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A. Proofs

Proof of Theorem 3.6. 1) Denote by v(x, 2") = k(x,2")sq(a’)+ Vak(z,2") = Agk,(2'); applying Lemma 2.3 on k(z, -)
with fixed z,
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S(p; ) = Bz arnpl(8¢(7) — Sp(x))T

- Ex,a:"\fp[(sq(m) - sp(m))TU(l', 1'/)]

Because k(-, 2') is in the Stein class of p for any 2/, we can show that V. k(-, ') is also in the Stein class, since

/V z)Vak(z,2))de =V /V (z)k(z,2"))dz = 0,
and hence v (-, z) is also in the Stein class; apply Lemma 2.3 on v(-, z’) with fixed 2’ gives

S(p,4) = Eoarpl(34(2) — 8p(2)) T(2,2"))]
=By armpl8q(x) Tv(2,2) + trace(V,v(z, 2'))]

The result then follows by noting that V,v(z,z') = V.k(z,2")s,(2') " + Vauwk(z,2'). O
Proof of Theorem 3.7. Note that

V.k(z, ') Z)\ Vae;(x) ej(a), Vi wk(z, ') Z)\ Ve () Varej(2)T,

and hence

ug (@, ")
= 54(z) Tk(x,2")84(2") + 84(2) TVik(z,2") + 84(2") T Vok(z,2") + trace(Vy o k(z, )
= Z Aj[sq(z) Tej(@)ej(a")sq(2') + 54(x) Tej (@) Vare; (@) + s4(2) Ve (@)ej(2') + Ve, (2)  Vare;(2)]

_ Z)\ sq(1)e; () + Vae; ()] [84(a")e;(2') + Vare;(2')]
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Therefore, uq(x, ') is positive definite because A; > 0. In addition,

S(p, q) = Ey o [uq (m, x/)]
= B (@)] Bl Ages )

= Z/\jHEI[Aqej(m)m%’

Proof of Theorem 3.8. We first prove (12) by applying the reproducing property k(x,z’) = (k(x,-), k(z’, -))# on (8):

S(p: @) = Ezarnpl(8q(7) — Sp(x))T k(z,2") (s4(x") — sp(a"))]
= B wnpl(84(7) — 8p(2)) " (K(=,-), k(x,-)),, (84(z") = sp(2"))]

=D (Eal(s(2) = sp(@)k(z, )], Ew [k(z,)(s5(x) = 5, (2))]),,

d
= Z <ﬂév ﬂé>7—t
=1

= 1813,

where we used the fact that B(2') = Egop[Agky (2)] = Eppl(sq(@)k(x,2’) + Vik(z,2')] = Eu[(sq(z) —
sp(x))k(z,2")]. In addition,
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wnpltrace(Aq f ()],

where we used the fact that V, f(z) = (f(-), Vzk(x,))s; see (Zhou, 2008; Steinwart & Christmann, 2008). The
variational form (13) then follows the fact that || 8|« = maxgega {(f,B)pa, .s.t. [|fllna < 1}.
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Finally, the B(-) = E,p[(8q(2)k(x, -) + Vk(x, -)] is in the Stein class of p because k(z, -) and Vk(z, -) are in the Stein
class of p for any fixed x (see the proof of Theorem 3.6). O

Proof Proposition 3.5. For any f € H with kernel k(z, '), we have f = (f, k(-,2))y and V. f = ({f, V.k(z, ))x.
Therefore,

Ewwp[sp(x)f(x) + vmf(x)] = EZNP[SP(m)<fa k‘(l‘, )>7.[ + <f7 vwk(mv )>’H]
z,7) + Vak(z,)]),,
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where the last step used the fact that E,.,[A,k;(-)] because k;(-) = k(-, z) is in the Stein class of p for any fixed z. [

Proof of Theorem 4.1. Applying the standard asymptotic results of U-statistics in Serfling (2009, Section 5.5), we just
need to check that o2 # 0 when p # ¢ and 02 = 0 when p = q.
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We first note that we can show that E,.p[uq(x, 2’)] = trace(Aq3), where B(z) = Epp[Agk,(2")] and is in the Stein
class of p (see the proof of Theorem 3.6). Therefore, when p = ¢, we have 3(x) = 0 by Stein’s identity, and hence 02 = 0.

Assume o2 = 0 when p # ¢, we must have E,/,[u,(z,2")] = ¢, where c is a constant. Therefore,
c=E;yq (Ew’fvp[uq(mv -73/)]) =Eupnp (wavq[uq(m> -73/)])
Because we can show that E,.4[u, (2, z")] = 0 following the proof above for p = ¢, we must have ¢ = 0, and hence
S(pq) = Eznp (]Ex/Np[uq(x, x’)]) =c=0,

which contradicts with p # q.

O
Proof of Theorem 5.1. (19) is obtained by applying Cauchy-Schwarz inequality on (8),
S(p,9)? = [Evar [(84(2) — 8p(2)) k(. 2") (54(2) — 8p(2))]>
< Eor [k(2,2')°] - Eor[[(84(2) — 8p(2)) " (84(2") = 8p(2")))?]
<E I[k(af,w )]+ Eowlllsq(z) = sp(@)lI3 - [I84(2) — sp(2)I[3]
wor[k(z, )% - F(p, )
To prove (20), we simply note that (13) is equivalent to
S(p.q) = max {Epusq(x) —5,(@) F(@)] st || Fllna < 1}.
feH
Taking f = (sq — 8p)/|/8¢(x) — 8p(2)|| 5« then gives (20). O

Proposition A.1. Let F(p) = L2(p) N S(p), where S(p) represents the Stein class of p, then we have

F(p,q) = max {]Ep[trace(Aqf(I))] s.t. Ep[|f(z)||§]§1}.

fer(p)?
and the equality holds when s, — s, € F(p)®.

Note that £2(p) is larger than the Stein class and RKHS, and includes discontinuous, non-smooth functions, and hence we
need to ensure f is in the Stein class explicitly.

Proof. Denote by (L2(p))? = L2(p) x --- x L2(p), note that by the definition of F(p, q), we have

R =, o {ZE Fa)(sifo) = @] st BN <1} (a1
Restricting the maximizing to F(p)¢ and applying Lemma 2.3 would give the result. O
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