
Supplementary Material for Conditional Bernoulli Mixtures for
Multi-label Classification

A Several Implementation and Experiment Details

A.1 Dealing with Empty Predictions
Predicting empty label subsets could be undesirable when it is known a priori that each instance matches at least one
label. The dynamic programming prediction algorithm in the paper can be easily modified to output the most probably
non-empty subsets. In our experiments, we allow CBM to predict empty sets only when the training set contains
empty sets. This strategy is shown to improve the test performance slightly. Occasionally, this could make CBM with
1 component perform slightly differently from BinRel (see Figure 3 in the paper).

A.2 Hyper Parameter Tuning
In our experiments, we do cross-validation on the training set to tune the following hyper parameters:

• LR Gaussian prior variance VLR, on grids {10−2, 10−1, 100, 101, 102, 103, 104, 105, 106};

• CRF Gaussian prior variance VCRF , on grids {10−2, 10−1, 100, 101, 102, 103, 104, 105, 106};

• CBM+LR number of components K, on grids {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};

• CBM+GB number of components K, on grids {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}.

Tuning results are shown in Table 1.

Table 1: Tuned Hyper Parameters

dataset VLR VCRF K (CBM+LR) K (CBM+GB)
SCENE 1.0 1.0 20 25
RCV1 106 1.0 45 45

TMC2007 10−1 10−1 40 20
MEDIAMILL 103 1 50 5
NUS-WIDE 1.0 1.0 50 10

Our gradient boosting implementation uses regression trees of 5 leaves and shrinkage rate 0.1 as default values.
For PCC, the beam search width is set to be 15, as suggested in [3].

B Results for Jaccard Index and Hamming Loss
Let {(xn,yn)}Nn=1 be a multi-label dataset with ground truth labels, and {ŷn}Nn=1 be the predictions made by a
classifier. The Jaccard index is defined as

1

N

N∑
n=1

|yn ∩ ŷn|
|yn ∪ ŷn|

, (1)

where yn and ŷn are interpreted as sets. Jaccard index is a well-behaved evaluation measure, often more practical
than subset accuracy, because it assigns partial credits to “almost correct” answers and handles label imbalance well.
To the best of our knowledge, the optimal classifier form for Jaccard index as defined in (1) is unknown. The authors

1

in [2] make a distinction between EUM and DTA multilabel population utility. The utility defined in (1) is refereed to
as the DTA utility. For Jaccard index defined as the EUM utility, the optimal classifier can be decomposed into binary
classifiers h∗` (x) = 1[p(y` = 1|x) > η], where η is a common threshold shared by all labels ` ∈ Y . The interested
readers can refer to [2] for more details.

Hamming loss measures bit-wise errors and is defined as

1

NL

N∑
n=1

L∑
`=1

1[yn` 6= ŷn`]. (2)

Hamming loss is less discriminative than subset accuracy and Jaccard index because it ignores label imbalance. In
practice, each instance usually matches only a few labels out of many candidates. A trivial classifier predicting empty
set could also get a decent Hamming loss. According to [1], the optimal classifier for Hamming loss simply predicts
each label independently based on its marginal probability

h∗` (x) = argmax
y`

p(y`|x). (3)

The theoretical analysis in [1] also shows that a multi-label classifier designed for optimizing one measure may be
suboptimal under other measures. Testing performance based on Jaccard index and Hamming loss is shown in Table 2.
BinRel achieves the best Hamming loss on all datasets, as expected. CBM achieves the highest Jaccard index on three
out of five datasets, which is reasonable given the fact that predicting the joint mode as currently done in CBM is only
optimal for subset accuracy and multi-label optimality is measure related. It should be interesting to consider how to
design prediction methods based on the joint distribution estimated by CBM in order to optimize for other measures.
We leave this for future work.

Table 2: The testing performance of different methods on five datasets. All numbers are in percentages. Best perfor-
mances are bolded.

dataset SCENE (image) RCV1 (text) TMC2007 (text) MEDIAMILL (video) NUS-WIDE (image)
#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #data points 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

Method Learner Jaccard Hamming Jaccard Hamming Jaccard Hamming Jaccard Hamming Jaccard Hamming
BinRel LR 58.4 10.8 64.9 1.4 52.2 6.5 42.3 3.1 32.3 2.1
PowSet LR 71.9 9.5 67.2 1.9 51.9 6.8 35.2 3.6 32.3 2.1

CC LR 67.5 10.9 63.4 1.6 52.4 6.5 40.5 3.2 32.2 2.1
PCC LR 69.4 10.3 63.5 1.6 52.8 6.5 38.0 3.5 32.1 2.2

ECC-label LR 65.6 10.1 64.8 1.4 52.1 6.5 41.1 3.1 32.3 2.1
ECC-subset LR 68.0 10.3 67.4 1.4 52.2 6.5 41.1 3.2 32.3 2.1

CDN LR 66.4 10.9 50.9 2.8 44.0 8.5 38.6 4.2 32.8 2.7
pairCRF linear 72.8 9.2 64.6 1.7 53.4 6.5 35.9 3.5 32.7 2.2

CBM LR 73.6 8.9 69.5 1.4 53.1 6.7 41.2 3.4 34.2 2.1
BinRel GB 63.9 8.3 55.8 1.7 52.2 6.7 44.2 3.0 30.6 2.1
PowSet GB 74.9 8.6 51.3 2.9 42.7 9.0 38.5 3.9 24.3 2.4
CBM GB 75.2 8.5 62.5 1.8 52.8 6.8 43.0 3.2 31.6 2.2

C Running Time
To facilitate wider comparison of different methods, we also report their training time and prediction time measured
in our experiments. We use linear learners for all algorithms to make results comparable. Our Java implementations
of BinRel, PowSet, CC, PCC, ECC, pairCRF and CBM are all multi-threaded.1 The CDN implementation is taken
from the MEKA package2 without further modification. Each experiment is conducted on a computer with Intel Xeon
CPU E5-2690 v3 2.6GHz, 48 logical cores and 128GB of RAM. The timing results are in Table 3. All numbers are
in seconds and the predict time measures the time required to make predictions on the entire test set. We can see in

1Our implementations of CBM and several baselines (PowSet, PCC, CRF, etc.) are available at https://github.com/cheng-li/
pyramid.

2http://meka.sourceforge.net

2

https://github.com/cheng-li/pyramid
https://github.com/cheng-li/pyramid
http://meka.sourceforge.net

terms of speed, BinRel is the clear winner. However, its poor accuracy makes its advantage in speed less attractive. On
datasets with a large number of possible subsets, CBM takes significantly less training time compared with PowSet,
while still achieving better accuracy. Currently, there are two main factors that affect the training time of CBM: the
number of clusters and the number of EM iterations. Our current prototype implementation of CBM mainly serves to
demonstrate the concept. Designing better regularization and training techniques could possibly further reduce those
two number and speed up CBM training, and we leave it for future work.

Table 3: The training time and prediction time of different methods on five datasets. All numbers are in seconds.

dataset SCENE (image) RCV1 (text) TMC2007 (text) MEDIAMILL (video) NUS-WIDE (image)
#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #data points 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

Method Learner Train Predict Train Predict Train Predict Train Predict Train Predict
BinRel LR 2 <1 19 <1 26 <1 136 <1 128 1
PowSet LR 35 <1 3147 <1 38037 1 85794 1 521760 34

CC LR 3 <1 509 <1 332 <1 1949 1 2520 2
PCC LR 3 <1 509 3 332 1 1949 4 2520 27

ECC-label LR 22 <1 4915 27 3404 15 19642 38 25791 246
ECC-subset LR 22 <1 4915 26 3404 18 19642 39 25791 287

CDN LR 4 45 18417 213433 54253 596228 3126 6572 17941 41789
pairCRF linear 11 <1 2136 <1 215 <1 2990 <1 48404 7

CBM LR 70 <1 4412 4 1495 1 17608 13 35363 48

References
[1] Krzysztof Dembczyński, Willem Waegeman, Weiwei Cheng, and Eyke Hüllermeier. On label dependence and

loss minimization in multi-label classification. Machine Learning, 88(1-2):5–45, 2012.

[2] Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K Ravikumar, and Inderjit S Dhillon. Consistent multilabel
classification. In Advances in Neural Information Processing Systems, pages 3303–3311, 2015.

[3] Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, and Charles Elkan. Beam search algorithms for mul-
tilabel learning. Machine learning, 92(1):65–89, 2013.

3

	Several Implementation and Experiment Details
	Dealing with Empty Predictions
	Hyper Parameter Tuning

	Results for Jaccard Index and Hamming Loss
	Running Time

