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Abstract
Multi-label classification is an important ma-
chine learning task wherein one assigns a subset
of candidate labels to an object. In this paper, we
propose a new multi-label classification method
based on Conditional Bernoulli Mixtures. Our
proposed method has several attractive proper-
ties: it captures label dependencies; it reduces the
multi-label problem to several standard binary
and multi-class problems; it subsumes the clas-
sic independent binary prediction and power-set
subset prediction methods as special cases; and
it exhibits accuracy and/or computational com-
plexity advantages over existing approaches. We
demonstrate two implementations of our method
using logistic regressions and gradient boosted
trees, together with a simple training procedure
based on Expectation Maximization. We further
derive an efficient prediction procedure based on
dynamic programming, thus avoiding the cost of
examining an exponential number of potential la-
bel subsets. Experimental results show the effec-
tiveness of the proposed method against compet-
itive alternatives on benchmark datasets.

1. Introduction
Multi-label classification is an important machine learning
task wherein one assigns a subset of candidate labels to
an object. Such problems arise naturally in the context of
medical diagnostics, text classification, image tagging, and
a host of other areas. For example, in the medical domain,
a patient may present multiple illnesses or undergo a proce-
dure with multiple billing codes; in news categorization, an
article can be associated with multiple categories; in image
tagging, a photo may have multiple tags (see Figure 1).
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Figure 1. An image from the NUS-WIDE multi-label dataset.
Independent binary logistic regressions predict the labels
{clouds, lake, sky, sunset, water}. Our pro-
posed method correctly predicts {clouds, lake, sky,
sunset, water, reflection}, because it captures the
dependencies between reflection and the other labels.

Multi-label classification is particularly difficult in the
common case when the labels are many and dependent.
In this case, simple approaches such as independent bi-
nary label prediction and power-set subset prediction fail
due to label dependencies and combinatorial explosion, re-
spectively. More sophisticated approaches such as classi-
fier chains, conditional dependency networks, and condi-
tional random fields suffer due to accuracy/computational-
complexity trade-offs in training and/or prediction. We
introduce Conditional Bernoulli Mixtures for multi-label
classification to address these challenges, yielding multi-
label classifiers that are flexible, accurate and efficient.

Formally, in a multi-label classification problem, we are
given a set of label candidates Y = {1, 2, ..., L}. Every
data point x ∈ RD matches a subset of labels y ⊆ Y ,
which can be equivalently written in the form of a binary
vector y ∈ {0, 1}L, with each bit y` indicating the presence
or absence of the corresponding label. The goal of learning
is to build a classier h : RD 7→ {0, 1}L which maps an in-
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stance to a subset of labels. The predicted label subset can
be of arbitrary size; when the size is restricted to be 1, the
problem is called multi-class classification. Furthermore,
if the total number of label candidates L is 2, the problem
becomes binary classification.

Various measures can be used for evaluating multi-label
classifiers. Among them, three commonly used measures
are subset accuracy, Jaccard index and Hamming loss. Let
{(xn,yn)}Nn=1 be a multi-label dataset with ground truth
labels, and {ŷn}Nn=1 be the predictions made by a classi-
fier. Subset accuracy generalizes the conventional multi-
class accuracy notion:

1

N

N∑
n=1

1[yn = ŷn], (1)

where 1[·] is the indicator function. In computing sub-
set accuracy, a predicted subset is considered correct only
when it matches the true subset exactly. Admittedly, this
metric is very stringent in evaluation. However, optimiz-
ing for subset accuracy is a very interesting algorithmic de-
sign and research problem, as it encourages the classifiers
to output coherent and complete predictions. The optimal
prediction for subset accuracy is achieved by outputting the
mode of the conditional joint distribution:

h∗(x) = argmax
y

p(y|x). (2)

Jaccard index (also called overlap) measures the overlap
between the true subset and the predicted subset using
the size of their intersection divided by the size of their
union, and Hamming loss counts the number of bit-wise
mistakes. The theoretical results in (Dembczyński et al.,
2012; Koyejo et al., 2015) show that a multi-label classifier
designed for optimizing one measure may be suboptimal
under other measures. In this paper, we focus on the multi-
label classification task with subset accuracy as the target
evaluation measure, but for completeness we also report the
Jaccard index and Hamming loss results in the supplemen-
tary material.

According to (2), optimizing subset accuracy requires es-
timating the conditional joint distribution p(y|x), which
captures conditional label dependencies given features.
One naive approach is to assume conditional indepen-
dence among labels p(y|x) =

∏L
`=1 p(y`|x), which re-

duces a multi-label problem into L binary classification
problems. This approach is called Binary Relevance (Bin-
Rel) (Tsoumakas & Katakis, 2007), and is widely used due
to its simplicity. One obvious disadvantage is that the in-
dividual label predictions can often be conflicting, such as
tagging cat but not animal for an image.

At the other extreme is the Power-Set (PowSet) ap-
proach (Tsoumakas & Katakis, 2007), treating each label

subset as a class, and trains a multi-class classifier. As a
consequence, one would be restricted in practice to pre-
dicting only label subsets seen in the training data and al-
ways assigning zero probabilities to unseen subsets; even
for many of the subsets observed there would likely be a
scarcity of training data. Power-Set is handling label de-
pendencies and its predictions are coherent, but the method
is often infeasible on the exponential number of label sets.

Bernoulli Mixtures. Mixture models offer a flexible and
powerful framework for many multivariate density estima-
tion problems. A mixture generally has the form

p(y) =

K∑
k=1

πkp(y;βk), (3)

which approximates a complex joint p(y) by a weighted
combination of K component densities p(y;βk), each
of which typically takes some simple density form
parametrized by βk. The Expectation Maximization (EM)
algorithm can be employed to train such mixture models by
iterating between estimating the mixture coefficients and
fitting component densities.

Bernoulli Mixtures (BM) are classic models for multi-
dimensional binary variable density estimation (Lazars-
feld et al., 1968; McLachlan & Peel, 2004; Bishop, 2006),
where the learnability is realized by assuming indepen-
dence of variables within each mixture component. Thus
each component density p(y;βk) is simply a product of
Bernoulli densities and the overall model has the form

p(y) =

K∑
k=1

πk
L∏

`=1

Ber(y`;µk
` ), (4)

where Ber(y`;µk
` ) denotes the Bernoulli distribution with

head probability µk
` . BM has two attractive properties.

First, dependencies: although the L variables are assumed
to be independent inside each component, they are in gen-
eral dependent in the mixture (they are forced to be inde-
pendent only when K = 1). This can be verified by com-
puting the following covariance matrix and observing that
it is non-diagonal for K ≥ 2 (Bishop, 2006).

Cov[y] =

K∑
k=1

πk[Σk + µk(µk)>]− E(y)E(y)>, (5)

where E(y) =
∑K

k=1 π
kµk, Σk = diag{µk

` (1−µk
` )}, and

µk = (µk
1 , µ

k
2 , ..., µ

k
L)>.

Second, efficiency: the full factorization of each component
makes fitting BM efficient via the EM algorithm.

In this paper, we propose a new multi-label classification
method which approximates the conditional joint p(y|x)
based on Bernoulli Mixtures. The method simultaneously
learns the label dependencies from data and trains classi-
fiers to account for such dependencies.
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2. Conditional Bernoulli Mixtures
For multi-label classification, we model the conditional
joint p(y|x) with a discriminative extension of BM, cap-
turing conditional dependencies among binary labels given
features. The analysis in (Dembczyński et al., 2012) shows
that labels could be largely conditionally independent given
features (i.e., p(y|x) ≈

∏L
`=1 p(y`|x)), even when la-

bels are strongly marginally dependent (i.e., p(y) 6=∏L
`=1 p(y`)), as long as each label is highly predictable

from features. Therefore it is not necessary to capture cor-
relations among easy-to-predict labels; it is sufficient to
only capture those correlations which involve some hard-
to-predict labels. Thus conditioning on features greatly
reduces the need to estimate label correlations and makes
learning much easier; the conditional on x is essential for
good approximation and effective training, without making
prior assumptions about the form of label dependencies (as
many other methods do).

Making both mixture coefficients and Bernoulli distribu-
tions conditional on x, we obtain our proposed model, Con-
ditional Bernoulli Mixtures (CBM):

p(y|x) =

K∑
k=1

π(z = k|x;α)

L∏
`=1

b(y`|x;βk
` ), (6)

where α and βk
` (` = 1, 2, ..., L; k = 1, 2, ...,K) are model

parameters to be learned, and z is a hidden categorical in-
dicator variable, such that z = k if the data point is as-
signed to component k. Here we use π and b to repre-
sent the conditional mixture membership distribution and
the conditional binary label distribution, respectively.

CBM reduces a multi-label problem to a multi-class prob-
lem and several binary problems, approaching p(y|x)
akin to divide and conquer: the categorical distribution
π(z|x;α) assigns each instance x to 1 out of K compo-
nents probabilistically. Its goal is to divide the feature space
into several regions such that each region only has weak
conditional label correlations and can be approximated by
a simple component. This gating function π(z|x;α) can
be instantiated by any multi-class classifier which provides
probability estimations, such as a multinomial logistic re-
gression with parameters α.

Inside each region k, the local conditional joint density is
approximated by a product of conditional marginal densi-
ties. Every local binary label predictor b(y`|x;βk

` ) esti-
mates the probability of getting label y` from component
k for data point x, and can be instantiated by any binary
classifier which provides probability estimations, such as
a binary logistic regression with parameters βk

` . All K
components together with the gating function are learned
jointly in order to break the global label correlation into
simple forms.

On one extreme, if CBM has only one component (and
hence π(z|x;α) plays no role), all labels are conditionally
independent and CBM degenerates to Binary Relevance.
On the other extreme, if CBM assigns one component to
each unique label subset and fixes each b(y` = 1|x;βk

` ) to
be the corresponding binary constant (1 if label ` is in the
subset and 0 otherwise), then the overall CBM model sim-
ply selects one label subset from all possible subsets, which
is conceptually the same as the Power-Set approach. By
varying the number of components and the complexity of
each component, CBM can provide a continuous spectrum
between these two extremes. Just as Binary Relevance and
Power-Set, CBM is purely a reduction method. The main
advantage of reduction methods compared with new mod-
els specifically designed for multi-label problem is that the
reduction approach makes it easier to incorporate and reuse
many well-developed multi-class and binary classifiers. In
Section 3, we will demonstrate two different instantiations
of CBM, one with logistic regressions, and the other with
gradient boosted trees.

possible labels
Figure 2. The top 4 most influential components for the test im-
age in Figure 1. π values indicate component mixing coefficients.
Each bar represents an individual label probability in one compo-
nent. Labels with near zero probabilities are not displayed here.

An Illustrative Example. Before diving into the model
training details, we illustrate how CBM performs joint la-
bel classifications with an example. Figure 1 shows a test
image in the NUS-WIDE dataset, for which the matched
label reflection is missed by Binary Relevance but is
captured by CBM. For this image, the most influential com-
ponents produced by CBM are shown in Figure 2. Simply
averaging individual label probabilities by component mix-
ing weights gives the conditional marginals p(lake|x) =
0.56, p(water|x) = 0.69, p(sunset|x) = 0.66, and
p(reflection|x) = 0.32, which indicate that unlike
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lake, water and sunset, the label reflection
by itself is not deemed as probable by CBM. However
from the CBM joint density p(y|x) we can also infer
Pearson correlation coefficients ρreflection,lake = 0.50,
ρreflection,water = 0.40, ρreflection,sunset = 0.17 and
observe that reflection is positively correlated with
lake, water, and sunset. In fact, the joint proba-
bility asserts that the subset {clouds, lake, sky,
sunset, water, reflection} is the most prob-
able one, with probability 0.09. By contrast, the sub-
set {clouds, lake, sky, sunset, water} has
a lower probability 0.06. Therefore, although individually
unlikely, the label reflection is correctly added to the
mostly likely subset due to label correlations.

3. Training CBM with EM
CBM can be trained by maximum likelihood estimation on
a given dataset {(xn,yn)}Nn=1. Below we first derive a
generic EM algorithm that works for any instantiation of
the components, and then consider two concrete instantia-
tions.

To make the mathematical derivation clear, we use differ-
ent symbols for random variables and values of random
variables. We use Yn when treating the labeling of xn as
an unknown random variable and yn when referring to its
specific labeling assignment given in the training set. The
likelihood for the dataset is

N∏
n=1

{
K∑

k=1

[π(zn = k|xn;α)

L∏
`=1

b(yn`|xn;βk
` )]}.

Since the model contains hidden variables, we use EM
to minimize an upper bound of the negative log like-
lihood. Denoting the posterior membership distribution
p(zn|xn,yn) as Γ(zn) = (γ1n, γ

2
n, ..., γ

K
n ), the upper

bound can be written as
N∑

n=1

KL(Γ(zn)||π(zn|xn;α))

+

K∑
k=1

L∑
`=1

N∑
n=1

γknKL(Ber(Yn`; yn`)||b(Yn`|xn;βk
` )), (7)

where Ber(Yn`; yn`) is the Bernoulli distribution with head
probability yn`.

E Step: Re-estimate the posterior membership probability
of each data point belonging to each component:

γkn =
π(zn = k|xn;α)

∏L
`=1 b(yn`|xn;βk

` )∑K
k=1 π(zn = k|xn;α)

∏L
`=1 b(yn`|xn;βk

` )
. (8)

M Step: Update all model parameters. The bound (7)
shows that the optimization of all parameters can be nicely

decomposed into a series of separate optimization prob-
lems:

αnew = argmin
α

N∑
n=1

KL(Γ(zn)||π(zn|xn;α)), (9)

βk
` new = argmin

βk
`

N∑
n=1

γknKL(Ber(Yn`; yn`)||b(Yn`|xn;βk
` )).

(10)

The optimization problem defined in (9) is a multi-class
classification problem with target class distribution (soft la-
bels) Γ(zn) = (γ1n, γ

2
n, ..., γ

K
n ) for xn. The training goal

for π(z|x;α) is to assign (probabilistically) each data point
to a component based only on its features, such that the
assignment matches the posterior component membership
determined by both features and true labels.

The optimization problem defined in (10) is a weighted
binary classification problem. xn has target label yn`
and weight γkn. The prediction component b(y`|x;βk

` ) is
trained as a binary classifier for label ` in component k,
based only on training data within (soft) component k.

To train CBM, we iterate between the E step and the M
step, until the upper bound (7) converges (see Algorithm
1). In practice, the EM algorithm can get stuck in local op-

Algorithm 1 Generic Training for CBM
1: repeat
2: E Step
3: for n = 1, 2, ..., N ; k = 1, 2, ...,K do
4: update γkn as in (8)
5: M Step
6: update α as in (9)
7: for k = 1, 2, ...,K; ` = 1, 2, ..., L do
8: update βk

` as in (10)
9: until convergence

tima, so careful initializations are often necessary for good
performance. Due to the natural connection between CBM
and BM, one simple way of initializing CBM is to first fit a
BM just for label density estimation without looking at fea-
tures. BM can be trained very quickly by a simpler EM al-
gorithm (Bishop, 2006). We can use several random starts
for a set of BM models, and select the one with the best
training objective score to initialize the CBM training pro-
cedure.

3.1. CBM with Logistic Regression Learners

In the simplest form all underlying models in CBM are lin-
ear. We employ a multinomial logistic regression for the
gating function π, and a binary logistic regression for each
predictor b. The outer loop of the training procedure is the
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EM algorithm described above. In each M step, all ob-
jectives defined in (9) and (10) are convex (although the
overall EM optimization is non-convex). To optimize each
logistic regression, we compute the gradient of the corre-
sponding objective w.r.t. its parameters and update all pa-
rameters using gradient based optimization methods. Here
we choose L-BFGS method (Nocedal & Wright, 2006),
which is the state-of-the-art optimization method for large
scale logistic regressions. We can start with the existing
model, and perform a few incremental update steps until it
converges. To avoid over-fitting, we also add L2 regular-
izations (Gaussian priors) to all parameters.

CBM+LR Complexity. The overall complexity of the
training procedure for CBM is dominated by the updates
in M steps and depends on the complexities of the binary
and multi-class learning algorithms used. For CBM with
logistic regression (LR) learners, we can measure the com-
plexity of each L-BFGS (or gradient descent) update for
all model parameters. If N is the number of instances,
D the number of features, L the number of labels, C the
number of unique label subsets in the training set, and
K the number of CBM components, then each CBM+LR
update takes O(KLDN). For comparison, each update
takes O(LDN) in Binary Relevance with LR, and takes
O(CDN) in Power-Set with LR. For large datasets, typi-
cally KL < C, and CBM is slower than Binary Relevance
but faster than Power-Set.

3.2. CBM with Gradient Boosting Learners

Many datasets require non-linear decision boundaries, in
which case the CBM model with logistic regressions may
not have enough explanation power. To make CBM non-
linear, we use gradient boosted trees (GB) for both π and
b. The original gradient boosted trees algorithm described
in (Friedman, 2001) is designed for standard multi-class
problems, and does not take label distributions or instance
weights as inputs, thus some modifications are necessary.
The target label distribution is easy to deal with: one still
computes the functional gradient of the objective w.r.t. each
ensemble scoring function, where the objective is defined
by the target distribution. To handle instance weights, one
ignores them when calculating functional gradients, and
performs a weighted least squares fit when fitting each re-
gression tree to the gradients. Unlike logistic regression,
where all parameters can be easily updated, gradient boost-
ing introduces new trees to the ensemble while keeping
old trees untouched. Thus the M step here is slightly dif-
ferent from before: rather than re-adjusting all parameters
to optimize the objective, boosting improves the objective
by adding a few more trees. This amounts to a partial
M step, and the resulting EM algorithm is usually called
the generalized EM algorithm (Gupta & Chen, 2011). We
emphasize that the use of boosting as an underlying non-

linear classifier here is just for demonstration purposes.
Other classifiers such as neural networks could also be
used. This is in direct contrast to AdaBoost.MH and Ad-
aboost.MR (Schapire & Singer, 2000) which specifically
employ boosting to optimize Hamming loss and rank loss.

3.3. Validation of Training Procedure on Artificial Data

To validate the training procedure, we fit a CBM model on
artificial data generated by a “true CBM” and see whether
the training procedure could recover the true parameters.
The “true CBM” has K = 3 components and uses logistic
regressions for both π and b. Each of the N = 15, 000
data points x has D = 7 features generated independently
from Gaussian distributions. We test two different ways of
generating the ground-truth label subset y: argmax, where
the most likely y is always selected; and sampling, where
y is sampled from the true CBM distribution. For each
of these two datasets, we also make a noise variant with
Gaussian noise added to logistic regression scores. Test

Table 1. Test subset accuracy on artificial data.

y=argmax y=argmax y=sample y=sample
Methods +noise +noise

Upper bound 100 76.4 65.2 48.1
CBM+LR:K=2 89.9 69.3 60.2 45.8
CBM+LR:K=3 98.4 75.8 65.0 48.0

BinRel+LR 82.0 49.9 48 40.0
PowSet+LR 97.5 74.1 64.6 47.3

subset accuracy results are presented in Table 1. It shows
that if the true distribution is indeed generated by a CBM,
then the proposed training procedure is quite effective in
recovering the distribution.

4. Fast Prediction by Dynamic Programming
According to (2), making the optimal prediction in terms
of subset accuracy for a given x requires finding the most
probable label subset y∗ = argmaxy p(y|x). There are 2L

label subset candidates, and it is intractable to evaluate the
probability for each of them. Many multi-label methods
suffer from this intractability for exact inference (see Sec-
tion 5). Fortunately for CBM, its special structure allows
it to make predictions efficiently, with either sampling or
dynamic programming. As a common preprocessing step,
for a given x, we can first compute πk = π(z = k|x;α)
and µk

` = b(y` = 1|x;βk
` ), for all k = 1, 2, ..,K and

` = 1, 2, ..., L.

Prediction by Sampling. The CBM density form (6) sug-
gests a natural sampling strategy for a label subset y. We
first sample a component k according to the mixture coef-
ficients π1, ..., πK . Then from this component, we sample
each label y` independently with probability µk

` . The pro-
cedure can be repeated multiple times to generate a set of
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y candidates, from which we pick the most probable one.
The sampling strategy works best when the most probable
label subset has a high probability. Sampling is easy to
implement, but does not guarantee that the predicted y is
indeed the optimal one.

Prediction by Dynamic Programming and Pruning. In
order for the overall probability p(y|x) to be high, there
must exist a component k for which the component prob-
ability

∏L
`=1 b(y`|x;βk

` ) is high. On the other hand, one
can show that the y∗ maximizing the overall probability
does not necessarily maximize any component probability.
To find y∗, we design a dynamic programing procedure
FIND-NEXT-HIGHEST() that enumerates label subsets in
a decreasing probability order in each component, and then
we iterate round-robin across components until we are cer-
tain that the unchecked subsets will never produce a high
overall probability.

Algorithm 2 Prediction by Dynamic Prog. and Pruning
1: Input: πk, µk

` , k = 1, 2, ...,K, ` = 1, 2, ..., L
2: Initialize candidate component set S = {1, 2, ...,K}
3: Initialize the maximum overall probability M = −∞
4: for k = 1, 2, ...,K do
5: Initialize the maximum component probability Gk

6: Initialize the priority queue Qk

7: while S 6= Φ do
8: for k ∈ S do
9: y = Qk.FIND-NEXT-HIGHEST()

10: Let p =
∑K

m=1 π
m
∏L

`=1 Ber(y`;µm
` ) and q =∏L

`=1 Ber(y`;µk
` )

11: if p > M then
12: Set M = p and y∗ = y
13: if πkq ≤M/K or πkq+

∑
r 6=k π

rGr ≤M then
14: Remove k from S
15: Output: y∗

16: function FIND-NEXT-HIGHEST()
17: y = Qk.deque()
18: for ` = 1, 2, ..., L do
19: Generate y′ by flipping the `-th bit of y
20: if y′ is unseen then
21: Qk.enqueue(y′)
22: Output: y

For a component k, the y with the highest component
probability is the set containing precisely all the ` with
µk
` ≥ 1/2. To produce a ranked list, we use a max pri-

ority queue Qk to store candidate label subsets and their
associated component probabilities. Initially, Qk contains
the y with the highest component probability. The t-th call
to Qk.FIND-NEXT-HIGHEST() returns the y with the t-th
highest component probability. The overall prediction al-

gorithm (Algorithm 2) iterates over all components, checks
the next candidate (Lines 9-10), updates the best label sub-
set found so far (Lines 11-12), and prunes the remain-
ing subset candidates in a component’s ranked list (Lines
13-14). The algorithm terminates when all components’
ranked lists have been pruned, and surely returns the most
probable y∗. In practice, we observe that the algorithm
rarely visits elements deeper than rank 10 in the compo-
nent ranked lists.

5. Related Work
Modeling label dependencies has been long regarded as a
central theme in multi-label classification. Estimating the
high-dimensional conditional joint p(y|x) is very challeng-
ing and various approaches have been proposed to tackle
this problem based on different approximations.

Classifier Chains. According to the chain rule, the joint
probability p(y|x) can be decomposed into a product of
conditionals p(y1|x)p(y2|x, y1) · · · p(yL|x, y1, .., yL−1).
This reduces a multi-label learning problem to L binary
learning problems, each of which learns a new label given
all previous labels. During prediction, finding the exact
joint mode is intractable. Classifier Chains (CC) (Read
et al., 2011) classify labels greedily in a sequence: label
y` is decided by maximizing p(y`|x, y1, .., y`−1), and
becomes a feature to be used in the prediction for label
y`+1. This greedy prediction procedure has three issues:
1) the predicted subset can be far away from the joint
mode (Dembczyński et al., 2011); 2) errors in early label
predictions propagate to subsequent label predictions;
3) the overall prediction depends on the chain order. To
address the first two issues, Probabilistic Classifier Chains
(PCC) replace the greedy search strategy with some more
accurate search strategies, such as exhaustive search
(Cheng et al., 2010), ε-approximate search (Dembczynski
et al., 2012), Beam Search (Kumar et al., 2012; 2013),
or A* search (Mena et al., 2015). To address the third
issue, Ensemble of Classifier Chains (ECC) (Read et al.,
2011) averages several predictions made by different
chains, wherein the averaging can take place at either
the individual label level (ECC-label) or the label subset
level (ECC-subset). Using dynamic programming to find
the optimal chain order (Liu & Tsang, 2015) has been
proposed recently.

A similar reduction method named Conditional Depen-
dency Networks (CDN) estimates p(y|x) based on full
conditionals and Gibbs sampling (Guo & Gu, 2011). Dur-
ing learning, one binary classifier is trained for each full
conditional p(y`|x, y1, .., y`−1, y`+1, ..., yL). During pre-
diction, Gibbs sampling is used to find the mode of the
joint. The method’s major limitation is that it cannot han-
dle perfectly correlated or anti-correlated labels: consider
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binary classification as multi-label problem with only 2 ex-
haustive and exclusive labels. A perfect model for p(y1 =
1|x, y2) is 1 − y2; in other words, the feature information
is completely ignored. The same applies to p(y2|x, y1).
So the prediction will inevitably fail. In general, Gibbs
sampling may fail in the presence of perfect correlations
or anti-correlations since the resulting stochastic process is
not ergodic; when relations are imperfect but very strong,
Gibbs sampling may need a very long time to converge.

(Gasse et al., 2015) factorize labels into independent fac-
tors based on some statistical conditional independence
tests and a Markov boundary learning algorithm. Its limita-
tion, as pointed out by the authors, is that the statistical tests
are ineffective when the ratio between samples and labels is
not big enough. Their method outperforms the Power-Set
baseline on synthetic datasets, but not on any real dataset.
(Zhang & Zhang, 2010) propose to use a Bayesian Network
to encode the conditional dependencies of the labels as well
as the feature set, with the features as the common parent
of all labels.

Conditional Random Fields (CRF) (Sutton & McCallum,
2006) offer a general framework for structured prediction
problems based on undirected graphical models. In multi-
label classifications labels can form densely connected
graphs, so restrictions are imposed in order to make train-
ing and inference tractable. For problems involving only
hard label relations (exclusive or hierarchical), a special
CRF model is proposed (Deng et al., 2014); this works only
when label dependencies are strict and a priori known.

pair-CRF limits the scope of potential functions to la-
bel pairs, and does not model higher order label interac-
tions (Ghamrawi & McCallum, 2005). The exact inference
and prediction in pair-wise CRF requires checking all pos-
sible label subsets, which is intractable for datasets with
many labels. As shown in their experiment results, the most
effective way of doing approximate inference and predic-
tion is to consider only label subsets that occur in the train-
ing set. But this eliminates the possibility of predicting un-
seen subsets. Our CBM model does not have this limitation
(see Section 4).

There are also algorithms which exploit label structures but
do not estimate p(y|x) explicitly. Examples include Multi-
label k-Nearest Neighbors (Zhang & Zhou, 2007), Com-
pressed Sensing based method (Hsu et al., 2009), Princi-
ple Label Space Transformation (Tai & Lin, 2012), Condi-
tional Principal Label Space Transformation (Chen & Lin,
2012) and Compressed Labeling (Zhou et al., 2012).

Various mixture models exist for multi-label document
classification or supervised topical modeling (McCallum,
1999; Ueda & Saito, 2002; McAuliffe & Blei, 2008; Yang
et al., 2009; Ramage et al., 2009; Puurula, 2011; Kim et al.,

2012). Our CBM model differs from these models in two
aspects: 1) These models are generative in nature, i.e., they
model p(x), where x is typically a bag-of-words represen-
tation of a document. By contrast, our CBM is purely dis-
criminative, since it targets p(y|x) directly. The principled
advantage of discriminative approach over generative ap-
proach, as stated in (Sutton & McCallum, 2011), is that
the former does not make overly simplistic independence
assumptions among features, and is thus better suited to in-
cluding rich, overlapping features. 2) Most of these models
are designed specifically for text data, while our method
can be applied to any multi-label classification problem. A
Conditional Multinomial Mixture model has been proposed
for Superset Label Learning (Liu & Dietterich, 2012).

The architecture of CBM also mimics that of Mixture of
Experts (ME) (Jacobs et al., 1991; Jordan & Jacobs, 1994),
in which a gate model divides the input space into disjoint
regions probabilistically and an expert model generates the
output in each region. ME has been mainly used in regres-
sion and multi-class problems (Yuksel et al., 2012). CBM
can be viewed as a multi-label extension of ME with a par-
ticular factorization of labels inside each expert.

6. Experiments
We perform experiments on five commonly used and rela-
tively large multi-label datasets: SCENE, TMC2007, ME-
DIAMILL, NUS-WIDE from Mulan1 and RCV1 (topics
subset 1) from LIBSVM2. For the sake of reproducibility,
we adopt the train/test splits provided by Mulan and LIB-
SVM. Datasets details are shown at the top of Table 2.

We compare Conditional Bernoulli Mixtures (CBM) with
the following methods which estimate p(y|x): Binary Rel-
evance (BinRel), Power-Set (PowSet), Classifier Chains
(CC), Probabilistic Classifier Chains with Beam Search
(PCC), Ensemble of Classifier Chains with label voting
(ECC-label) and subset voting (ECC-subset), Conditional
Dependency Networks (CDN) and pair-wise Conditional
Random Fields (pairCRF). CDN is taken from the pack-
age MEKA;3 the rest are based on our implementations.4

For all methods which require a base learner, we employ
logistic regression as a common base learner. Addition-
ally, we test gradient boosted trees (GB) as a non-linear
base learner in conjunction with BinRel, PowSet and CBM.
Both LR and pairCRF are L2 regularized. Hyper parame-
ter tuning is done by cross-validation on the training set

1http://mulan.sourceforge.net
2https://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/datasets/multilabel.html
3http://meka.sourceforge.net
4Our implementations of CBM and several baselines (PowSet,

PCC, CRF, etc.) are available at https://github.com/
cheng-li/pyramid.

http://mulan.sourceforge.net
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
http://meka.sourceforge.net
https://github.com/cheng-li/pyramid
https://github.com/cheng-li/pyramid
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Table 2. Test subset accuracy of different methods on five datasets. All numbers are in percentages. Best performances are bolded.

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #data points 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

Method Learner
BinRel LR 51.5 40.4 25.3 9.6 24.7
PowSet LR 68.1 50.2 28.2 9.0 26.6

CC LR 62.9 48.2 26.2 10.9 26.0
PCC LR 64.8 48.3 26.8 10.9 26.3

ECC-label LR 60.6 46.5 26.0 11.3 26.0
ECC-subset LR 63.1 49.2 25.9 11.5 26.0

CDN LR 59.9 12.6 16.8 5.4 17.1
pairCRF linear 68.8 46.4 28.1 10.3 26.4

CBM LR 69.7 49.9 28.7 13.5 27.3
BinRel GB 59.3 30.1 25.4 11.2 24.4
PowSet GB 70.5 38.2 23.1 10.1 23.6
CBM GB 70.5 43.0 27.5 14.1 26.5

(see the supplementary material for details). For methods
involving random initializations or sampling, the reported
results are averaged over 3 runs.

6.1. Results

Test subset accuracy on five datasets is shown in Table 2,
grouped by the base learner. On four datasets, the highest
subset accuracy is achieved by one of the CBM instantia-
tions; on the other dataset, CBM is close to the best one.
This demonstrates the effectiveness of CBM for optimiz-
ing subset accuracy. On the SCENE and MEDIAMILL
datasets, CBM+GB performs better than CBM+LR, which
shows the benefit of being able to incorporate non-linear
components. By contrast, pairCRF is restricted to work
with linear functions, lacking the flexibility of CBM. For
completeness, we present in the supplementary material
the Jaccard index and Hamming loss results. CBM also
achieves the highest Jaccard index on three out of five
datasets, which is reasonable given the fact that CBM
only targets subset accuracy and multi-label optimality is
measure-related. We also report all algorithms’ running
times in the supplementary material. CBM requires sig-
nificantly less training time than PowSet on datasets with a
large number of possible label subsets.

6.2. Impact of Number of Components

Figure 3 shows how increasing the number of components
K affects test performance for CBM on TMC dataset.
WhenK = 1, CBM only estimates marginals and is equiv-
alent to BinRel (the slight difference in performance is due
to the implementation details of CBM; see the supplemen-

Figure 3. Test subset accuracy on TMC dataset with varying num-
ber of components K for CBM+LR (left) and CBM+GB (right)
compared with BinRel, PowSet, and pairCRF.

tary material). Increasing K from 1 to 15 makes CBM
quickly become a better joint estimator and outperform
BinRel. Increasing K further gives smaller improvement
for CBM and the performance asymptotes as K reaches
about 30. Other datasets show similar trends.

7. Conclusion
In this paper, we propose a new multi-label classification
method using Conditional Bernoulli Mixtures. It captures
label dependencies; it reduces a multi-label problem to bi-
nary and multi-class problems, and subsumes the classic
independent binary prediction and power-set subset predic-
tion methods as special cases. A simple Expectation Max-
imization training procedure is presented, together with
an efficient prediction procedure based on dynamic pro-
gramming. Experimental results show the effectiveness of
the proposed method against competitive alternatives on
benchmark multi-label datasets.
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Hüllermeier, Eyke. An analysis of chaining in multi-
label classification. In ECAI, pp. 294–299, 2012.

Deng, Jia, Ding, Nan, Jia, Yangqing, Frome, Andrea, Mur-
phy, Kevin, Bengio, Samy, Li, Yuan, Neven, Hartmut,
and Adam, Hartwig. Large-scale object classification
using label relation graphs. In Computer Vision–ECCV
2014, pp. 48–64. Springer, 2014.

Friedman, Jerome H. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pp.
1189–1232, 2001.

Gasse, Maxime, Aussem, Alexandre, and Elghazel,
Haytham. On the optimality of multi-label classification
under subset zero-one loss for distributions satisfying the
composition property. In Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-15),
pp. 2531–2539, 2015.

Ghamrawi, Nadia and McCallum, Andrew. Collec-
tive multi-label classification. In Proceedings of the

14th ACM international conference on Information and
knowledge management, pp. 195–200. ACM, 2005.

Guo, Yuhong and Gu, Suicheng. Multi-label classifica-
tion using conditional dependency networks. In IJCAI
Proceedings-International Joint Conference on Artificial
Intelligence, volume 22, pp. 1300, 2011.

Gupta, Maya R and Chen, Yihua. Theory and use of the
EM algorithm. Now Publishers Inc, 2011.

Hsu, Daniel, Kakade, Sham, Langford, John, and Zhang,
Tong. Multi-label prediction via compressed sensing. In
NIPS, volume 22, pp. 772–780, 2009.

Jacobs, Robert A, Jordan, Michael I, Nowlan, Steven J, and
Hinton, Geoffrey E. Adaptive mixtures of local experts.
Neural computation, 3(1):79–87, 1991.

Jordan, Michael I and Jacobs, Robert A. Hierarchical mix-
tures of experts and the em algorithm. Neural computa-
tion, 6(2):181–214, 1994.

Kim, Dongwoo, Kim, Suin, and Oh, Alice. Dirich-
let process with mixed random measures: a nonpara-
metric topic model for labeled data. arXiv preprint
arXiv:1206.4658, 2012.

Koyejo, Oluwasanmi O, Natarajan, Nagarajan, Ravikumar,
Pradeep K, and Dhillon, Inderjit S. Consistent multil-
abel classification. In Advances in Neural Information
Processing Systems, pp. 3303–3311, 2015.

Kumar, Abhishek, Vembu, Shankar, Menon, Aditya Kr-
ishna, and Elkan, Charles. Learning and inference in
probabilistic classifier chains with beam search. In Ma-
chine Learning and Knowledge Discovery in Databases,
pp. 665–680. Springer, 2012.

Kumar, Abhishek, Vembu, Shankar, Menon, Aditya Kr-
ishna, and Elkan, Charles. Beam search algorithms
for multilabel learning. Machine learning, 92(1):65–89,
2013.

Lazarsfeld, Paul Felix, Henry, Neil W, and Anderson,
Theodore Wilbur. Latent structure analysis. Houghton
Mifflin Boston, 1968.

Liu, Liping and Dietterich, Thomas G. A conditional multi-
nomial mixture model for superset label learning. In
Advances in neural information processing systems, pp.
557–565, 2012.

Liu, Weiwei and Tsang, Ivor. On the optimality of clas-
sifier chain for multi-label classification. In Advances
in Neural Information Processing Systems, pp. 712–720,
2015.



Conditional Bernoulli Mixtures for Multi-label Classification

McAuliffe, Jon D and Blei, David M. Supervised topic
models. In Advances in neural information processing
systems, pp. 121–128, 2008.

McCallum, Andrew. Multi-label text classification with a
mixture model trained by EM. In AAAI99 workshop on
text learning, pp. 1–7, 1999.

McLachlan, Geoffrey and Peel, David. Finite mixture mod-
els. John Wiley & Sons, 2004.
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