

One iteration of the sampler can be implemented efficiently
in O(c

2

) time using block inversion (Golub & Van Loan,
2012). Additional speedups via quadrature are also possi-
ble (Li et al., 2016b). Together with the analysis of mixing
time, this leads to fast sampling methods for k-DPPs.

6. Experiments
In our experiments, we evaluate the performance of DPP-
Nyström on both kernel approximation and kernel learning
tasks, in terms of running time and accuracy.

We use 8 datasets: Abalone, Ailerons, Elevators, Com-
pAct, CompAct(s), Bank32NH, Bank8FM and California
Housing4. We subsample 4,000 points from each dataset
(3,000 training and 1,000 test). Throughout our experi-
ments, we use an RBF kernel and choose the bandwidth
� and regularization parameter � for each dataset by 10-
fold cross-validation. We initialize the Gibbs sampler via
Kmeans++ and run for 3,000 iterations. Results are aver-
aged over 3 random subsets of data.

6.1. Kernel Approximation

We first explore DPP-Nyström (kDPP in the figures) for ap-
proximating kernel matrices. We compare to uniform sam-
pling (Unif) and leverage score sampling (Lev) (Gittens
& Mahoney, 2013) as baseline landmark selection meth-
ods. We also include AdapFull (AdapFull) (Deshpande
et al., 2006) that performs quite well in practice but scales
poorly, as O(N

2

), with the size of dataset. Although sam-
pling with regularized leverage scores (RegLev) (Alaoui
& Mahoney, 2015) is not originally designed for kernel ap-
proximations, we include its results to see how regulariza-
tion affects leverage score sampling.

Figure 1 shows example results on the Ailerons data; fur-
ther results may be found in the appendix. DPP-Nyström
performs well, achieving the lowest error as measured in

4
http://www.dcc.fc.up.pt/

˜

ltorgo/

Regression/DataSets.html
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Figure 2: Improvement in relative Frobenius/spectral norm er-
rors (%) over Unif (with corresponding landmark sizes) for ker-
nel approximation, averaged over all datasets.
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Figure 3: Training and test errors for kernel ridge regression with
different Nyström approximations (Ailerons data).

both spectral and Frobenius norm. The only method that
is on par in terms of accuracy is AdapFull, which has a
much higher running time.

For a different perspective, Figure 2 shows the improve-
ment in error over Unif. Relative improvements are av-
eraged over all data sets. Again, the performance of DPP-
Nyström almost always dominate those of other methods,
and achieves an up to 80% reduction in error.

6.2. Kernel Ridge Regression

Next, we apply DPP-Nyström to kernel ridge regres-
sion, comparing against uniform sampling (Unif) (Bach,
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Figure 4: Improvements in training/test errors (%) over uniform
sampling (with same number of landmarks) in kernel ridge regres-
sion, averaged over all datasets.
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Figure 5: Relative Frobenius norm error of DPP-Nyström with
50 landmarks as changing across iterations of the Markov Chain
(Ailerons data).

2013) and regularized leverage score sampling (RegLev)
(Alaoui & Mahoney, 2015) which have theoretical guar-
antees for this task. Figure 3 illustrates an example re-
sult: non-uniform sampling greatly improves accuracy,
with kDPP improving over regularized leverage scores in
particular for a small number of landmarks, where a single
column has a larger effect.

Figure 4 displays the average improvement over Unif, av-
eraged over 8 data sets. Again, the performance of kDPP
dominates RegLev and Unif, and leads to gains in ac-
curacy. On average kDPP consistently achieves more than
20% improvement over Unif.

6.3. Mixing of the Gibbs Markov Chain

In the next experiment, we empirically study the mixing of
the Gibbs chain with respect to matrix approximation er-
rors, the ultimate measure that is of interest in our applica-
tion of the sampler. We use c = 50 and choose N as 1,000
and 4,000. To exclude impacts of the initialization, we pick
the initial state Y

0

uniformly at random. We run the chain
for 5,000 iterations, monitoring how the error changes with
the number of iterations. Example results on the Ailerons
data are shown in Figure 5. Empirically, the error drops
very quickly and afterwards fluctuates only little, indicat-
ing a fast convergence of the approximation error. Other
error measures and larger c, included in the appendix, con-
firm this trend.

Notably, our empirical results suggest that the mixing time
does not increase much as N increases greatly, suggesting
that the Gibbs sampler remains fast even for large N .

In Theorem 5, the mixing time depends on the quantity ↵.
By subsampling 1,000 random sets S and column indices
r, t, we approximately computed ↵ on our data sets. We
find that, as expected, ↵ < 1 in particular for kernels with
a smaller bandwidth, and in general ↵ increases with k.
In accordance with the theory, we found that the mixing
time (in terms of error) too increases with k. In practice,
we observe a fast drop in error even for cases where ↵ >
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1, indicating that Theorem 5 is conservative and that the
iterative MCMC approach is even more widely applicable.

6.4. Time-Error Tradeoffs
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Figure 6: Time-Error tradeoffs with 20 landmarks on
Ailerons (size 4,000) and California Housing (size 12,000).
Time and Errors are shown on a log scale. Bottom left is
the best (low error, low running time), top right is the worst.
We did not include AdapFull, Lev and RegLev on Cal-
ifornia Housing due to their long running times.

Iterative methods like the Gibbs sampler offer tradeoffs be-
tween time and error. The longer the Markov Chain runs,
the closer the sampling distribution is to the desired DPP,
and the higher the accuracy obtained by Nyström. We
hence explicitly show the time and accuracy trade-off of
the sampler on Ailerons (of size 4,000) for up to 200 and
California Housing (of size 12,000) for up to 100 iterations.

A similar tradeoff occurs with leverage scores. For the
experiments in the other sections, we computed the (reg-
ularized) leverage scores for Lev and RegLev exactly.
This requires a full, computationally expensive eigende-
composition. For a fast, rougher approximation, we here
compare to an approximation mentioned in (Alaoui & Ma-
honey, 2015). Concretely, we sample p elements with prob-
ability proportional to the diagonal entries of kernel ma-
trices Kii, and then use a Nyström-like method to con-
struct an approximate low-rank decomposition of K, and
compute scores based on this approximation. We vary p

from 20 to 340 on Ailerons and 20 to 140 on Califor-
nia Housing to show the tradeoff for approximate lever-
age score sampling (AppLev) and regularized leverage
score sampling (AppRegLev). We also include Adap-
Partial (AdapPart) (Kumar et al., 2012) that approxi-
mates AdapFull and is much more efficient, and Kmeans
Nyström (Kmeans) (Zhang et al., 2008) that empirically
perform very well in kernel approximation.

Figure 6 summarizes and compares the tradeoffs offered
by these different methods on the Ailerons and California
Housing datasets. The x axis indicates time, the y axis er-
ror, so the lower left is the preferred corner. We see that
AdapFull, Lev and RegLev are expensive and perform

worse than kDPP. The approximate variants AdapPart,
AppLev and AppRegLev have comparable efficiency but
higher error. On the smaller data, Kmeans is accurate but
needs more time than kDPP, while on the larger data it is
dominated in both accuracy and time by kDPP. Overall,
on the larger data, DPP-Nyström offers the best tradeoff of
accuracy and efficiency.

7. Conclusion
In this paper, we revisited the use of k-Determinantal Point
Processes for sampling good landmarks for the Nyström
method. We theoretically and empirically observe its com-
petitive performance, for both matrix approximation and
ridge regression, compared to state-of-the-art methods.

To make this accurate method scalable to large matrices, we
consider an iterative approach, and analyze it theoretically
as well as empirically. Our results indicate that the iter-
ative approach, a Gibbs sampler, achieves good landmark
samples quickly; under certain conditions even in a num-
ber of iteratons linear in N , for an N by N matrix. Finally,
our empirical results demonstrate that among state-of-the-
art methods, the iterative sampler yields the best tradeoff
between efficiency and accuracy.
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