
Generalization Properties and Implicit Regularization of Multiple Passes SGM

Appendices: Proofs
A. Basic Lemmas
The following basic lemma is useful to our proofs, which will be used several times. Its proof follows from the convexity
of V (y, ·) and the fact that V ′−(y, a) is bounded.
Lemma 1. Under Assumption 1, for any k ∈ N and w ∈ F , we have

‖wk+1 − w‖2 ≤ ‖wk − w‖2 + (a0κ)2η2k + 2ηk [V (yjk , 〈w,Φ(xjk)〉)− V (yjk , 〈wk,Φ(xjk)〉)] . (12)

Proof. Since wk+1 is given by (3), by expanding the inner product, we have

‖wk+1 − w‖2 = ‖wk − w‖2 + η2k‖V ′−(yjk , 〈wk,Φ(xjk)〉)Φ(xjk)‖2 + 2ηkV
′
−(yjk , 〈wk,Φ(xjk)〉) 〈w − wk,Φ(xjk)〉 .

The bounded assumption (4) implies that ‖Φ(xjk)‖ ≤ κ and by (5), |V ′−(yjk , 〈wk,Φ(xjk)〉)| ≤ a0. We thus have

‖wk+1 − w‖2 ≤ ‖wk − w‖2 + (a0κ)2η2k + 2ηkV
′
−(yjk , 〈wk,Φ(xjk)〉)[〈w,Φ(xjk)〉 − 〈wk,Φ(xjk)〉].

Using the convexity of V (yjk , ·) which tells us that

V ′−(yjk , a)(b− a) ≤ V (yjk , b)− V (yjk , a), ∀a, b ∈ R,

we reach the desired bound. The proof is complete.

Taking the expectation of (12) with respect to the random variable jk, and noting that wk is independent from jk given z,
one can get the following result.
Lemma 2. Under Assumption 1, for any fixed k ∈ N, given any z, assume that w ∈ F is independent of the random
variable jk. Then we have

Ejk [‖wk+1 − w‖2] ≤ ‖wk − w‖2 + (a0κ)2η2k + 2ηk (Ez(w)− Ez(wk)) . (13)

B. Sample Errors
Note that our goal is to bound the excess generalization error E[E(wT )− infw∈F E(w)], whereas the left-hand side of (13)
is related to an empirical error. The difference between the generalization and empirical errors is a so-called sample error.
To estimate this sample error, we introduce the following lemma, which gives a uniformly upper bound for sample errors
over a ball BR = {w ∈ F : ‖w‖ ≤ R}. Its proof is based on a standard symmetrization technique and Rademacher
complexity, e.g. (Bartlett et al., 2005; Meir & Zhang, 2003). For completeness, we provide a proof here.
Lemma 3. Assume (4) and (5). For any R > 0, we have∣∣∣∣Ez

[
sup
w∈BR

(E(w)− Ez(w))

]∣∣∣∣ ≤ 2a0κR√
m

.

Proof. Let z′ = {z′i = (x′i, y
′
i)}mi=1 be another training sample from ρ, and assume that it is independent from z. We have

Ez

[
sup
w∈BR

(E(w)− Ez(w))

]
= Ez

[
sup
w∈BR

Ez′ [Ez′(w)− Ez(w)]

]
≤ Ez,z′

[
sup
w∈BR

(Ez′(w)− Ez(w))

]
.

Let σ1, σ2, . . . , σm be independent random variables drawn from the Rademacher distribution, i.e. Pr(σi = +1) =
Pr(σi = −1) = 1/2 for i = 1, 2, . . . ,m. Using a standard symmetrization technique, for example in (Meir & Zhang,
2003), we get

Ez

[
sup
w∈BR

(E(w)− Ez(w))

]
≤ Ez,z′,σ

[
sup
w∈BR

{
1

m

m∑
i=1

σi(V (y′i, 〈w,Φ(x′i)〉)− V (yi, 〈w,Φ(xi)〉))

}]

≤ 2Ez,σ

[
sup
w∈BR

{
1

m

m∑
i=1

σiV (yi, 〈w,Φ(xi)〉)

}]
.
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With (5), by applying Talagrand’s contraction lemma, see e.g. (Bartlett et al., 2005), we derive

Ez

[
sup
w∈BR

(E(w)− Ez(w))

]
≤ 2a0Ez,σ

[
sup
w∈BR

1

m

m∑
i=1

σi〈w,Φ(xi)〉

]
= 2a0Ez,σ

[
sup
w∈BR

〈
w,

1

m

m∑
i=1

σiΦ(xi)

〉]
.

Using Cauchy-Schwartz inequality, we reach

Ez

[
sup
w∈BR

(E(w)− Ez(w))

]
≤ 2a0Ez,σ

[
sup
w∈BR

‖w‖

∥∥∥∥∥ 1

m

m∑
i=1

σiΦ(xi)

∥∥∥∥∥
]
≤ 2a0REz,σ

[∥∥∥∥∥ 1

m

m∑
i=1

σiΦ(xi)

∥∥∥∥∥
]
.

By Jensen’s inequality, we get

Ez

[
sup
w∈BR

(E(w)− Ez(w))

]
≤ 2a0R

Ez,σ

∥∥∥∥∥ 1

m

m∑
i=1

σiΦ(xi)

∥∥∥∥∥
2
1/2

= 2a0R

[
1

m2
Ez,σ

m∑
i=1

‖Φ(xi)‖2
]1/2

.

The desired result thus follows by introducing (4) to the above. Note that the above procedure also applies if we replace
E(w)− Ez(w) with Ez(w)− E(w). The proof is complete.

The following lemma gives upper bounds on the iterated sequence.

Lemma 4. Under Assumption 1. Then for any t ∈ N, we have

‖wt+1‖ ≤

√√√√(a0κ)2
t∑

k=1

η2k + 2|V |0
t∑

k=1

ηk.

Proof. Using Lemma 1 with w = 0, we have

‖wk+1‖2 ≤ ‖wk‖2 + (a0κ)2η2k + 2ηk [V (yjk , 0)− V (yjk , 〈wk,Φ(xjk)〉)] .

Noting that V (y, a) ≥ 0 and V (yjk , 0) ≤ |V |0, we thus get

‖wk+1‖2 ≤ ‖wk‖2 + (a0κ)2η2k + 2ηk|V |0.

Applying this inequality iteratively for k = 1, · · · , t, and introducing with w1 = 0, one can get that

‖wt+1‖2 ≤ (a0κ)2
t∑

k=1

η2k + 2|V |0
t∑

k=1

ηk,

which leads to the desired result by taking square root on both sides.

According to the above two lemmas, we can bound the sample errors as follows.

Lemma 5. Assume (4) and (5). Then, for any k ∈ N,

|Ez,J [Ez(wk)− E(wk)]| ≤ 2a0κRk√
m

,

where

Rk =

√√√√(a0κ)2
t∑

k=1

η2k + 2|V |0
t∑

k=1

ηk. (14)

When the loss function is smooth, by Theorems 2.2 and 3.9 from (Hardt et al., 2016), we can control the sample errors as
follows.



Generalization Properties and Implicit Regularization of Multiple Passes SGM

Lemma 6. Under Assumptions 1 and 3, let ηt ≤ 2/(κ2L) for all k ∈ [T ],

|Ez,J [Ez(wk)− E(wk)]| ≤
2(a0κ)2

∑k
i=1 ηi

m
.

Proof. Note that by (4), Assumption 3 and (2), for all (x, y) ∈ z, w, w′ ∈ F ,

‖V ′(y, 〈w,Φ(x)〉)Φ(x)− V ′(y, 〈w′,Φ(x)〉)Φ(x)‖ ≤ κ|V ′(y, 〈w,Φ(x)〉)− V ′(y, 〈w′,Φ(x)〉)|
≤κL|〈w,Φ(x)〉 − 〈w′,Φ(x)〉| = κL|〈w − w′,Φ(x)〉| ≤ κL‖w − w′‖‖Φ(x)‖
≤κ2L‖w − w′‖,

and

‖V ′(y, 〈w,Φ(x)〉)Φ(x)‖ ≤ κa0.

That is, for every (x, y) ∈ z, V (y, 〈·,Φ(x)〉) is (κ2L)-smooth and (κa0)-Lipschitz. Now the results follow directly by
using Theorems 2.2 and 3.8 from (Hardt et al., 2016).

C. Excess Errors for Weighted Averages
Lemma 7. Under Assumption 1, assume that there exists a non-decreasing sequence {bk > 0}k such that

|Ez,J [Ez(wk)− E(wk)]| ≤ bk, ∀k ∈ [T ]. (15)

Then for any t ∈ [T ] and any fixed w ∈ F ,

t∑
k=1

2ηkEz,J [E(wk)] ≤ bt
t∑

k=1

2ηk + (a0κ)2
t∑

k=1

η2k +

t∑
k=1

2ηkE(w) + ‖w‖2. (16)

Proof. By Lemma 2, we have (13). Rewriting −Ez(wk) as

−Ez(wk) + E(wk)− E(wk),

taking the expectation with respect to J(T ) and z on both sides, noting that w is independent of J and z, and applying
Condition (15), we derive

Ez,J [‖wk+1 − w‖2] ≤ Ez,J [‖wk − w‖2] + (a0κ)2η2k + 2ηk (E(w)− Ez,J [E(wk)]) + 2ηkbk,

which is equivalent to

2ηkEz,J [E(wk)] ≤ 2ηkE(w) + Ez,J [‖wk − w‖2 − ‖wk+1 − w‖2] + (a0κ)2η2k + 2ηkbk.

Summing up over k = 1, · · · , t, and introducing with w1 = 0,

t∑
k=1

2ηkEz,J [E(wk)] ≤
t∑

k=1

2ηkE(w) + ‖w‖2 + (a0κ)2
t∑

k=1

η2k +

t∑
k=1

2ηkbk.

The proof can be finished by noting that bk is non-decreasing.

Now, we are in a position to prove Theorem 1.

Proof of Theorem 1. According to Lemma 5, Condition (15) is satisfied for

bt =
2a0κ

√∑t
k=1(a0κηk)2 + 2|V |0

∑t
k=1 ηk√

m
.
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By Lemma 7, we thus have (16). Dividing both sides by
∑t
k=1 2ηk, and using the convexity of V (y, ·) which implies∑t

k=1 ηkE(wk)∑t
k=1 ηk

≥ E(

∑t
k=1 ηkwk∑t
k=1 ηk

) = E(wt), (17)

we get that

Ez,J [E(wt)] ≤ bt +
(a0κ)2

2

∑t
k=1 η

2
k∑t

k=1 ηk
+ E(w) +

‖w‖2

2
∑t
k=1 ηk

.

For any fixed ε > 0, we know that there exists a wε ∈ F , such that E(wε) ≤ infw∈F E(w) + ε. Letting t = t∗(m), and
w = wε, we have

Ez,J

[
E(wt∗(m),w)

]
≤ bt∗(m) +

(a0κ)2

2

∑t∗(m)
k=1 η2k∑t∗(m)
k=1 ηk

+ inf
w∈F
E(w) + ε+

‖wε‖2

2
∑t∗(m)
k=1 ηk

.

Letting m→∞ , and using Conditions (A) and (B) which imply

lim
m→∞

1∑t∗(m)
k=1 ηk

= 0, lim
m→∞

∑t∗(m)
k=1 η2k∑t∗(m)
k=1 ηk

= 0, and lim
m→∞

∑t∗(m)
k=1 η2k
m

= lim
m→∞

∑t∗(m)
k=1 η2k∑t∗(m)
k=1 ηk

∑t∗(m)
k=1 ηk
m

= 0,

we reach

lim
m→∞

Ez,J

[
E(wt∗(m),w)

]
≤ inf
w∈F
E(w) + ε.

Since ε > 0 is arbitrary, the desired result thus follows. The proof is complete.

Lemma 8. Under the assumptions of Lemma 7, let Assumption 2 hold. Then for any t ∈ [T ],

t∑
k=1

2ηkEz,J

[
E(wk)− inf

w∈F
E(w)

]
≤ bt

t∑
k=1

2ηk + (a0κ)2
t∑

k=1

η2k + 2cβ

(
t∑

k=1

ηk

)1−β

. (18)

Proof. By Lemma 7, we have (16). Subtracting
∑t
k=1 2ηk infw∈F E(w) from both sides,

t∑
k=1

2ηkEz,J

[
E(wk)− inf

w∈F
E(w)

]
≤ bt

t∑
k=1

2ηk + (a0κ)2
t∑

k=1

η2k +

t∑
k=1

2ηk

[
E(w)− inf

w∈F
E(w)

]
+ ‖w‖2.

Taking the infimum over w ∈ F , recalling that D(λ) is defined by (6), we have

t∑
k=1

2ηkEz,J

[
E(wk)− inf

w∈F
E(w)

]
≤ bt

t∑
k=1

2ηk + (a0κ)2
t∑

k=1

η2k +

t∑
k=1

2ηkD

(
1∑t

k=1 ηk

)
.

Using Assumption 2 to the above, we get the desired result. The proof is complete.

Collecting some of the above analysis, we get the following result.

Proposition 1. Under the assumptions of Lemma 8, we have

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ bt +

(a0κ)2

2

∑t
k=1 η

2
k∑t

k=1 ηk
+ cβ

(
1∑t

k=1 ηk

)β
. (19)

Proof. By Lemma 8, we have (18). Dividing both sides by
∑t
k=1 2ηk, and using (17), we get the desired bound.
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D. From Weighted Averages to the Last Iterate
A basic tool for studying the convergence for iterates is the following decomposition, as often done in (Shamir & Zhang,
2013) for classical online learning or subgradient descent algorithms (Lin et al., 2016). It enables us to study the weighted
excess generalization error 2ηtEz,J [E(wt)−infw∈F E(w)] in terms of “weighted averages” and moving weighted averages.
In what follows, we will write Ez,J as E for short.

Lemma 9. We have

2ηtE
{
E(wt)− inf

w∈F
E(w)

}
≤ 1

t

t∑
k=1

2ηkE
{
E(wk)− inf

w∈F
E(w)

}
+

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

2ηiE {E(wi)− E(wt−k)} .

(20)

Proof. Let {ut}t be a real-valued sequence. For k = 1, · · · , t− 1,

1

k

t∑
i=t−k+1

ui −
1

k + 1

t∑
i=t−k

ui =
1

k(k + 1)

{
(k + 1)

t∑
i=t−k+1

ui − k
t∑

i=t−k

ui

}
=

1

k(k + 1)

t∑
i=t−k+1

(ui − ut−k).

Summing over k = 1, · · · , t− 1, and rearranging terms, we get

ut =
1

t

t∑
i=1

ui +

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

(ui − ut−k).

Choosing ut = 2ηtE {E(wt)− infw∈F E(w)} in the above, we get

2ηtE
{
E(wt)− inf

w∈F
E(w)

}
=

1

t

t∑
i=1

2ηiE
{
E(wi)− inf

w∈F
E(w)

}

+

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

(
2ηiE

{
E(wi)− inf

w∈F
E(w)

}
− 2ηt−kE

{
E(wt−k)− inf

w∈F
E(w)

})
,

which can be rewritten as

2ηtE
{
E(wt)− inf

w∈F
E(w)

}
=

1

t

t∑
k=1

2ηkE
{
E(wk)− inf

w∈F
E(w)

}
+

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

2ηiE {E(wi)− E(wt−k)}

+

t−1∑
k=1

1

k + 1

[
1

k

t∑
i=t−k+1

2ηi − 2ηt−k

]
E
{
E(wt−k)− inf

w∈F
E(w)

}
.

Since, E(wt−k)− infw∈F E(w) ≥ 0 and that {ηt}t∈N is a non-increasing sequence, we know that the last term of the above
inequality is at most zero. Therefore, we get the desired result. The proof is complete.

The first term of the right-hand side of (20) is the weighted excess generalization error, and it can be estimated easily by
(18), while the second term (sum of moving averages) can be estimated by the following lemma.

Lemma 10. Under the assumptions of Lemma 7, we have

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

2ηiE {E(wi)− E(wt−k)} ≤
t−1∑
i=1

(a0κηi)
2 + 4btηi

t− i
− 1

t

t∑
k=1

(a0κηk)2 + 4btηk) + (a0κηt)
2 + 4btηt.

(21)

Proof. Given any sample z, note that wt−k is depending only on j1, j2, · · · , jt−k−1, and thus is independent from ji+1 for
any t ≥ i ≥ t− k. Following from Lemma 2, for any i ≥ t− k,

Eji+1 [‖wi+1 − wt−k‖2] ≤ ‖wi − wt−k‖2 + (a0κ)2η2i + 2ηi (Ez(wt−k)− Ez(wi)) .
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Taking the expectation on both sides, and bounding E[Ez(wt−k)− Ez(wi)] as

= E[Ez(wt−k)− E(wt−k) + E(wi)− Ez(wi) + E(wt−k)− E(wi)] ≤ 2bt + E[E(wt−k)− E(wi)]

by Condition (15), and rearranging terms, we get

2ηiE [E(wi)− E(wt−k)] ≤ E[‖wi − wt−k‖2 − ‖wi+1 − wt−k‖2] + (a0κ)2η2i + 4ηibt.

Summing up over i = t− k, · · · , t, we get

t∑
i=t−k

2ηiE [E(wi)− E(wt−k)] ≤ (a0κ)2
t∑

i=t−k

η2i + 4bt

t∑
i=t−k

ηi.

The left-hand side is exactly
∑t
i=t−k+1 2ηiE [E(wi)− E(wt−k)] . Thus, dividing both sides by k(k+1), and then summing

up over k = 1, · · · , t− 1,

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

2ηiE {E(wi)− E(wt−k)} ≤
t−1∑
k=1

1

k(k + 1)

t∑
i=t−k

((a0κηi)
2 + 4btηi).

Exchanging the order in the sum, and setting ξi = (a0κηi)
2 + 4btηi for all i ∈ [t], we obtain

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

2ηiE {E(wi)− E(wt−k)} ≤
t−1∑
i=1

t−1∑
k=t−i

1

k(k + 1)
ξi +

t−1∑
k=1

1

k(k + 1)
ξt

=

t−1∑
i=1

(
1

t− i
− 1

t

)
ξi +

(
1− 1

t

)
ξt

=

t−1∑
i=1

1

t− i
ξi + ξt −

1

t

t∑
k=1

ξk.

From the above analysis, we can conclude the proof.

Proposition 2. Under the assumptions of Lemma 8, we have

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ bt

(
1 +

t−1∑
k=1

2ηk
ηt(t− k)

)
+

t−1∑
k=1

(a0κηk)2

2ηt(t− k)
+

(a0κ)2ηt
2

+
cβ
ηtt

(
t∑

k=1

ηk

)1−β

(22)

Proof. Plugging (18) and (21) into (20), by a direct calculation, we get

2ηtEz,J [E(wt)− inf
w∈F
E(w)] ≤ 2cβ

t

(
t∑

k=1

ηk

)1−β

+

t−1∑
k=1

(a0κηk)2 + 4btηk
t− k

− 2bt
t

t∑
k=1

ηk + (a0κηt)
2 + 4btηt.

Since {ηt}t is non-increasing, 2bt
t

∑t
k=1 ηk ≥ 2btηt. Thus,

2ηtEz,J [E(wt)− inf
w∈F
E(w)] ≤ 2cβ

t

(
t∑

k=1

ηk

)1−β

+ 2ηtbt +

t−1∑
k=1

(a0κηk)2 + 4btηk
t− k

+ (a0κηt)
2.

Dividing both sides with 2ηt, and rearranging terms, one can conclude the proof.

Now, we are ready to prove Theorems 2 and 3.
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Proof of Theorem 2. By Lemma 6, the condition (15) is satisfied with bk = 2(a0κ)2
∑k
i=1 ηi/m. It thus follows from

Propositions 1 and 2 that

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2(a0κ)2

∑t
k=1 ηk
m

+
(a0κ)2

2

∑t
k=1 η

2
k∑t

k=1 ηk
+ cβ

(
1∑t

k=1 ηk

)β
, (23)

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 2(a0κ)2

∑t
k=1 ηk
m

(
1 +

t−1∑
k=1

2ηk
ηt(t− k)

)
+

(a0κ)2

2

t−1∑
k=1

η2k
ηt(t− k)

+
(a0κ)2

2
ηt + cβ

(∑t
k=1 ηk

)1−β
ηtt

.

(24)

By noting that 1 ≤ ηt−1/ηt ≤
∑t−1
k=1 ηk/(ηt(t− k)),

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 6(a0κ)2

∑t
k=1 ηt
m

t−1∑
k=1

ηk
ηt(t− k)

+
(a0κ)2

2

t−1∑
k=1

η2k
ηt(t− k)

+
(a0κ)2

2
ηt + cβ

(∑t
k=1 ηk

)1−β
ηtt

.

(25)

The proof is complete.

Proof of Theorems 3. By Propositions 1 and 2, we have (19) and (22). Also, by Lemma 5, we have bt ≤ 2a0κRt√
m

. Then

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2a0κ

Rt√
m

+
(a0κ)2

2

∑t
k=1 η

2
k∑t

k=1 ηk
+ cβ

(
1∑t

k=1 ηk

)β
, (26)

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 2a0κ

Rt√
m

(
1 +

t−1∑
k=1

2ηk
ηt(t− k)

)
+

(a0κ)2

2

t−1∑
k=1

η2k
ηt(t− k)

+
(a0κ)2

2
ηt + cβ

(∑t
k=1 ηk

)1−β
ηtt

.

(27)

Note that 1 ≤ ηt−1/ηt since ηt is non-increasing. Thus,

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 6a0κ

Rt√
m

t−1∑
k=1

ηk
ηt(t− k)

+
(a0κ)2

2

t−1∑
k=1

η2k
ηt(t− k)

+
(a0κ)2

2
ηt + cβ

(∑t
k=1 ηk

)1−β
ηtt

. (28)

Recall that Rt is given by (14) and that ηk is non-increasing, we thus have

Rt ≤
√

(a0κ)2η1 + 2|V |0

√√√√ t∑
k=1

ηk. (29)

Introducing the above into (26) and (28),

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2a0κ

√
(a0κ)2η1 + 2|V |0

√∑t
k=1 ηk
m

+
(a0κ)2

2

∑t
k=1 η

2
k∑t

k=1 ηk
+ cβ

(
1∑t

k=1 ηk

)β
, (30)

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 6a0κ

√
(a0κ)2η1 + 2|V |0

√∑t
k=1 ηk
m

+
(a0κ)2

2

t−1∑
k=1

η2k
ηt(t− k)

+
(a0κ)2

2
ηt + cβ

(∑t
k=1 ηk

)1−β
ηtt

.
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E. Explicit Convergence Rates
In this section, we prove Corollaries 1-8. We first introduce the following basic estimates.

Lemma 11. Let θ ∈ R+, and t ∈ N, t ≥ 3. Then

t∑
k=1

k−θ ≤

 t1−θ/(1− θ), when θ < 1,
log t+ 1, when θ = 1,
θ/(θ − 1), when θ > 1,

and

t∑
k=1

k−θ ≥

{
1−4θ−1

1−θ t1−θ when θ < 1,

ln t when θ = 1.

Proof. By using
t∑

k=1

k−θ = 1 +

t∑
k=2

∫ k

k−1
duk−θ ≤ 1 +

t∑
k=2

∫ k

k−1
u−θdu = 1 +

∫ t

1

u−θdu,

which leads to the first part of the result. Similarly,

t∑
k=1

k−θ =

t∑
k=1

k−θ ≥
t∑

k=1

∫ k+1

k

u−θdu =

∫ t+1

1

u−θdu,

which leads to the second part of the result. The proof is complete.

Lemma 12. Let q ∈ R+ and t ∈ N, t ≥ 3. Then

t−1∑
k=1

1

t− k
k−q ≤

 2q[2 + (1− q)−1]t−q log t, when q < 1,
8t−1 log t, when q = 1,
(2q + 2q)/(q − 1)t−1, when q > 1,

Proof. We split the sum into two parts

t−1∑
k=1

1

t− k
k−q =

∑
t/2≤k≤t−1

1

t− k
k−q +

∑
1≤k<t/2

1

t− k
k−q

≤ 2qt−q
∑

t/2≤k≤t−1

1

t− k
+ 2t−1

∑
1≤k<t/2

k−q

= 2qt−q
∑

1≤k≤t/2

k−1 + 2t−1
∑

1≤k<t/2

k−q.

Applying Lemma 11, we get

t−1∑
k=1

1

t− k
k−q ≤ 2qt−q(log(t/2) + 1) +

 2qt−q/(1− q), when q < 1,
4t−1 log t, when q = 1,
2qt−1/(q − 1), when q > 1,

which leads to the desired result by using t−q+1 log t ≤ 1/(e(q − 1)) ≤ 1/(2(q − 1)) when q > 1.

The bounds in the above two lemmas involve constant factor 1/(1− θ) or 1/(1− q), which tend to be infinity as θ → 1 or
q → 1. To avoid these, we introduce the following complement results.

Lemma 13. Let θ ∈ R+, and t ∈ N, with t ≥ 3. Then

t∑
k=1

k−θ ≤ tmax(1−θ,0)2 log t.
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Proof. Note that

t∑
k=1

k−θ =

t∑
k=1

k−1k1−θ ≤ tmax(1−θ,0)
t∑

k=1

k−1.

The proof can be finished by applying Lemma 11.

Lemma 14. Let q ∈ R+ and t ∈ N, t ≥ 3. Then

t−1∑
k=1

1

t− k
k−q ≤ 4t−min(q,1) log t.

Proof. Note that

t−1∑
k=1

1

t− k
k−q =

t−1∑
k=1

k1−q

(t− k)k
≤ tmax(1−q,0)

t−1∑
k=1

1

(t− k)k
,

and that by Lemma 11,

t−1∑
k=1

1

(t− k)k
=

1

t

t−1∑
k=1

(
1

t− k
+

1

k

)
=

2

t

t−1∑
k=1

1

k
≤ 4

t
log t.

With the above estimates and Theorems 2, 3, we can get the following two propositions.

Proposition 3. Under Assumptions 1, 2 and 3, let ηt = ηt−θ for some positive constant η ≤ 1
κ2L with θ ∈ [0, 1) for all

t ∈ N. Then for all t ∈ N,

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2(a0κ)2

1− θ
ηt1−θ

m
+

(a0κ)2(1− θ)
1− 4θ−1

ηt−min(θ,1−θ) log t+ cβ

(
1− θ

1− 4θ−1

)β (
1

ηt1−θ

)β
,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 18(a0κ)2

1− θ
ηt1−θ log t

m
+ 3(a0κ)2ηt−min(θ,1−θ) log t+

cβ
1− θ

(
1

ηt1−θ

)β
.

Proof. Following the proof of Theorem 2, we have (23) and (24).
We first consider the case wt. With ηt = ηt−θ, (23) reads as

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2(a0κ)2

η
∑t
k=1 k

−θ

m
+

(a0κ)2

2

η
∑t
k=1 k

−2θ∑t
k=1 k

−θ
+ cβ

(
1

η
∑t
k=1 k

−θ

)β
.

Lemma 11 tells us that

1− 4θ−1

1− θ
t1−θ ≤

t∑
k=1

k−θ ≤ t1−θ

1− θ
.

Thus,

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2(a0κ)2

1− θ
ηt1−θ

m
+

(a0κ)2(1− θ)
2(1− 4θ−1)

η
∑t
k=1 k

−2θ

t1−θ
+ cβ

(
1− θ

1− 4θ−1

)β (
1

ηt1−θ

)β
.
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Using Lemma 13 to the above, we can get the first part of the desired results.
Now consider the case wt. With ηt = ηt−θ, (24) is exactly

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 2(a0κ)2

η
∑t
k=1 k

−θ

m

(
1 + 2tθ

t−1∑
k=1

k−θ

t− k

)

+
(a0κ)2

2
ηt−θ

(
t2θ

t−1∑
k=1

k−2θ

t− k
+ 1

)
+ cβ

(∑t
k=1 k

−θ
)1−β

ηβt1−θ
.

Applying Lemma 14 to bound
∑t−1
k=1

k−θ

t−k and
∑t−1
k=1

k−2θ

t−k , by a simple calculation, we derive

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 2(a0κ)2

η
∑t
k=1 k

−θ

m
· (9 log t) + 3(a0κ)2ηt−min(θ,1−θ) log t+ cβ

(∑t
k=1 k

−θ
)1−β

ηβt1−θ
.

Using Lemma 11 to upper bound
∑t
k=1 k

−θ, one can get the second part of the desired results.

Proposition 4. Under Assumptions 1 and 2, let ηt = ηt−θ for all t ∈ N, with 0 < η ≤ 1 and θ ∈ [0, 1). Then for all
t ∈ N,

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2a0κ

√
(a0κ)2 + 2|V |0

1− θ

√
ηt1−θ

m
+

(a0κ)2(1− θ)
1− 4θ−1

ηt−min(θ,1−θ) log t

+cβ

(
1− θ

1− 4θ−1

)β (
1

ηt1−θ

)β
,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 18a0κ

√
(a0κ)2 + 2|V |0

1− θ

√
ηt1−θ

m
log t+ 3(a0κ)2ηt−min(θ,1−θ) log t+

cβ
1− θ

(
1

ηt1−θ

)β
.

Proof. Following the proof of Theorem 3, we have (26) and (27), where Rt satisfies (29). Comparing (26), (27) with (23),
(24), we find that the differences are the terms related sample errors, i.e., the term 2(a0κ

2)
∑t
k=1 ηk/m in (23), (24), while

2a0κRt/
√
m in (26), (27). Thus, following from the proof of Proposition 3, we get

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2a0κRt√

m
+

(a0κ)2(1− θ)
1− 4θ−1

ηt−min(θ,1−θ) log t+ cβ

(
1− θ

1− 4θ−1

)β (
1

ηt1−θ

)β
,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 2a0κRt√

m
· 9 log t+ 3(a0κ)2ηt−min(θ,1−θ) log t+

cβ
1− θ

(
1

ηt1−θ

)β
.

Recall that Rt satisfies (29), with ηt = ηt−θ, where η ≤ 1, by Lemma 11, we know that

Rt ≤
√

(a0κ)2 + 2|V |0
1− θ

√
ηt1−θ.

From the above analysis, one can conclude the proof.

We are ready to prove Corollaries 1-8.

Proof of Corollary 1. Applying Proposition 3 with θ = 0, η = η1/
√
m, we derive

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2η1(a0κ)2

t√
m3

+ 2(a0κ)2η1
log t√
m

+
2cβ

ηβ1

(√
m

t

)β
,
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and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 18η1(a0κ)2

t log t√
m3

+ 3η1(a0κ)2
log t√
m

+
cβ

ηβ1

(√
m

t

)β
.

The proof is complete.

Proof of Corollary 2. Applying Proposition 3 with η = η1, θ = 1/2, we get

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 4(a0κ)2η1

√
t

m
+ (a0κ)2η1

log t√
t

+ cβη
−β
1

1

tβ/2
,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 36(a0κ)2η1

√
t log t

m
+ 3(a0κ)2η1

log t√
t

+ 2cβη
−β
1

1

tβ/2
.

Proof of Corollary 3. Applying Proposition 3 with θ = 0 and η = η1m
− β
β+1 , we get

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2η1(a0κ)2m−

β+2
β+1 t+ 2η1(a0κ)2m−

β
β+1 log t+

2cβ

ηβ1
m

β2

β+1 t−β ,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 18η1(a0κ)2m−

β+2
β+1 t log t+ 3η1(a0κ)2m−

β
β+1 log t+

cβ

ηβ1
m

β2

β+1 t−β .

The proof is complete.

Proof of Corollary 4. Applying Proposition 3 with η = η1 and θ = β
β+1 ,

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 4(a0κ)2η1

t
1

β+1

m
+ 2η1(a0κ)2t−

β
β+1 + 2cβη

−β
1 t−

β
β+1 ,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 36(a0κ)2η1

t
1

1+β log t

m
+ 3η1(a0κ)2t−

β
β+1 log t+ 2cβη

−β
1 t−

β
β+1 .

For the above two inequalities, we used that β ∈ (0, 1], θ = β
β+1 ≤ 1/2 and 4θ−1 ≤ 1/2.

Proof of Corollary 5. Applying Proposition 4 with η = 1/
√
m and θ = 0,

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2a0κ

√
(a0κ)2 + 2|V |0

√
t

m3/4
+ 2(a0κ)2

log t√
m

+ 2cβ

(√
m

t

)β
,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 18a0κ

√
(a0κ)2 + 2|V |0

√
t log t

m3/4
+ 3(a0κ)2

log t√
m

+ cβ

(√
m

t

)β
.

The proof is complete.
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Proof of Corollary 6. Applying Proposition 4 with η = 1 and θ = 1/2, we get

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2

√
2a0κ

√
(a0κ)2 + 2|V |0

t1/4√
m

+
(a0κ)2 log t√

t
+

cβ
tβ/2

.

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 18

√
2a0κ

√
(a0κ)2 + 2|V |0

t1/4 log t√
m

+ 3(a0κ)2
log t√
t

+ 2cβ
1

tβ/2
.

Proof of Corollary 7. Using Proposition 4 with η = m−
2β

2β+1 and θ = 0, we get

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2a0κ

√
(a0κ)2 + 2|V |0m−

4β+1
4β+2

√
t+ 2(a0κ)2m−

2β
2β+1 log t+ 2cβm

2β2

2β+1 t−β ,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 18a0κ

√
(a0κ)2η + 2|V |0m−

4β+1
4β+2

√
t log t+ 3(a0κ)2m−

2β
2β+1 log t+ cβm

2β2

2β+1 t−β .

The proof is complete.

Proof of Corollary 8. Let θ = 2β
2β+1 . Obviously, θ ∈ [0, 23 ] since β ∈ (0, 1]. Thus, 1

1−θ = 2β + 1 ≤ 3, 1−θ
1−4θ−1 ≤

1
1−4−1/3 ≤ 2. Following from Proposition 4,

Ez,J [E(wt)]− inf
w∈F
E(w) ≤ 2

√
3a0κ

√
(a0κ)2 + 2|V |0

t
1

4β+2

√
m

+ 2(a0κ)2t−
min(2β,1)

2β+1 log t+ 2cβt
− β

2β+1 ,

and

Ez,J [E(wt)− inf
w∈F
E(w)] ≤ 18

√
3a0κ

√
(a0κ)2 + 2|V |0

t
1

4β+2

√
m

log t+ 3(a0κ)2t−
min(2β,1)

2β+1 log t+ 3cβt
− β

2β+1 .


