Generalization Properties and Implicit Regularization of Multiple Passes SGM

Appendices: Proofs

A. Basic Lemmas

The following basic lemma is useful to our proofs, which will be used several times. Its proof follows from the convexity
of V(y, -) and the fact that V” (y, a) is bounded.

Lemma 1. Under Assumption I, for any k € N and w € F, we have

[witr = wl* < Jlw — wl* + (aok)* i + 20 [V (Y5, (w, @(5,)) = V(Y (wr, B(x5,)))] (12)
Proof. Since w41 is given by (3), by expanding the inner product, we have

lwrsr = wl* = llwr = wlf* + RNV (Y5, (wiy ®(@5)) P (@) 12 + 20V (1, (wi, ®(5,))) (w = wre, D(a,) -
The bounded assumption (4) implies that ||®(z;, )|| < & and by (5), |V” (y;, , (wg, ©(z;,)))| < ap. We thus have
lwirr = wl? < wy, — wl? + (a0w) i + 20V (Y5 (wr, ®(25,))) [(w, B (5,)) — (wr, @(x5,))]-
Using the convexity of V' (y;, , -) which tells us that
V! (yj.,a)(b—a) < V(yj.,b) — V(yj.,a), Va,b € R,

we reach the desired bound. The proof is complete. O

Taking the expectation of (12) with respect to the random variable j;, and noting that wy, is independent from j; given z,
one can get the following result.

Lemma 2. Under Assumption 1, for any fixed k € N, given any z, assume that w € F is independent of the random
variable ji.. Then we have

Ejp (w1 = wl*] < llwy, — w][* + (a0k)* i + 20k (€a(w) — Ea(wr,)) - (13)

B. Sample Errors

Note that our goal is to bound the excess generalization error E[€ (wr) — inf,,c 7 £(w)], whereas the left-hand side of (13)
is related to an empirical error. The difference between the generalization and empirical errors is a so-called sample error.
To estimate this sample error, we introduce the following lemma, which gives a uniformly upper bound for sample errors
over a ball B = {w € F : |jw| < R}. Its proof is based on a standard symmetrization technique and Rademacher
complexity, e.g. (Bartlett et al., 2005; Meir & Zhang, 2003). For completeness, we provide a proof here.

Lemma 3. Assume (4) and (5). For any R > 0, we have

E, [ sup (E(w) — &Ex(w))

wEBR

< 2ap0kR
=~ Jm

Proof. Letz' = {z} = (z},y})}™, be another training sample from p, and assume that it is independent from z. We have

B | sup (£(0) ~ £u(w)| = Ba | sup Burle(0) = Eaw)]] < B | sup (B ) - E(0)].

wEBR wEBR wEBR
Let 01,09,...,0., be independent random variables drawn from the Rademacher distribution, i.e. Pr(c; = +1) =
Pr(o; = =1) = 1/2fori = 1,2,...,m. Using a standard symmetrization technique, for example in (Meir & Zhang,

2003), we get

E, [ sup (&(w) —&(w»] < Epws l sup {1Za¢<wyg, (w, ®(2)))) — V(ys, <w7<1><wi>>>>}
wEBR weBr | M T
< 2]Ez,zf wseug {’I’lfl Z UZV(yL7 <’UJ, @(1}1») }] .
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With (5), by applying Talagrand’s contraction lemma, see e.g. (Bartlett et al., 2005), we derive

1 m
=2a9E,, | sup ( w, — o;P(x; .
S EXCEIR)]

m

1
sup — o (w, ®(x;
2 Do 8(a)

B | sup (E(w) - Eu(w)| < 2B

wEBR

Using Cauchy-Schwartz inequality, we reach

1 — 1 «—
E, LSEUER(S(H)) - Ez(w))} < 2a0E, o L)seugR [lwl] |m ;0,@(@) ] < 2a9RE, Hm ;Uﬂ)(mi) ] .
By Jensen’s inequality, we get
Lo 27 1/2 . m . 1/2
E, LSSER(g(w) —5z(w))] <2aoR |E,, E;m@(:pi) = 2aoR ﬁEw;n@(xi)n ] :

The desired result thus follows by introducing (4) to the above. Note that the above procedure also applies if we replace
E(w) — &y (w) with £, (w) — E(w). The proof is complete. O

The following lemma gives upper bounds on the iterated sequence.

Lemma 4. Under Assumption 1. Then for any t € N, we have

t
[wisall < 4| (aos)? > n? +2\V|OZ%
k=1 =

Proof. Using Lemma 1 with w = 0, we have
lwr1 1 < will® + (aom)®ni + 20k [V (55, 0) = V (Y5, (wr, ®(5,)))] -
Noting that V' (y,a) > 0 and V' (y;,,0) < |V]o, we thus get

[wiial” < lwill? + (aor)*ng + 20k V]o.

Applying this inequality iteratively for k = 1, - - - | ¢, and introducing with w; = 0, one can get that
t
lwea|® < (aor)® Y ni +2|V|OZW,
k=1 =
which leads to the desired result by taking square root on both sides. [

According to the above two lemmas, we can bound the sample errors as follows.

Lemma 5. Assume (4) and (5). Then, for any k € N,

2
(i) = Ewn )] < 2,
where
t
Ri = | (a0r)? > n? +2|V|oan (14)
k=1

When the loss function is smooth, by Theorems 2.2 and 3.9 from (Hardt et al., 2016), we can control the sample errors as
follows.
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Lemma 6. Under Assumptions I and 3, let n; < 2/(x%L) for all k € [T,
Bz, [Ex(wr) — €(wr)]| <

Proof. Note that by (4), Assumption 3 and (2), for all (z,y) € z, w,w’ € F,

V' (y, (w, @(2)))@(x) = V'(y, (w', 2(2))) ()| < &IV (y, (w, ®(x))) = V' (y, (0, &(x)))]
<KL[(w, @(x)) — (w', ®(x))| = £L[(w — w', @(x))| < KLllw —w'[[||@()]

<K?Lijw —w',
and
V' (y, (w, ®(2)))®(2)|| < Kao.

That is, for every (z,y) € z, V(y, (-, ®(x))) is (k?L)-smooth and (xao)-Lipschitz. Now the results follow directly by
using Theorems 2.2 and 3.8 from (Hardt et al., 2016). O]

C. Excess Errors for Weighted Averages

Lemma 7. Under Assumption 1, assume that there exists a non-decreasing sequence {by, > 0}, such that
Bz, s [Ex(wi) — E(wi)]| < bk, Vk € [T]. (15)

Then for any t € [T and any fixed w € F,
t ¢ t t
> omEa s [E(wi)] < b Y 2k + (a0k)® D mp+ Y 2k (w) + [Jw]*. (16)
— k=1 k=1 k=1

Proof. By Lemma 2, we have (13). Rewriting —&,(wy,) as
=& (wy) + E(wy) — E(wy),

taking the expectation with respect to J(T") and z on both sides, noting that w is independent of J and z, and applying
Condition (15), we derive

Eqgllwtr — wl?] < Eqylllwp — wl[’] + (aor)*n + 2k (E(w) — Eq g [€(wi)]) + 2y,
which is equivalent to

20z, [E(wi)] < 2neE(w) + Eg [l we — w]]* = [[wpsr — w|[*] + (aok)*ni + 2nkby.

Summing up over k = 1, - - - | ¢, and introducing with w; = 0,
t t t
Z?nk]EzJ ZQT]kg + Hw|| + (apk 227] +Z277kbk.
k=1 k=1 k=1
The proof can be finished by noting that by, is non-decreasing. O

Now, we are in a position to prove Theorem 1.

Proof of Theorem 1. According to Lemma 5, Condition (15) is satisfied for

2a0my/ Sk (aokn)? + 2V 1o Sh_y mi
bt = m .
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By Lemma 7, we thus have (16). Dividing both sides by 22:1 21, and using the convexity of V (y, -) which implies

Zk 1 k€ (wg) >S(Zk 177kwk) & (wy), (17)
Zk 1 Mk Zk 17k

we get that

(000 Shes 1 gyl
2 Zk 1 Mk 222:17716

For any fixed ¢ > 0, we know that there exists a w. € F, such that £(w.) < inf,ecr E(w) + €. Letting ¢ = t*(m), and
w = w,, we have

Bz [E(@)] < b+

[[w H2

(aor)” Ek 1 + inf E(w) +e+

EZ,J g(wt* m7w) Sbt* m + * *
[€ (W 0) ] < b (omy + 75 ZZiT)nk nf, A

Letting m — oo, and using Conditions (A) and (B) which imply

t*(m) t*(m) 2 t (m) t (M)

1
lim t*(m) —0, lim &=t Tk (71n) mi _ 0, and lim 2=t Tk _ t*(m) T g
m—o0 Z m—»oo Z m—»oo m m—»oo Zk:l 7716 m
we reach
« < .
A0 Bo g [E (e ny.0)] < b E(w) +e
Since € > 0 is arbitrary, the desired result thus follows. The proof is complete. O

Lemma 8. Under the assumptions of Lemma 7, let Assumption 2 hold. Then for any t € [T},

t t t 1-8
— i < )? .
;anEz,J [E(w;g) u{relf];g( ] btz 2y + (aok) kz_:ln + 2cp (Z nk> (18)

k=1 k=1

Proof. By Lemma 7, we have (16). Subtracting " _, 27, inf,,e 7 £(w) from both sides,

t t t
> o, [E(wk) — inf E(w } < btz 2k + (aok)® Y mp+ Y 2mk [ — inf E(w )} + [Jw®.
k=1 k=1 k=1

Taking the infimum over w € F, recalling that D()\) is defined by (6), we have
t ¢ ¢ 1
> o, [5 k) — inf, E(w ] <bt22nk+ aOKQZn +22nk73 <t>
k=1 =1 =1 P

Using Assumption 2 to the above, we get the desired result. The proof is complete. O

Collecting some of the above analysis, we get the following result.

Proposition 1. Under the assumptions of Lemma 8, we have

(agr)? Z il 1 ’
Ex.s[E@,)] — inf €(w) < by + =0 S e | | - "
JE(@)] — mf E(w) < by 2 3t m “ (ZZ—W’)

Proof. By Lemma 8, we have (18). Dividing both sides by 22:1 21y, and using (17), we get the desired bound. O
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D. From Weighted Averages to the Last Iterate

A basic tool for studying the convergence for iterates is the following decomposition, as often done in (Shamir & Zhang,
2013) for classical online learning or subgradient descent algorithms (Lin et al., 2016). It enables us to study the weighted
excess generalization error 21, E, ;[€(w;)—inf,e 7 £(w)] in terms of “weighted averages” and moving weighted averages.
In what follows, we will write £, ; as [E for short.

Lemma 9. We have

. 1
2mE{£<wt>— inf_ £(u } ZmE{ —;}gs(w)}+zk(k+l)‘ S B {E(w) — E(wi i)}
k=1 i=t—k+1

(20)
Proof. Let {u}+ be areal-valued sequence. Fork =1,--- ,t — 1,
L& ¢ ¢ ¢ 1 ¢
- k+1 i~k P G S = ).
PO Z k+1){(+),z " Z“} k(k+1),z(“ Ui—)

i=t—k+1 i=t— i=t—k+1 i=t—k i=t—k+1
Summing over k = 1,--- ;¢ — 1, and rearranging terms, we get
¢
Zul + Z H k — X;H(m — up).

Choosing u; = 2 E {€(w;) — inf,,e 7 £(w)} in the above, we get
2nE {S(w ) *ul)Ielf]‘__g } 22771 { w;) ul)relffé'(w)}
¢
1 . .
+ ; REE ) Z (277¢E {S(wl) - ul)relg__é’(w)} — 2 E {E(wtk) - ul;Iel.frg(w)}) ,

i=t—k+1

which can be rewritten as

2n, B {E(w ) — 1nf E(w } Zan]E{ — 1nf E(w }—l—; EUES)) Z 2, EA{E(w;) — E(wi—k)}

i=t—k+1
t—1
+ Z Z 20; — 20—k
k=1

i=t—k+1
Since, £(wy—x) —inf,e 7 £(w) > 0 and that {n; }+cy is a non-increasing sequence, we know that the last term of the above
inequality is at most zero. Therefore, we get the desired result. The proof is complete. O

B { ()~ jut £ |

The first term of the right-hand side of (20) is the weighted excess generalization error, and it can be estimated easily by
(18), while the second term (sum of moving averages) can be estimated by the following lemma.

Lemma 10. Under the assumptions of Lemma 7, we have

t—1 t t

1 — (agrm;)? +4bm; 1 ) )
Z m 4 Z 2n,E {5(1111) 1Ut k S Z T — % Z(aomnk) + 4bt’l7k) 4+ (ao,‘-@nt) + 4bm;.
k=1 i=t—k+1 i=1 —1
2D
Proof. Given any sample z, note that w;_j, is depending only on j1, j2, - - - , Jt—k—1, and thus is independent from j;; for

any t > ¢ >t — k. Following from Lemma 2, for any ¢ > t — k,

Ej i lwigr — weilI’] < llwi — we—pl” + (aor)*n} + 2n; (Ea(wi—r) — Ea(wy)) .
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Taking the expectation on both sides, and bounding E[E,(w:—) — E5(w;)] as
=E[&(wi—p) — E(we—g) + E(w;) — Ex(w;) + E(we—) — E(w;)] < 20y + E[E(we—k) — E(w;)]
by Condition (15), and rearranging terms, we get
20;E [€(wi) — E(wi—r)] < Eflw; — weil|* = [lwisr — weil’] + (aor)*n? + 4nibe.
Summing up overt =t —k,--- ,t, we get
t t
Z 20, B [E(w;) — E(wi—)] < (aok) 2 Z 771 + 4b, Z ;.
i=t—k i=t—k i=t—k

The left-hand side is exactly S0, | 41 2niE [E(w;) — E(w;i—)] - Thus, dividing both sides by k(k+1), and then summing
upoverk=1,---,t—1,

t—1 t i—1 t
1 1
o Y mE{E(wi) — E(wr )} <Y Y ((a0rmi)® + 4byi).
k=1 k(k+1) i=t—k+1 k=1 k(k+1) i=t—k
Exchanging the order in the sum, and setting &; = (agrn;)? + 4b;n; for all i € [t], we obtain
t—1 1 t t—1 t—1 1
—_— 2, E{E(w;) — E(wy— < p
Zk(kﬂ)_z mEAE (wi) — E(wi—r)} szk+1§+zkk+1)£
k=1 i=t—k+1 1=1 k=t—1
t—1
1
R e ()
- Zim& - fzgk
i=1 ¢
From the above analysis, we can conclude the proof. O

Proposition 2. Under the assumptions of Lemma 8, we have

t—1 t—1 t 1-8
. 21 (aokni)? | (agk)®ne | cp
E, ;€ — inf & <b |1+ — |+ + + = (22)
SlEGw) — inf £w)] ( ;m@_k)) S el (o (5,

Proof. Plugging (18) and (21) into (20), by a direct calculation, we get

t -8 41
. 2c (aok + 4b 2b
QUth,J[S(wt) - ul)relg__f(w)] < TB <,; 77k> + ; 0 nk e _ 2% kzlnk + aomh) + 4byn;.

Since {7 }+ is non-increasing, % 22:1 M > 2by1;. Thus,

1-8 t—1
(agkn + 4b
2By, 5[€ (we) — inf E(w) <Z 77k> + 2n¢by + Z 0 ]k Y 1 (aorm).
Dividing both sides with 21, and rearranging terms, one can conclude the proof. O

Now, we are ready to prove Theorems 2 and 3.
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Proof of Theorem 2. By Lemma 6, the condition (15) is satisfied with by = 2(agk)? Zle n;/m. It thus follows from
Propositions 1 and 2 that

B
t 2 ¢ 2
1
B, J[£(@0)] — inf E(w) < 2agr)? k=t 4 @R 2y (1) 23)
’ EF m 2 t A 4
w Zk:l U3 Zk*l Tk

and

t—1

(agr)? (22:1 77k>1_5.

E,.s[E(w;) — inf E(w)] < 2(agk)* =E=LE Ek 1Mk <1 +Z m t_ ) n (a02/£)2

+c
weF 1 ’I]t(t — k) 2 h A ntt
(24
By noting that 1 < 1, _1/ne < Y3 i/ (ne(t — k),
t t—1 t—1 (Zt =0
_ 2 _ 2 k=1 ﬁk)
E, s[E(we) — inf E(w)] <6 2 2 k=1 Tl UL CLOH ;. (aok) .
B S R s Dt R B
(25)
The proof is complete. O

Proof of Theorems 3. By Propositions 1 and 2, we have (19) and (22). Also, by Lemma 5, we have b; < %. Then

B
_ . Ry (aok)? 22—1 i 1
E, s[€(w;)] — inf E(w) < 2a0k—= + = +cp , (26)
weF vmo 2 S >t Tk
and
t 1-8
. Ry — 2 (aor)® & 1} (aok)? (Zk:l 77’“)
E, j[€(wy) — inf E(w)] < 2ap5—=—= |1+ + 2 + +c .
,J[ ( t) wEF ( )] 0 m( ;nf(t e nt(tfk) 2 ui B nit
(27)
Note that 1 < 7;_1 /7, since 7, is non-increasing. Thus,
t—1 t—1 Zt =7
: Ri = "k (aok)* ~~ i (aok)? ( k=1 nk) 28
E, jl€(w;) — inf E(w)] < 6agk—— + + +c . (28
1J[ ( t) WEF ( )] 0 \/ﬁgnt(t_k) 2 ;nt(t—k) 2 e B ntt
Recall that R; is given by (14) and that 7y, is non-increasing, we thus have
t
Ry < /(aor)®m +2[V]o, | > m. (29)

k=1

Introducing the above into (26) and (28),

B
o 22—1 me, (aok)? 22—1 i 1
E, j[€(w,)] — inf 5( ) < 2apky/ (aok)?m + 2|V]o [ == + = + ¢ , (B0
weF m 2 22:1 Mk 22:1 Nk

and

t 1-58
i She e | (a0r)® o~ 0 (agk)? (Zheim)
E,,j[& — inf &£ <6 2 2V =1 & .
2,71E(wy) inf (w)] < 6agry/(agk)?m + 2|V ]o - + 5 E: T— + 5 +cg v

O
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E. Explicit Convergence Rates

In this section, we prove Corollaries 1-8. We first introduce the following basic estimates.
Lemma 11. Let§ € Ry, andt € N, t > 3. Then

t t1=9/(1—0), when0 <1,
Zk‘e < logt+1, when 6 =1,
=1 0/(0—1), when 6 > 1,

and

Zk_g > %tlf@ when 6 < 1,
Int when 6 = 1.

Proof. By using . . ,
k k t
Zk—9=1+2/ duk—9§1+2/ u‘9du=1+/u“"du,
o1 k=1 k=1 1

which leads to the first part of the result. Similarly,

t t k+1 t+1
Zk:_g = Zk‘g > Z/ uldu = / u_‘gdu,
k 1

k=1 k=1 k=1
which leads to the second part of the result. The proof is complete. O

Lemma 12. Letqg € R, andt € N, t > 3. Then

=1y 2924+ (1 —q) "t logt, whenq <1,
tikiq << 8tllogt, when q = 1,
k=1 (294 2q)/(q — 1)t~ 1, when q > 1,

Proof. We split the sum into two parts

t—1

1 1
- E
= D T D
k=1 t/2<k<t—1 1<k<t/2
< 2ne ) —+2t— > ke
t/2<k<t— ! 1<k<t/2
= 2077 >y ka2t >k
1<k<t/2 1<k<t/2
Applying Lemma 11, we get
=1y 29¢79/(1 —¢q), whengq <1,
mk 7 < 29 9(log(t/2) + 1) + < 4t 1logt, wheng =1,
k=1 2qt~1/(qg—1), wheng>1,
which leads to the desired result by using t 9" 1logt < 1/(e(q¢ — 1)) < 1/(2(q — 1)) when g > 1. O

The bounds in the above two lemmas involve constant factor 1/(1 — #) or 1/(1 — ¢), which tend to be infinity as § — 1 or
q — 1. To avoid these, we introduce the following complement results.

Lemma 13. Let 0 € Ry, andt € N, witht > 3. Then

t
Z k_—@ S tmax(l—O,O)Qlog t.
k=1
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Proof. Note that

t t
Z kfe _ Z kflk,lfe < tmax(179,0) Z k1
k=1 k=1 k=1
The proof can be finished by applying Lemma 11. O

Lemma 14. Letqg € R, andt € N, t > 3. Then

G
—q — min(qg,1)
> k<t log t.
k=1
Proof. Note that
t—1 t—1 1 t—1
1 | - k=1 < trnax(l—q,O) Z 1
t— (t—k)k — (t—k)k’
k=1 k=1 k=1

and that by Lemma 11,

With the above estimates and Theorems 2, 3, we can get the following two propositions.

Proposition 3. Under Assumptions 1, 2 and 3, let n, = nt~° for some positive constant ) < ﬁ with 0 € [0, 1) for all
t € N. Then forallt € N,

) 2(apk)? nt'=0  (agr)?(1—0) (0,1-0) 1-6 \* 1\
_ < in(0,
E, € (wy)] ul}relfff(w) <0 m + | 401 nt logt + cp 401 i)

and

) 18(agr)? nt' =% logt o e rin(6.1— s 1\’
E, . £ < min(60,1 0)1 .
JE(we) = it E(w)] < === =+ 3laor)nt gt 1 g o

Proof. Following the proof of Theorem 2, we have (23) and (24).
We first consider the case w,. With 1, = nt~%, (23) reads as

B
t —0 2 t —20
Ea s [€(@0)] — inf £(w) < 2(agr)? 12k=t P (@R ndan K7 0 L)
’ weF m 2 Zk:l k=0 n Zk:l k=0

Lemma 11 tells us that

2agr)2 t' =0 (aok)?(1 —0) n Y h_, k=% te 1-6 \* 1\
weF 1-60 m 2(1 — 4°-1) t1-0 PlT =401 nt' =0
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Using Lemma 13 to the above, we can get the first part of the desired results.
Now consider the case w;. With 7, = nt~?, (24) is exactly

weF t—k

k=1
1-8

2 t=1 29 S k0
+(“°2“) nt™? (th b +1) —|—05( Sl .

t —0 t—1 —0
k k
Ez — inf <92 2”2]@:1 1 2t0
g€ (wy) — inf E(w)] < 2(apk) R ( + g

B11—0
k:lt k nPt

Applying Lemma 14 to bound 22;11 % and 22;11 %, by a simple calculation, we derive
1-5

(22:1 k_e)

t -0
> k .
E — inf <92 277]‘3;1 . (91 2 —m1n(6,1—9)1
2,7[€ (W) Jlel}_g(w)] < 2(aok) (9logt) + 3(agk)"nt ogt+cp T

Using Lemma 11 to upper bound 22:1 k~?, one can get the second part of the desired results. [

Proposition 4. Under Assumptions 1 and 2, let n; = nt=% forallt € N, with0 < n < 1 and 6 € [0,1). Then for all

teN,
— : (CI,QH)Q + 2|‘/|0 77t1_9 (aOK“)Z(l — 9) — min(#,1-0
B €] - inf £w) < 200wy 2Vl [ 2 00?0 0) i) g
1-60 \°/ 1\’
tes T ntt=? )’
and

i apk)? + 2|V ntl-?o ~ min(8.1— c 1’
E, s[€(wy) — 111}1613_5(11))] < 18a0m\/< 0 )1 — 0‘ O\/ ]m logt + 3(agk)?nt O:1=0) 1og t + iﬁe (77751_9) .

Proof. Following the proof of Theorem 3, we have (26) and (27), where R; satisfies (29). Comparing (26), (27) with (23),
(24), we find that the differences are the terms related sample errors, i.e., the term 2(agx?) 22:1 Nk /m in (23), (24), while
2apk Rz /+/m in (26), (27). Thus, following from the proof of Proposition 3, we get

_ ) 2a0kR; | (aok)’(1=0)  Lin1-6 1-6 \’ 1\’
E, J[£(@,)] - inf €(w) < N R (01-0) log t + ¢4 T )

and

2a0k Ry
Vm

Recall that R; satisfies (29), with , = nt*e, where n < 1, by Lemma 11, we know that

B
. 1
-9logt + 3(agk)?nt~ ™nO1= 1og t 4 b ( ) .

E;[€(w;) — mf E(w)] < 1—0 \nti=?

(a0r)® +2|V]o

B 1-6

IN

ntl—0.
From the above analysis, one can conclude the proof. [
We are ready to prove Corollaries 1-8.

Proof of Corollary 1. Applying Proposition 3 with 6 = 0, n = 1, /\/m, we derive

B
. t logt 2c
BT~ it £0) < 2o 20 o+ 27 (V)
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and
logt LB vm

B
tlogt
2 2
+ 3m (aok) NG ﬁ< ; ) .

E, s[€ — inf & <18
’J[ (wt) u%IEl]: (w)] = 771(@0“) m o

The proof is complete.

Proof of Corollary 2. Applying Proposition 3 with n = 1,0 = 1/2, we get
_ . Vit log t 51
E,,s[€(@y)] - inf E(w) < 4(110/‘6)2771E + (aoﬁ)27717 +cpm BW7

and
. Vitlogt logt 5 1
B, [€(wy) = inf £(w)] < 36(agr)?m +—> +3(aof<&)2m%+2%mﬁm~

Proof of Corollary 3. Applying Proposition 3 with § = 0 and n = m; m_%, we get
2 2 2
E, j[€(w)] — in.fré’(w) < 2n1(a0&)2m7%t +2m (aom)meﬁ logt + %m%fﬁ

we m

)

and
2
E, j[E(wy) — inf}_c‘f(w)] < 18n1(aon)2mf%tlogt + 3n1(a0m)2m7% logt + c—gm%t_ﬂ
we m

The proof is complete.

Proof of Corollary 4. Applying Proposition 3 with n = n; and 6 = %,

— . 2 ¢ __B8_ —B,— =B
Ex s[£(@0)] — inf €(w) < 4(aor)m— A+ 2egm; PR,

+ 21 (apk)*t

and
1
tT+5 logt _
S L 3m (aoﬁ)Qtfﬁ logt + 2cam; By—7,

]EZ,J[S(wt) — ul)Ielffg(w)] < 36(@0%) m

For the above two inequalities, we used that 8 € (0,1], 6 = % <1/2and 4971 <1/2.

Proof of Corollary 5. Applying Proposition 4 with n = 1/y/m and § = 0,

_ . NG 5logt m\”
E,  j[€(w)] — uljrelif}_é’(w) < 2apk+/(apk)? + 2\V|0W + 2(agk) T + 2¢g <t> ,

and
B
tlogt logt
Vilogt | o Oﬁ)zogﬂﬁ(vm) ,

_ < 2
E, s[E(wy) Lirelffé'(w)]_l&zon (aor)? + 2|V o 3 + 3(a N

The proof is complete.
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Proof of Corollary 6. Applying Proposition 4 with = 1 and § = 1/2, we get

) /4 aok)?logt ¢
]Ez“][g(@t)} - uljlelf}_g(’w) < 2\/5(10!{ (aoli)z + 2“/‘0% + (O\)/ig tﬁ%

and
B, s[E(w;) — inf E(w)] < 18V2agk\/(agk)? + 2|V| m +3(a n)QlO—gt +2¢ 1
z,J ¢) = b = 0 0 0 Jm 0 NG 81572
O
Proof of Corollary 7. Using Proposition 4 with n = m~ 7 and § = 0, we get
— . _ap41 9 28 282 g
E, j[€(w)] — 1n§__€(w) < 2apky/ (agk)? + 2|V |om™ 3542Vt 4 2(agr)?m ™~ 2+ logt + 2camZ+1t 7,
we
and
. _ds41 9 28 282 g
E, j[€(wy) — 1nff€(w)] < 18apkr/(aor)?n + 2|V ]om ™ 372\t logt + 3(agk)*m™ 25+ logt 4 cgm2vit P,
we
The proof is complete. O

Proof of Corollary 8. Let 0 = 2ﬁ+1 Obviously, 6§ € [0 ,%] since 5 € (0,1]. Thus, ﬁ 2641 <3, = 49 r <

174%1/3 < 2. Following from Proposition 4,

min(28,1)
— +2(a0/<a) BT 10gt+265t 2ﬂ+1

E, j[€(w,)] — 116151_5(11)) < 2v/3apk (agr)? + 2|V|0

and

1

Ey,s[€(w:) — inf £(w)] < 18v/3agr/(agk)? + 2|V]o ;

logt + 3(agk)*t~ e 1ogt + 3cpt™ T



