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Abstract

Many applications require recovering a ground
truth low-rank matrix from noisy observations
of the entries, which in practice is typically for-
mulated as a weighted low-rank approximation
problem and solved by non-convex optimization
heuristics such as alternating minimization. In
this paper, we provide provable recovery guaran-
tee of weighted low-rank via a simple alternating
minimization algorithm. In particular, for a nat-
ural class of matrices and weights and without
any assumption on the noise, we bound the spec-
tral norm of the difference between the recovered
matrix and the ground truth, by the spectral norm
of the weighted noise plus an additive error term
that decreases exponentially with the number of
rounds of alternating minimization, from either
initialization by SVD or, more importantly, ran-
dom initialization. These provide the first the-
oretical results for weighted low-rank approxi-
mation via alternating minimization with non-
binary deterministic weights, significantly gen-
eralizing those for matrix completion, the special
case with binary weights, since our assumptions
are similar or weaker than those made in existing
works. Furthermore, this is achieved by a very
simple algorithm that improves the vanilla alter-
nating minimization with a simple clipping step.

1. Introduction

Recovery of low-rank matrices has been a recurring theme
in recent years in machine learning, signal processing, and
numerical linear algebra, since in many applications, the
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data is a noisy observation of a low-rank ground truth ma-
trix. Typically, the noise on different entries is not identi-
cally distributed, which naturally leads to a weighted low-
rank approximation problem: given the noisy observation
M, one tries to recover the ground truth by finding M that
minimizes HM_MH%V = Zij Wi,j(Mi,j_Mi,j)Q where
the weight matrix W is chosen according to prior knowl-
edge about the noise. For example, the co-occurrence
matrix for words in natural language processing applica-
tions (Pennington et al., 2014; Arora et al., 2016) is such
that the noise is larger when the co-occurrence of two
words is rarer. When doing low-rank approximation on
the co-occurrence matrix to get word embeddings, it has
been observed empirically that a simple weighting can lead
to much better performance than the unweighted formula-
tion (see, e.g., (Levy & Goldberg, 2014)). In biology ap-
plications, it is often the case that the variance of the noise
is different for each entry of a data matrix, due to various
reasons such as different properties of different measuring
devices. A natural approach to recover the ground truth ma-
trix is to solve a weighted low-rank approximation problem
where the weights are inversely proportional to the variance
in the entries (Gadian, 1982; Wentzell et al., 1997). Even
for collaborative filtering, which is typically modeled as a
matrix completion problem that assigns weight 1 on sam-
pled entries and 0 on non-sampled entries, one can achieve
better results when allowing non-binary weights (Srebro &
Jaakkola, 2003).

In practice, the weighted low-rank approximation is typi-
cally solved by non-convex optimization heuristics. One of
the most frequently used is alternating minimization, which
sets M to be the product of two low-rank matrices and al-
ternates between updating the two matrices. Although it is
a natural heuristic to employ and also an interesting theo-
retical question to study, to the best of our knowledge there
is no guarantee for alternating minimization for weighted
low-rank approximation. Moreover, general weighted low-
rank approximation is NP-hard, even when the ground truth
is a rank-1 matrix (Gillis & Glineur, 2011).
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A special case of weighted low-rank approximation is ma-
trix completion, where the weights are binary. Most meth-
ods proposed for solving this problem rely on the assump-
tions that the observed entries are sampled uniformly at
random, and additionally often the observations need to be
re-sampled across different iterations of the algorithm. This
is inherently infeasible for the more general weighted low-
rank approximation, and thus their analysis is not portable
to the more general problem. The few exceptions that work
with deterministic weights are (Heiman et al., 2014; Lee &
Shraibman, 2013; Bhojanapalli & Jain, 2014). In this line
of work the state-of-the-art is (Bhojanapalli & Jain, 2014),
who proved recovery guarantees under the assumptions that
the ground truth has a strong version of incoherence and the
weight matrix has a sufficiently large spectral gap. How-
ever, their results still only work for binary weights, use a
nuclear norm convex relaxation and do not consider noise
on the observed entries.

In this paper, we provide the first theoretical guarantee
for weighted low-rank approximation via alternating min-
imization, under assumptions generalizing those in (Bho-
janapalli & Jain, 2014). In particular, assuming that the
ground truth has a strong version of incoherence and the
weight matrix has a sufficiently large spectral gap, we show
that the spectral norm of the difference between the recov-
ered matrix and the ground truth matrix is bounded by the
spectral norm of the weighted noise plus an additive er-
ror term that decreases exponentially with the number of
rounds of alternating minimization, from either initializa-
tion by SVD or, more importantly, random initialization.
We emphasize that the bounds hold without any assump-
tion on the noise, which is particularly important for han-
dling complicated noise models. Since uniform sampling
can satisfy our assumptions, our guarantee naturally gener-
alizes those in previous works on matrix completion. See
Section 4.1 for a detailed comparison.

The guarantee is proved by showing that the distance be-
tween the intermediate solution and the ground truth is im-
proved at each iteration, which in spirit is similar to the
framework in previous works. However, the lack of ran-
domness in the weights and the exclusion of re-sampling
(i.e., using independent samples at each iteration) lead to
several technical obstacles that need to be addressed. Our
proof of the improvement is then significantly different
(and more general) from previous ones. In particular, show-
ing improvement after each step is only possible when the
intermediate solution has some additional special proper-
ties in terms of incoherence and spectrum. Prior works en-
sure such properties by using re-sampling (and sometimes
assumptions about the noise), which are not available in our
setting. We address this by showing that the spectral prop-
erty only needs to hold in an average sense, which can be
achieved by a simple clipping step. This results in a very

simple algorithm that almost matches the practical heuris-
tics, and thus provides explanation for them and also sug-
gests potential improvement of the heuristics.

Further results The above results build on the insight
that the spectral property only need to hold in an average
sense. However, we can even make sure that the spectral
property holds at each step strictly by a whitening step.
More precisely, the clipping step is replaced by a whitening
step using SDP and Rademacher rounding, which ensures
that the intermediate solutions are incoherent and have the
desired spectral property (the smallest eigenvalues of some
related matrices are bounded). The technique of maintain-
ing the smallest eigenvalues may be applicable to some
other non-convex problems, and thus is of independent in-
terest. The details are presented in the full version of this
paper on arXiv (Li et al., 2016).

Furthermore, combining our insight that the spectral prop-
erty only need to hold in an average sense with the frame-
work in (Sun & Luo, 2015), we are able to show provable
guarantees for the family of algorithms analyzed there, in-
cluding stochastic gradient descent. We demonstrate this
by including the proof details for stochastic gradient de-
scent in the full version (Li et al., 2016).

2. Related work

Being a common practical problem (e.g., (Lu et al., 1997,
Srebro & Jaakkola, 2003; Li et al., 2010; Eriksson &
van den Hengel, 2012)), multiple heuristics for non-convex
optimization such as alternating minimization have been
developed, but they come with no guarantees. On the other
hand, weighted low-rank approximation is NP-hard in the
worst case, even when the ground truth is a rank-1 ma-
trix (Gillis & Glineur, 2011).

On the theoretical side, the only result we know of is
(Razenshteyn et al., 2016), who provide a fixed-parameter
tractability result when additionally the weight matrix is
low-rank. Namely, when the weight matrix has rank r, they
provide an algorithm for outputting a matrix M which ap-
proximates the optimization objective up to a 1 + € multi-
plicative factor, and runs in time n?*"/¢),

A special case of weighted low rank approximation is ma-
trix completion, where the goal is to recover a low-rank
matrix from a subset of the matrix entries and corresponds
to the case when the weights are in {0,1}. For this spe-
cial case much more is known theoretically. It is known
that matrix completion is NP-hard in the case when the
k = 3 (Peeters, 1996). Assuming that the matrix is in-
coherent and the observed entries are chosen uniformly at
random, Candes & Recht (2009) showed that nuclear norm
convex relation can recover an n X n rank-k matrix us-
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ing m = O(n'?klog(n)) entries. The sample size is
improved to O(nklog(n)) in subsequent papers (Candes
& Tao, 2010; Recht, 2011; Gross, 2011). Candes & Plan
(2010) relaxed the assumption to tolerate noise and showed
the nuclear norm convex relaxation can lead to a solution
such that the Frobenius norm of the error matrix is bounded
by O(y/n3/m) times that of the noise matrix. However, all
these results are for the restricted case with uniformly ran-
dom binary weight matrices.

The only relaxations to random sampling to the best of our
knowledge are in (Heiman et al., 2014; Lee & Shraibman,
2013; Bhojanapalli & Jain, 2014). In this line the state-of-
the-art is (Bhojanapalli & Jain, 2014), where the support of
the observation is a d-regular expander such that the weight
matrix has a sufficiently large spectral gap. However, it
only works for binary weights, and is for a nuclear norm
convex relaxation and does not incorporate noise.

Recently, there is an increasing interest in analyzing non-
convex optimization techniques for matrix completion. In
two seminal papers (Jain et al., 2013; Hardt, 2014), it was
shown that with an appropriate SVD-based initialization,
the alternating minimization algorithm (with a few mod-
ifications) recovers the ground-truth. These results are
for random binary weight matrix and crucially rely on re-
sampling (i.e., using independent samples at each itera-
tion), which is inherently not possible for the setting stud-
ied in this paper. More recently, Sun & Luo (2015) proved
recovery guarantees for a family of algorithms including
alternating minimization on matrix completion without re-
sampling. However, the result is still for random binary
weights and has not considered noise. More detailed com-
parison of our result with prior work can be found in Sec-
tion 4, and comments on whether their arguments can be
applied in our setting can be found in Section 5.

We also mention (Negahban & Wainwright, 2012) who
consider random sampling, but one that is not uniformly
random across the entries. In particular, their sampling
produces a rank-1 matrix. (Additionally, they require the
ground truth matrix to have nice properties such as low-
rankness and spikiness.) The rank-1 assumption on the
weight matrix is typically not true for many applications
that introduce the weights to battle the different noise
across the different entries of the matrix.

Finally, two related works are (Bhojanapalli et al.,
2015a;b). The former implements faster SVD decomposi-
tion via weighted low rank approximation. However, here
the weights in the weighted low rank problem come from
leverage scores, so have a very specific structure, specially
designed for performing SVD decompositions. The latter
concerns optimization of strongly convex functions f(V)
when V is in the set of positive-definite matrices. It does
this in a non-convex manner, by setting V.= UU ' and

using the entries of U as variables. Our work focus on the
recovery of the ground truth under the generative model,
rather than on the optimization.

3. Problem definition and assumptions

For a matrix A, let A; denote its i-th column, A7 denote
its j-th row, and A; ; denote the element in ¢-th row and j-
th column. Let ® denote the Hadamard product, i.e., C =
A ® B means Ci,j = Ai,jBi,j-

Let M* € R™ "™ be a rank-k matrix. Given the observa-
tion M = M™ + N where N is a noise matrix, we want
to recover the ground truth M* by solving the weighted
low-rank approximation problem for M and a non-negative
weight matrix W:

min

—~ 2
‘min ||M — MH
MeR w

where Ry is the set of rank-k n by n matrices, and
HA||%,V =2 WmAf’j is the weighted Frobenius norm.
Our goal is to specify conditions about M* and W, under
which M* can be recovered up to small error by alternating
minimization, i.e., set M = XY where X and Y are n
by k matrices, and then alternate between updating the two
matrices. Ideally, the recovery error should be bounded by
|[W & NJ|2, since this allows selecting weights according
to the noise to make the error bound small.

As mentioned before, the problem is NP-hard in general,
so we will need to impose some conditions. We summarize
our assumptions as follows, and then discuss their necessity
and the connections to existing ones.

(A1) Ground truth is incoherent: M* has SVD UXV T,

where max?_,{||[U||3,[|Vi|3} < “E. Addition-
ally, assume opnax(X) = O(1). (See discus-
sion below.) Denote its condition number as 7 =
Umax(z)/axrlin(2>~

(A2) Weight matrix has a spectral gap: ||W — El|2 < vn,

where 7 < 1 and E is the all-one matrix.

(A3) Weight is not degenerate: Let D; = Diag(W?), i.e.,

D; is a diagonal matrix whose diagonal entries are the
i-th row of W. Thenthereare 0 < A <1 < A:

M <U'D;U=<ALand A\ < V' D;V < XI(Vi € [n]).

The incoherence assumption on the ground truth matrix is
standard in the context of matrix completion. It is known
that this is necessarily required for recovering the ground
truth matrix. The assumption that oy (X) = O(1) is
without loss of generality: one can estimate op,.x(X) up
to a constant factor, scale the data and apply our results.
The full details are included in the appendix.
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The spectrum assumption on the weight matrix is a natu-
ral generalization of the randomness assumption typically
made in matrix completion scenario (e.g., (Candes & Plan,
2010; Jain et al., 2013; Hardt, 2014)). In that case, W is
a matrix with d = Q(logn)-nonzeros in each row chosen

uniformly at random, which corresponds to v = O (%)

in (A2). Our assumption is also a generalization of the
one in (Bhojanapalli & Jain, 2014), which requires W to
be d-regular expander-like (i.e., to have a spectral gap) but
is concerned only with matrix completion where the entries
of W can be 0 or 1 only.

The final assumption (A3) is a generalization of the as-
sumption A2 in (Bhojanapalli & Jain, 2014) that, intu-
itively, requires the singular vectors to satisfy RIP (re-
stricted isometry property). This is because when the
weights are binary, UTD,;U = X:jes(Uk)(Uk)T where
S is the support of W, so after proper scaling the as-
sumption is a strict weakening of theirs. They viewed it
as a stronger version of incoherence, discussed the neces-
sity and showed that it is implied by the strong incoherence
property assumed in (Candes & Tao, 2010). In the con-
text of more general weights, the necessity of (A3) is even
more clear, as elaborated below.

Note that since (A2) does not require W to be random
or d-regular, it does not a-priori exclude the degenerate
case that W has one all-zero column. In that case, clearly
one cannot hope to recover the corresponding column of
M*. So, we need to make a third, non-degeneracy as-
sumption about W, saying that it is “correlated” with M*.
The assumption is actually quite weak in the sense that
when W is chosen uniformly at random, this assumption
is true automatically: in those cases, E[D;] = I and thus
E[UTD,;U] = I since U is orthogonal. A standard ma-
trix concentration bound can then show that our assump-
tion (A 3) holds with high probability. Therefore, it is only
needed when considering a deterministic W. Intuitively,
this means that the weights should cover the singular vec-
tors of M*. This prevents the aforementioned degenerate
case when W, = 0 for some ¢, and also some other degen-
erate cases. For example, consider the case when N = 0,
all rows of M™* are the same vector with first ©(logn) en-
tries being zero and the rest being one, and in one row of
M* the non-zeros entries all have zero weight. In this case,
there is also no hope to recover M*, which should be ex-
cluded by our assumption.

4. Algorithm and results

We prove guarantees for the vanilla alternating minimiza-
tion with a simple clipping step, from either SVD initializa-
tion or random initialization. The algorithm is specified in

Algorithm 1 Main Algorithm (ALT)
Input: Noisy observation M, weight matrix W, number
of iterations T'

1: Initialize Y using either Y; = SVDINITIAL(M, W)
or Y; = RANDINITIAL
fort=1,2,....,Tdo

X1 = argminyg cgnx HM — XY;'—HW
Xt+1 = CLIPLXtJ,-l)

X1 = QR(X¢41)

Y41 = argminy cgnxe HM — Xt+1YTH
Y1 =CLIP(Y;41)

8: Y1 =QR(Y41)

9: end for
Output: M = X7, Y7

w

A A

Algorithm 2 Clipping (CLIP)

Input: matrix )Nii
Output: matrix X with

[ X iR =
0 otherwise.

Algorithm 1. Overall, it follows the usual alternating mini-
mization framework: it keeps two working matrices X and
Y, and alternates between updating them. In an X update
step, it first updates X to be the minimizer of the weighted
low rank objective while fixing Y, which can be done effi-
ciently since now the optimization is convex. Then it per-
forms a “clipping” step which zeros out rows of the matrix
with too large norm,! and then make it orthogonal by QR-
factorization.? At the end, the algorithm computes a final
solution M from the two iterates.

The two iterates can be initialized by performing SVD
on the weighted observation (Algorithm 3), which is a
weighted version of SVD initialization typically used in
matrix completion. Moreover, we show that the algorithm
works with random initialization (Algorithm 4), which is
a simple and widely used heuristic in practice but rarely
understood well.

We are now ready to state our main results. Theorem 1

'The clipping step zeros out rows with square £2 norm twice
larger than the upper bound pk/n imposed by our incoherence
assumption (A1). One can choose the threshold to be cuk/n
where ¢ > 2 is a constant and can choose to shrink the row to
have norm no greater than pk /n, and our analysis still holds. The
current choices are only for ease of presentation.

>The QR-factorization step is not necessary for our analysis.
But since it is widely used in practice for numerical stability, we
prefer to analyze the algorithm with QR.
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Algorithm 3 SVD Initialization (SVDINITIAL)
Input: obselvation M, weight W
1: (X,%,Y) =rank-k SVD(W ©®M), i.e., the columns
of Y are the  top k right singular vectors of W © M
2: Y =CLIP(Y), Y = QR(Y)
Output: Y

Algorithm 4 Random Initialization (RANDINITIAL)
1: Let Y € R™*¥ generated as Y, ; =

b; ;’s are independent uniform from {—1,1}
QOutput: Y

1
b ; T where

describes our guarantee for the algorithm with SVD initial-
ization, and Theorem 3 is for random initialization.

Theorem 1 (Main, SVD initialization). Suppose M*, W
satisfy assumptions (Al)-(A3) with

A A
~ = O | min n_2 e ,
Dy Tu3/2k2’ 73/2 k2

where Dy = max;cp [[W'|1. Then after O(log(1/¢))
rounds of Algorithm 1 with initialization from Algorithm 3
outputs a matrix M that satisfies

—~ kT
M- M <0 (5 ) W o N+

The running time is polynomial in n and log(1/e).

The theorem is stated in its full generality. To emphasize
the dependence on the matrix size n, the rank k and the
incoherence yi, we can consider a specific range of parame-
ter values where the other parameters (the spectral bounds,
condition number, D1 /n) are constants. Also, these param-
eter values are typical in matrix completion, which facili-
tates our comparison in the next subsection.

Corollary 2. Suppose \, X and T are all constants, D =
O(n), and T = O(log(1/¢)). Furthermore,

1
720(u3/2k2>'

Then Algorithm I with initialization from Algorithm 3 out-
puts a matrix M that satisfies

IM — M*||]2 < O (k) [W O N|z +e.

Remarks The theorem bounds the spectral norm of the
error matrix by the spectral norm of the weighted noise plus
an additive error term that decreases exponentially with the
number of rounds of alternating minimization. We empha-
size that our guarantee holds for any M*, W satisfying our
deterministic assumptions; the high success probability is

with respect to the execution of the algorithm, not to the
input. This ensures the freedom in choosing the weights to
battle the noise. We also emphasize that the bounds hold
without any assumption on the noise, which is particularly
important here since weighted low rank is typically applied
to complicated noise models.

Bounding the error by ||W © NJ|; is particularly useful
when the noise is not uniform across the entries: prior
knowledge about the noise (e.g., the different variances of
noise on different entries) can be taken into account by set-
ting up a reasonable weight matrix>, such that |[W © N[,
can be significantly smaller than || N||2. Also, in recovering
the ground truth, a spectral norm bound is more preferred
than a Frobenius norm bound, since typically the Frobenius
norm is /n larger than the spectral norm.

Furthermore, when |[W ® NJ|2 = 0 (as in matrix com-
pletion without noise), the ground truth is recovered in a
geometric rate.

Finally, in matrix completion with uniform random sam-
pled observations, the term D; concentrates around n, so
D1 disappears in this case.

n

Theorem 3 (Main, random initialization).
M*, W satisfy assumptions (Al1)-(A3) with

"y = O min ﬂ A ) A 4 )
Dy Tu2k5/27 73/23/215/2

W]l = 0 (A” ' ) ,
k2plog”n

where Dy = max;cp [[W'||1. Then after O(log(1/¢))
rounds Algorithm_1 with initialization from Algorithm 3
outputs a matrix M that with probability at least 1 — %
satisfies

Suppose

kr
)

IM - M)y < o( ) W o Nl +c.

The running time is polynomial in n and log(1/¢).

Remarks Compared to SVD initialization, we need
slightly stronger assumptions for random initialization to
work. There is an extra 1/(u'/?k'/?) in the requirement
of the spectral parameter v. We note that the same er-
ror bound is obtained when using random initialization.
Roughly speaking, this is because our analysis shows that
the updates can make improvement under rather weak re-
quirements that random initialization can satisfy, and after
the first step the rest updates make the same progress as in
the case using SVD initialization.

3Note that W cannot be made arbitrarily small since it should
satisfy our assumptions. Roughly speaking, W has spectral norm
n and is flexible to take into account the prior knowledge about
the noise. In particular, it can be set to the all one matrix, reducing
to the unweighted case.
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weight | determin. | tolerate | alter. order of v
values | weights noise | min. (spectral gap) Bound on A = M — M*
n3
) 0-1 no yes no R poly(oEn) |AllF = O(/ % INal r)
2
) 0-1 no yes no BT 1Al = O(E |INg||2)
3) 0-1 yes no no ﬁ exact recovery
) 0-1 no yes yes e [Allp < e|[M*+N]|p
T
(&) 0-1 no no YeS | man{Vinlonn ko5l exact recovery
ours (SVD init) real yes yes yes ﬁ Al =0 (k) |[W &Nz +e€
ours (random init) | real yes yes yes W 1Al = O (k) |[W © N2+ €

Table 1. Comparison with related work on matrix completion: (1) (Candes & Plan, 2010); (2) (Keshavan et al., 2009); (3) (Bhojanapalli
& Jain, 2014); (4) (Hardt, 2014). (5) (Sun & Luo, 2015). Technical details are ignored. Especially, parameters other than the matrix size

n, the rank k and the incoherence p are regarded as constants.

4.1. Comparison with prior work

For the sake of completeness, we will give a more detailed
comparison with representative prior work on matrix com-
pletion from Section 2, emphasizing the dependence on
n, k and p and regarding the other parameters as constants.
We first note that when the m observed entries are sam-
pled uniformly at random from an n by n matrix, the cor-
responding binary weight matrix will have a spectral gap
v = O(/%) (see, e.g., (Feige & Ofek, 2005)). Convert-
ing the sample bounds in the prior work to the spectral gap,
we see that in general our result has worse dependence on
parameters like the rank than those by convex relaxations,
but has slightly better dependence than those by alternating
minimization. The comparison is summarized in Table 1.

The seminal paper (Candes & Recht, 2009) showed that a
nuclear norm convex relaxation approach can recover the
ground truth matrix using m = O(n'2klog?n) entries
chosen uniformly at random and without noise. The sam-
ple size was improved to O(nk log® n) in (Candes & Tao,
2010) and then O(nklogn) in subsequent papers. Can-
des & Plan (2010) generalized the result to the case with
noise: the same convex program using m = O(nk log® n)
entries recovers a matrix M s.t. |[M — M*||p < (2 +
4/(2+ p)n/p)|Nq| r where p = m/n? and Ng, is the
noise projected on the observed entries.

Keshavan et al. (2009) showed that with m =
O(npklogn), one can recover a matrix M such that

HM* - MHF =0 (%HNQ”Q) by an optimization
over a Grassmanian manifold.

Bhojanapalli & Jain (2014) relaxed the assumption that the
entries are randomly sampled. They showed that the nu-
clear norm relaxation recovers the ground truth, assuming
that the support € of the observed matrix forms a d-regular
expander graph (or alike), i.e., |2| = dn, 01(Q) = d and
02(Q) < ev/d and d > ¢?pi®k?. This would correspond to

a parameter vy = O(ﬁ) for us. They did not consider the
robustness to noise.

Hardt (2014) showed that with an appropriate initializa-
tion alternating minimization recovers the ground truth
approximately.  Precisely, they assumed IN satisfies:
. p(N) S omin(M)%2). N[ < &[M*[|p.
Then, he shows that log(” logn) alternating minimiza-
tion steps recover a matrix M such that ||1\71 - M*F <
€|M| g provided that pn > k(k + log(n/e))u x
(nM*HFH\an/e)Q 1_

ok

Ok+1
ok

where oy, is the k-th sin-
gular value of the ground-truth matrix. The parameter
~ corresponding to the case considered there would be
roughly O(ﬁ). While their algorithm has a good
tolerance to noise, N is assumed to have special structure

for him that we do not assume in our setting.

Sun & Luo (2015) proved recovery guarantees for a
family of algorithms including alternating minimization
on matrix completion. They showed that by using
m = O(nkmax{ulogn, u?k®}) randomly sampled en-
tries without noise, the ground truth can be recovered in
a geometric rate. This corresponds to a spectral gap of

(max Vi lign,uk& 5}>. Our result is more general and
also handles noise. When specialized to their setting, we
also have a geometric rate with a slightly better dependence
on the rank k but a slightly worse dependence on the inco-

herence L.

5. Proof sketch

Before going into our analysis, we first discuss whether ar-
guments in prior work can be applied. Most of the work
on matrix completion uses convex optimization and thus
their analysis is not applicable in our setting. There indeed
exists some other work that analyzes non-convex optimiza-
tion for matrix completion, and it is tempting to adopt their
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arguments. However, there exist fundamental difficulties
in porting their arguments. All of them crucially rely on
the randomness in sampling the observed entries. Kesha-
van et al. (2009) analyzed optimization over a Grassmanian
manifold, which uses the fact that E[W © S] = S for any
matrix S. In (Jain et al., 2013; Hardt, 2014), re-sampling
of new observed entries in different iterations was used to
get around the dependency of the iterates on the sample
set, a common difficulty in analyzing alternating minimiza-
tion. The subtlety and the drawback of re-sampling were
discussed in detail in (Bhojanapalli & Jain, 2014; Candes
et al., 2015; Sun & Luo, 2015). We note that (Sun & Luo,
2015) only needs sampling before the algorithm starts and
does not need re-sampling in different iterations, but still
relies on the randomness in the sampled entries. In par-
ticular, in all the aforementioned work, the randomness
guarantees that the iterates X, Y stay incoherent and have
good spectrum properties. Given these, alternating min-
imization can make progress towards the ground truth in
each iteration. Nevertheless, since we focus on determinis-
tic weights, such randomness is inherently infeasible in our
setting. In this case, after just one iteration, it is unclear if
the iterates can have incoherence and good spectrum prop-
erties required to progress towards the ground truth, even
under our current assumptions. The whole algorithm thus
breaks down. To address this, we show that it is sufficient
to ensure the spectral property in an average sense and then
introduce our clipping step to achieve that, arriving at our
current algorithm.

Here for simplicity, we drop the subscription ¢ in all it-
erates, and we only focus on important factors, dropping
other factors and the big-O notation. We only consider the
case when W ® N = (), so as to emphasize the main tech-
nical challenges.

On a high level, our analysis of the algorithm maintains po-
tential functions dist. (X, U) and dist.(Y, V) between our
working matrices X,Y and the ground truth U, V (recall
that M* = UV T):

dist.(X,U) = min
Qe0

kXxk

1XQ — Ul

and
dist.(Y,V) = min
QeO

kXxXk

1YQ — V2,

where O, are the set of k x k rotation matrices. The
key is to show that they decrease after each update step, so
X and Y get closer to the ground truth.* The strategy of
maintaining certain potential function measuring the dis-
tance between the iterates and the ground truth is also used

“Note that we also need a good initialization, which can be
done by SVD. Since our analysis requires rather weak warm start,
we are able to show that simple random initialization is also suf-
ficient (at the cost of slightly worse bounds).

in prior work (Bhojanapalli & Jain, 2014; Candes et al.,
2015; Sun & Luo, 2015). We will point out below the key
technical difficulties that are not encountered in prior work
and make our analysis substantially different. The com-
plete proofs are provided in the appendix due to space lim-
itation.

5.1. Update

We would like to show that after an X update, the new
matrix X satisfies dist.(X,U) < dist.(Y,V)/2 + ¢ for
some small ¢ (similarly for a 'Y update).

Consider the update step
X argminp cgnxk HM - AYTHW .

By setting the gradient to 0 and with some algebraic ma-
nipulation, we have X — UXV 'Y = G where

G :=UXV'Y, Y D,)Y(Y'D;Y)" L

where D; = Diag(W?). Since X is the value prior to
performing QR decomposition, we want to show that X
is close to U'XVTY, i.e., the error term G on right hand
side is small. In the ideal case when the error term is 0, then
X = UXV'Y and thus dist.(X, U) = 0, meaning that
with one update X already hits into the correct subspace.
So we would like to show that it is small so that the iterate
still makes progress. Let

P,=V'Y,Y]D,Y and O; = (Y'D;Y) !,

so that G' = U'XP;0;. Now the two challenges are to
bound P; and O;.

Let us first consider the simpler case of matrix comple-
tion, where the entries of the matrix are randomly sam-
pled by probability p. Then D; is a random diagonal ma-
trix with E[D;] = I and E[D?] = 1. Furthermore, for
n x k orthogonal matrices Y, O; = (Y 'D;Y)~! con-
centrates around I. Then in expectation, ||P;|| is about
IIVTY . ||//p and ||O;| is about 1, so |G| is as small
as puk|[VTY ||/(y/pn) = pksind(V,Y)/(/pn). High
probability can then be established by the trick of re-
sampling.

However, in our setting, we have to deal with two major
technical obstacles due to deterministic weights.

1. There is no expectation for D;. Since ||D;||%, can be

as lalrge as Wﬁgn)’ P;|| can potentially be as large
as sinf(Y,V) Boly(log )
larger than the bound for random D;. This is clearly
insufficient to show the progress.

2. A priori the norm of O; = (Y 'D;Y)™! may be
large. Especially, in the algorithm Y is given by the

which is almost a factor n
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alternating minimization steps and giving an upper
bound on ||O;|| at all steps seems hard.

The first issue For this, we exploit the incoherence of Y
and the spectral property of the weight matrix. If D; is
the identity matrix, then P; = 0 which, intuitively, means
that there are cancellations between negative part and pos-
itive parts. When W is expander-like, it will put roughly
equal weights on the negative part and the positive part.
If furthermore we have that Y is incoherent (i.e., the neg-
ative and positive parts are spread out), then W can mix
the terms and lead to a cancellation similar to that when
D; = 1. More precisely, consider the (j, j/)-th element in
P;. Define a new vector x € R"™ such that

€T, = (vj)7(Yj/),, where \A} = VTYLYI

Then we have the cancellation in the form of ), ; = 0.
When D; = I, we simply get (P;); ;v = >, ; = 0. When
D; # L we have (P;);;r = > () (D;)s277". Now mix
over all ¢, we have

2
Z ((P1)37J')2 = Z (Di)szs | = ||VV9EH2
i€[n] s€[n]
= ||((W—E)z|? (since Exz = 0)

< ¥*n?|z|?

where in the last step we use the expander-like property of
W (Assumption (A2)) to gain the cancellation. Further-
more, if ||'Y /|| is small, by definition ||z||? is also small,

so we can get an upper bound on 3, (.., [P |%.

Then the problem reduces to maintaining the incoherence
of Y. This is taken care of by our clipping step (Algo-
rithm 2), which sets to O the rows of Y that are too large.
Of course, we have to show that this will not increase the
distance of the clipped Y and V. The intuition is that we
clip only when ||[Y?|| > 2uk/n. But [|[V?| < uk/n, so
after clipping, Y* only gets closer to V.

The second issue This is the more difficult technical ob-
stacle, i.e., [|O;]| = [|(Y TD;Y) ™! can be large. Our key
idea is that although individual ||O;|| can indeed be large,
this cannot be the case on average. We show that there can
just be a few ¢’s such that ||O;|| is large, and they will not

To be more formal, we wish to bound the number of indices
i such that oy (Y DY) < %. Consider an arbitrary
unit vector a. Then,

aY'D;Ya=> aY'(D;);Ya=>» (D;);{a, Y’)?.

J J

We know that Y is close to V, so we rewrite the above
using some algebraic manipulation as

Z(D*H (Y = V7) +V7)?

72 (0, V)? = = 3"(D1) 0, Y7~ V)2

J

For j’s such that Y7 is close to V7 (denote these j’s as Sy,
then the terms can be easily bounded since VD,V >\l
by assumption. So we only need to consider j’s such that
Y7 is far from V7. Since we have incoherence, we know
that || Y7 — V7| is still bounded in the order of ;k/n. So
aY "D;Ya can be small only when Zjes (D;); is large.

Let S denote those bad i’s. Let us be the indicator vector
for S and ug4 be the indicator vector for [n — Sg].

o> D), =

i€S j¢S,

T
us Wuyg

IN

[S1(n = 1S]) +

where the last step is due to the spectral property of
W. Therefore, there can be only a few ¢’s with large

ngsg (Di)j~

[S1(n = [S)

5.2. Proofs of main results

We only need to show that we can get an initialization close
enough to the ground truth so that we can apply the above
analysis for the update. For SVD initialization,

[X,%,Y] = rank-k SVD(W o M*+ W o N).

Since ||W © N||2 < 6 can be regarded as small, the idea
is to show that W ® M* is close to M* in spectral norm
and then apply Wedin’s theorem (Wedin, 1972). We show
this by the spectral gap property of W and the incoherence
property of U, V.

For random initialization, the proof is only a slight modifi-
cation of that for SVD initialization, because the update re-
quires rather mild conditions on the initialization such that
even the random initialization is sufficient (with a slightly
Worse parameters).

6. Conclusion

In this paper we presented the first recovery guarantee of
weighted low-rank matrix approximation via alternating
minimization. Our work generalized prior work on matrix
completion, and revealed technical obstacles in analyzing
alternating minimization, i.e., the incoherence and spec-
tral properties of the intermediate iterates need to be pre-
served. We addressed the obstacles by a simple clipping
step, which resulted in a very simple algorithm that almost
matches the practical heuristics.
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