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Abstract

We learn the structure of a Markov Network be-
tween two groups of random variables from joint
observations. Since modelling and learning the
full MN structure may be hard, learning the links
between two groups directly may be a preferable
option. We introduce a novel concept called the
partitioned ratio whose factorization directly as-
sociates with the Markovian properties of ran-
dom variables across two groups. A simple one-
shot convex optimization procedure is proposed
for learning the sparse factorizations of the par-
titioned ratio and it is theoretically guaranteed
to recover the correct inter-group structure un-
der mild conditions. The performance of the pro-
posed method is experimentally compared with
the state of the art MN structure learning methods
using ROC curves. Real applications on analyz-
ing bipartisanship in US congress and pairwise
DNA/time-series alignments are also reported.

1. Introduction

An undirected graphical model, or a Markov Network
(MN) (Koller & Friedman, 2009; Wainwright & Jordan,
2008) has a wide range of applications in real world, such
as natural language processing, computer vision, and com-
putational biology. The structure of MN, which encodes
the interactions among random variables, is one of the
key interests of MN learning tasks. However, on a high-
dimensional dataset, learning the full MN structure can be
cumbersum since we may not have enough knowledge to
model the entire MN, or our application only concerns a
specific portion of the MN structure.
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Figure 1. An illustration of a full MN (left) and PMN (right). Full
MN models all the connections among random variables, while
PMN only models the interactions between groups (red edges)
and does not care connections within groups.

Rather than considering the full MN structure over the
complete set of random variables, we focus on learning a
portion of the MN structure that links two groups of ran-
dom variables, namely the Partitioned Markov Network
(PMN). PMN is suitable for describing the “inter-group
relations”. For example, politicians in US Congress are
naturally grouped into two parties (Democrats and Repub-
licans). Learning a PMN on congresspersons via their
voting records will reveal bipartisan collaborations among
them. A full gene network may have complicated structure.
However if genes can be clustered into a few homologous
groups, PMN can help us understand how genes in different
functioning groups interact with each other. An illustration
of a full MN and a PMN is shown in Figure 1.

Since a PMN can be regarded as a “sub-structure” of a full
MN, a naive approach may be learning a full MN over the
complete set of random variables and figuring out its PMN.
In fact, the machine learning community has seen huge pro-
gresses on learning the sparse structures of MNs, thanks to
the pioneer works on sparsity inducing norms (Tibshirani,
1996; Zhao & Yu, 2006; Wainwright, 2009).

A majority of the previous works fall into the category of
the regularized maximum likelihood approach which max-
imizes the likelihood function of a probabilistic model un-
der sparsity constrains. Graphical lasso (Friedman et al.,
2008; Banerjee et al., 2008) considers a joint Gaussian
model parameterized by the inverse covariance matrix,



Learning Partitioned Markov Networks

where zero elements indicate the conditional independence
among random variables, while others have developed use-
ful variations of graphical lasso in order to loosen the Gaus-
sianity assumed on data (Liu et al., 2009; Loh & Wain-
wright, 2012). SKEPTIC (Liu et al., 2012) is a semi-
parametric approach that replaces the covariance matrix
with the correlation matrix, such as Kendall’s Tau in MN
learning.

The latest advances along this line of research has been
made by considering a node-wise conditional probabilis-
tic model. Instead of learning all the structures in one shot,
such a method focuses on learning the neighborhood struc-
ture of a single random variable at a time. Maximizing the
conditional likelihood leads to simple logistic regression
(in the case of the Ising model) (Ravikumar et al., 2010) or
linear regression (in the case of the Gaussian model) (Mein-
shausen & Biihlmann, 2006).

Unfortunately, the maximum (conditional) likelihood
method can be difficult to compute for general non-
Gaussian graphical models, since computing the normal-
ization term is in general intractable. Though one may use
sampling such as Monte-carlo methods (Robert & Casella,
2005) to approximate the normalization term, there is no
universal guideline telling how to choose sampling param-
eters so that the approximation error is minimized.

A more severe problem is that sparsity approaches may
have difficulties when learning a dense MN. Specifically,
the samples size required for a successful structure re-
covery grows quadratically with the number of connected
neighbors (Raskutti et al., 2009; Ravikumar et al., 2010).
However, it is quite reasonable to assume that in some ap-
plications, one node may have many neighbors within its
own group while connections to the other group are sparse:
a congressperson is very well connected to other members
inside his/her party but has only a few links with the oppo-
sition party. Genes in a homologous group may have dense
structure but they only interact with another group of genes
via a few ties.

Is there a way to directly obtain the PMN structure? Nei-
ther maximizing a joint nor conditional likelihood take the
“partition information” into account and interactions are
modelled globally. However PMN encodes only the lo-
cal conditional independence between groups, and the re-
quirement for obtaining a good estimator should be much
milder.

The above intuition leads us to a novel concept of the Par-
titioned Ratio (PR). Given a set of partitioned random vari-
ables X = (X1,X2), PR is the ratio between the joint
probability P(X) and the product between its marginals
P(X1)P(X2),1ie. %. In the same way that the
joint distribution can be decomposed into clique potentials

of MN, we prove PR also factorizes over subgraph struc-
tures called passages, which indicate the connectivity be-
tween two groups of random variables X1 and X2 in a
PMN.

Conventionally, PR is a measure of the independence be-
tween two sets of random variables. In this paper, we show
that the factorization of this quantity indicates the linkage
between two groups of random variables, which is a natural
extension of the regular usage of PR.

Most importantly, we show the sparse factorization of this
quantity may be learned via a one shot convex optimiza-
tion procedure, which can be solved efficiently even for the
general, non-Gaussian distributions. The correct recovery
of sparse passage structure is theoretically guaranteed un-
der the assumption that the sample size increases with the
number of passages which is not related to the structure
density of the entire MN.

This paper is organized as follows. In Section 2, we re-
view the Hammersley and Clifford theorem (Section 2.1)
and define some notations as preliminaries (Section 2.2).
The factorization theorems of PMN are introduced in Sec-
tion 3 with a few simplifications. We give an estimator
to obtain the sparse factorization of PR in Section 4 and
prove its recovered structure is consistent in Section 5. Fi-
nally, experimental results on both artificial and real-world
datasets are reported in Section 6.

2. Background and Preliminaries

In this section, we review the factorization theorems of
MN. We limit our discussions on strictly positive distribu-
tions from now on. A graph is always assumed to be finite,
simple, and undirected.

2.1. Background and Motivation

Definition 1 (MN). For a joint probability P(X) of ran-
dom variables X = {X1,Xa,...,Xm}, if for all i
P(Xi\X;) = P(Xi|Xn@)), where Xy is the neigh-
bors of node X; in graph G, then P is an MN with respect
to G.

Definition 2 (Gibbs Distribution). For a joint distribution

P on a set of random variables X, if the joint density can
be factorized as

P(X) Z% I ¢cxe)

CeC(G)

where Z is the normalization term, C(Q) is the set of com-
plete subgraphs of G and each factor ¢¢ is defined only on
a subset of random variables X ¢, then P is called a Gibbs
distribution that factorizes over G.

Theorem 1 (See e.g., Hammersley & Clifford (1971)). If
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Figure 2. If (I) is an MN over X, then (I), (II), (III) are all PMNs
over X. If (I) is a PMN over X, (I), (I), (II) are not necessarily
the MN over X (but still PMNs over X).

P is an MN with respect to G (Definition 1), then P is a
Gibbs distribution that factorizes over G (Definition 2)

Theorem 2 (See e.g., Koller & Friedman (2009)). If Pisa
Gibbs distribution that factorizes over G then P is an MN
with respect to G.

Theorems 1 and 2 are the keystones of many MN structure
learning methods. It states, by learning a sparse factoriza-
tion of a joint distribution, we are able to spot the structure
of a graphical model. However, learning a joint distribu-
tion has never been an easy task due to the normalization
issue and if the task is to learn a PMN that only concerns
conditional independence across two groups, such an ap-
proach seems to “solve a more general task as an interme-
diate step”(Vapnik, 1998).

Does there exist an alternative to the joint distribution,
whose factorization relates to the structure of PMN? Ide-
ally, such factorization should be efficiently estimated from
samples with a tractable normalization term and the estima-
tion procedure should provide good statistical guarantees.

In the rest of the paper, we show PR has the desired prop-
erties to indicate the structure of a PMN: It is factorized
over the structure of a PMN (Section 3) and easy to esti-
mate from joint samples (Section 4) with good statistical
properties (Section 5).

2.2. Definitions

Notations. Sets are denoted by upper-case letters, e.g.,
A, B. An upper-case with a lower-case subscript A; means
the i-th element in A. Set operator A\ B means excluding
set B from set A. \ B means the whole set excluding the set
B. A = (Al, A2) is a partition of set A and an upper-case
followed by an integer number, e.g. A1, A2 means groups
divided by such a partition. Given a graph L = (N, E)
and a subgraph K C L, Ng or Ex denotes the subset of
N or E whose elements are indexed topologically by K.
Upper-case with bold font, e.g. K, is a set of sets.

Figure 3. (Left) ABCD and (Right) AB...Z are two passages.

PMN and Gibbs Partitioned Ratio. Now, we formally
define a graph G = (X, E), where X is a set of random
variables and X = (X1,X2),ie. X1NX2=0,X1U
X2 = X and X1, X2 # (). The concept of PMN can now
be defined.

Definition 3 (PMN). For a joint probability P(X
(X1,X2), if

) X =

P(X;|X1U Xyi)\Xs) = P(Xi|\X;),VX; € X1, (1)
P(X;|X2U Xni)\Xi) = P(Xi|\X3),VX; € X2, (2)

then P is a PMN with respect to G.

The following proposition is a consequence of Definition
3, and an example is visualized in Figure 2.

Proposition 1. If P is an MN with respect to G, then P is
a PMN with respect to G, but not vice versa.

Proposition 2. If P is a PMN with respect to G,
X, € X1,X, € X2, and v ¢ N(u), then X,, L
Xo \{Xu, Xo}.

See Appendix A for the proof.

The concept of Passage is defined as follows:

Definition 4 (Passage). Let X = (X1, X2). We define a
passage B of G as a subgraph of G, such that Xg N X1 #
0, XpNX2#0,and VX, € (X110 Xp),¥X, € (X2N
Xp), we have edge (X, X,) € Ep.

Here we highlight two of the passage structures of two
graphs in Figure 3.

From definition, we can see all cliques that go across two
groups are passages, but not all passages are cliques:

Proposition 3. Ler X = (X1, X2). Given a passage B
of G, B is a complete subgraph if and only if VX,,X, €
XpNX1,edge (X,,X,) € EpandvX,, X, € XpNX2,
edge (X, X,) € Ep.

As an analogy to a Gibbs distribution used in the
Hammersley-Clifford Theorem, we define the Gibbs par-
titioned ratio.
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Definition 5 (Gibbs Partitioned Ratio). For a joint distri-
bution P over X = (X1, X2), if the partitioned ratio has

the form
P(X1, X2 1
il ot bkl (X
P(X1)P(X H ¢B 2
BeB
where B(G) is the set of all passages in G, then
% is called the Gibbs partitioned ratio (GPR)

over G.

3. Factorization over Passages

In this section, we will investigate the question: can we
have a similar factorization theorem like Theorems 1 and 2
for PMN? If so, learning the sparse factorization of PR may
reveal the Markovian properties among random variables.

3.1. Fundamental Properties

There are two steps for introducing our factorization theo-
rems. The first step is establishing the Markovian property
of random variables using the factorization of PR.

Theorem 3. Given X = (X1, X2), if PR %

a GPR over a graph G then P is a PMN with respect to G.

See Appendix B for the proof.

Next, let us prove the other direction: From the Markovian
property to the factorization.

Theorem 4. Given X = (X1,X2), if P is a PMN with

respective to a graph G, then % is a GPR over
G.

See Appendix C for the proof.

Simply, the factorization of a GPR is only related to the
“linkage” (or rigorously, passages) between two groups.
Interestingly, if we have an MN whose groups are linked
via a few “bottleneck” passages, then the factorization is
simply over those sparse passages, no matter how densely
the graph are connected within each group. This gives
PMN a significant advantage over traditional MN in terms
of modelling: If the interactions between groups are sim-
ple (e.g. linear), we do not need to care the interactions
within groups, even if they are highly complicated (e.g.
non-linear). For example, in the bipartisan analysis prob-
lem, a PR over congresspersons can be represented only
via a few cross-party links, and a large chunk of connec-
tions between congresspersons within their own party can
be ignored, no matter how complicated they are.

Theorems 3 and 4 point out a promising direction for struc-
tural learning of a PMN: Once the sparse factorization of a
GPR is learned, we are able to recover the sparse passages
of a PMN partitioned into two groups.

3.2. Simplification of Passage Factorization

The Hammersley-Clifford theorem (Theorem 1) shows P
factorizes over cliques of G, given P is an MN with respect
to GG. However, if one does not know the maximum size of
cliques, the model of a probability function has to consider
factors on all potential cliques, i.e., all subsets of X. It is
unrealistic to construct a model with 2/ factors under the
high-dimensional setting.

Therefore, a popular assumption called “pairwise MN”
(Koller & Friedman, 2009; Murphy, 2012) has been widely
used to lower the computational burden of MN structure
learning. It assumes that in P, all clique factors can be
further recovered using only bivariate and univariate com-
ponents which give rise to a pairwise model with only
(|X|* + | X])/2 factors. Some well known MNs, such as
Gaussian MN and Ising model are all examples of pairwise
MNS.

Similar issues also happen when modelling GPR. There are
(21X —1)(21%21 —1) possible passage potentials for the set
of random variables X = (X1, X2). Following the same
spirit, we can consider a simplified model of PR by assum-
ing that all passage potentials of the GPR must factorize in
a pairwise fashion, i.e.:

Definition 6 (Pairwise PR). For a joint distribution P over
X = (X1, X2), if the partitioned ratio has the form

P(X1, X2
—ols) (X
P(X1)P(X Bel};[(G) ¢5(Xs)
1
;I

BeB(G) Xu,XvE€EXB,ulv

hu,v(Xu» Xv)

then % is called the pairwise Gibbs partitioned

ratio (pairwise PR) over G.

If we can assume the GPR we hope to learn is also a pair-
wise PR, the model may only contain (| X|? +|X|)/2 pair-
wise factors, and is much easier to construct.

In fact, pairwise PR does not have straightforward relation-
ship with pairwise MN, i.e., a PR of a pairwise MN may
not be a pairwise PR, meanwhile the joint distribution cor-
responding to a pairwise PR may not be a pairwise MN,
since the pairwise MN and the pairwise PR apply the same
assumption on the parameterizations of two fundamentally
different quantities, the joint probability and the PR respec-
tively.

Whether one should impose such an assumption on joint
probability or PR is totally up to the application, as neither
parameterization is always superior to the other. If the ap-
plication focuses on learning the connections between two
groups, we believe imposing such an assumption on PR di-
rectly is more sensible.

)
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However, as a special case, a joint Gaussian distribution is
a pairwise MN, and its PR is also a pairwise PR.

Proposition 4. If P over X = (X1, X2) is a zero-mean

Gaussian distirbution, then the PR % is a pair-
wise PR.

Since the Gaussian distribution factorizes over pairwise po-
tentials, and the marginal distribution P(X1) and P(X?2)
are still Gaussian distributions. From the construction of
the potential function (6) in the proof of Theorem 4, we
can verify this statement. Moreover, one can show it has the
pairwise factor A, , (X, X,) = exp(6y,v - XuXy), Where
0., 1s the parameter.

This pairwise assumption together with factorization theo-
rems motivate us to recover the structure of PMN by learn-
ing a sparse pairwise PR model: For any X,, € X1, X, €
X2, if X, X, appear in the same pairwise factor of a PR
model, they must be at least involved in one of the passage
potentials.

4. Estimating PR from Samples

To estimate PR using such a model, we require a set of
samples

{zy P g e R™,
and each sample vector () is a joint sample, i.e. () =

(wg ), Ty )) where 1, x5 are subvectors corresponding to

two groups.
We define a log-linear pairwise PR model g(x; 0):

exp ZG P(xy))

u<v

g(x;0) :=

where 0, , € R? is a column vector,

0=(0],....0]

T T T
1m702,37"'702,m7 . 0

m—1m

)T

)

and 1 is a vector valued feature function 7 : R? — RP.
Notice that we still have to model all pairwise features in ,
but the vast majority of these pairs are going to be nullified
due to Theorem 4 if links between two groups are sparse.

N(0) is defined as a normalization function of g(x; 6):
N©) = [ plenpe) explY 6 bz, O)
u<v

where p(x1) and p(a2) are the marginal distributions of
p(z), so it is guaranteed that [ p(x1)p(x2)g(x; 0)de = 1.

N(0) in (3) can be approximated via two-sample U-
statistics (Hoeffding, 1963) using the dataset,

Zexp ZO

j;ék: u<v

N(B) ~ N (i),

where xV'*! is a permuted sample: xU-* = (w(lj), a:ék)).

Notice that the normalization term N (@) in (3) is an inte-
gral with respect to a probability distribution p(x1)p(x2).
Though we do not have samples directly from such a distri-
bution, U-statistics help us “simulate” such an expectation
using joint samples. In Maximum Likelihood Estimation,
density models are in general hard to compute since their
normalization term is not with respect to a sample distribu-
tion. In comparison, N(0) can always be easily approxi-
mated for any choice of 1. This gives us the flexibility to
consider complicated PR models beyond the conventional
Gaussian or Ising models.

This model can be learned via the algorithm of maxi-
mum likelihood mutual information (MLMI) (Suzuki et al.,
2009), by simply minimizing the Kullback-leibler diver-
gence between p(x) and pg(x) = p(x1)p(x2)g(x; 0):

6 = argmin KL|[p||ps].
0

Substitute the model of g(; €) into the above objective and
approximate N (0) by N(8), then the estimated parameter
6 is obtained as

= argmln Z Z 0

i=1 u<v

)) +log N(8) +C,

Ly (0)

where C is some constant. From now on, we denote
Ivimi (0) as the negative likelihood function. Due to Theo-
rem 4 and our parametrization, if the passages between two
groups are rare, then 0 is very sparse. Therefore, we may
use sparsity inducing group-lasso penalties (Yuan & Lin,
2006) to encourage the sparsity on each subvector 8, ,:

6 = argmin by (0) + A Y (16,0 ]l- 4)
o u<v

This objective is convex, unconstrained, and can be easily
solved by standard sub-gradient methods. A is a regulariza-
tion parameter that can be tuned via cross-validation.

Now let us define the “true parameter” 8", such that p(z) =
q(z)g(z;0"). The learned parameter 6 is an estimate of
0", where 6, , is non-zero on pairwise features that are at
least involved in one of the passage potentials. Moreover,
as Theorem 3 and Proposition 2 show, if X,, € X1 and
X, € X2 are not in any of the passage structures, i.e.,
6, , =0, then X, I X,[\{Xu, X,}.

Given the optimization problem (4), it is natural to consider
the structure recovery consistency, i.e., under what condi-
tions, the sparsity pattern of @ is the same as that of 8*?
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5. High-dimensional Structure Recovery
Consistency

To better state the structure recovery consistency theorem,
we use new indexing system with respect to the sparsity
pattern of the parameter. Denoting the pairwise index set
as H = {(u,v)|u > v}, two sets of subvector indices can
be defined as S = {t' € H | ||0;| # 0},5° = {t" €
H | ]|6;/|| = 0}. We rewrite the objective (4) as

0 = argmin £(0) + A, > _ 0]+ An D> 64l (5)
o t'es trese

Similarly we can define S and S¢. From now on, we sim-
plify KMLMI(H*) as Z(O*)
Now we state our assumptions.

Assumption 1 (Dependency). The minimum eigenvalue
of the submatrix of the log-likelihood Hessian is lower-
bounded:

Amin(vesvesé(e*)) Z Amin > Oa

with probability 1, where Ay, is the minimum-eigenvalue
operator of a symmetric matrix

Assumption 2 (Incoherence).

max
trese

[Vo,, Vost(6%)] [vgsvgse(e*)rlHl <l-a,

with probability 1, where 0 < a < 1, and |[Y|:1 =

Zi,j ||Ym‘||1~

The first two assumptions are common in the literatures of
support consistency. The first assumption guarantees the
identifiability of the problem. The second assumption en-
sures the pairwise factors in passages are not too easily af-
fected by those are not in any passages. The third assump-
tion states the likelihood function is “well-behaved”.

Assumption 3 (Smoothness on Likelihood Objective). The
log-likelihood ratio £(0) is smooth around its optimal
value, i.e., it has bounded derivatives

max HVQE(H* + 6)” < Amax < 00,
s, \I8(I<(|6*]|

2/ n*
%5 . (Ve VEUO" + 8)] < Mg ma < oo,

with probability 1.

[Ill, |l are the spectral norms of a matrix and a tensor
respectively (See e.g., Tomioka & Suzuki (2014) for the
definition of the spectral norm of a tensor).

Assumption 4 (Bounded PR Model). For any vector § €
R%™O7) such that ||8|| < ||@*||, the following inequality
holds:

0 < Chin < g(x;0) < Crpax < 00,

Yt e (SUS°).

max’

C max
IFelloe < == and | £, < CF,,

This assumption simply indicates our PR model is bounded
from above and below around the optimal value. Though it
rules out the Gausssian distribution whose PR is not neces-
sarily upper/lower-bounded, as a theory of generic pairwise
models, we think it is acceptable.

Theorem 5. Suppose that Assumptions 1, 2, 3, and 4 are

satisfied as well as mineg [|07]| > = /|S[\n. Suppose

also that the regularization parameter is chosen so that

24(2 — @) [ Mlog mm
« n

< An,

where M is a positive constant. Then there exist some con-
stants L, K; and Ky such that if n > L|S|*log mz%
with the probability at least 1 — K1 exp (—Kg /\%”) MLMI
in (5) has the following properties:

e Unique Solution: The solution of (5) is unique.

e Successful Passage Recovery: S = S and Se = §e,

m24

o |66 =0/ =),

n

The proof of Theorem 5 is detailed in Appendix D.
Since the PR function is a density ratio function be-
tween p(x) and p(x1)p(x2), and (5) is also a sparsity in-
ducing Kullback-Leibler Importance Estimation Procedure
(KLIEP) (Sugiyama et al., 2008), the previously developed
support consistency theorem (Liu et al., 2015; 2016) can
be applied here as long as we can verify a few assumptions
and lemmas.

The sample size required for the proposed method in-
(m*+m)

creases with log m (since log ~—5— < 2logm if m > 2
) and the estimation error on 6 vanishes at the speed of
logm

>—. They are the same as the optimal rates obtained in

previous researches for Gaussian graphical model structure
learning (Ravikumar et al., 2010; Raskutti et al., 2009).

This theorem also indicates that the sample size required
is not influenced by the structural density of the entire MN
structure, but by the number of pairwise factors in the pas-
sage potentials. This is encouraging since we are allowed
to explore PMNs with dense groups which would be hard
to learn using conventional methods.

6. Experiments

Unless specified otherwise, we use pairwise feature func-
tion ¢ (xy, x,) = x,x,. Note this does not mean we as-
sume the Gaussianity over the joint distribution, since this
is a parameterization of a PR rather than a joint distribution.

6.1. Synthetic Datasets

We are interested in comparing the proposed method with a
few possible alternatives: LL (Meinshausen & Biihlmann,
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3w m w4
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(c) ROC of Gaussian Dataset

(d) ROC of “Diamond” Dataset

Figure 4. Synthetic experiments

2006; Ravikumar et al., 2010), SKEPTIC (Liu et al., 2012)
and Diff (Zhao et al., 2014): A direct difference estima-
tion method that learns the differences between two MNs
without learning each individual precision matrix sepa-
rately. In this paper, we employed this method to learn
the differences between two Gaussian densities: p(x) and

p(z1)p(x2).

We first generate a set of joint samples {z(9}°0, ~
N (0,071, where ® € R0 and is constructed in two
steps. First, create

O = pli=Il\/ij, i,j <40ori,j > 40,
i 0, Otherwise,

where 0 < p < 1 is a coefficient controlling the dom-
inance of the diagonal entries. Second, let A be the
15t smallest eigenvalue of ®, and fill the submatrices
O41,...50},{31,....40} and O3y 40y (41,... 501 With ATy,
where I is a 10 x 10 identity matrix. By such a con-
struction, we have created two groups over X: X =
(X{1,....40y» Xqa1,...50y) and 10 passages between them.
Notably, within two groups, the precision matrix is dense,
and random variables interact with each other via powerful
links when p is large. An example of ® when p = 0.8
is plotted in Figure 4(a). We measure the performance of
three methods using the True Postive Rate (TPR) and True
Negative Rate (TNR). The detailed definition of TPR and
TNR is deferred to Appendix, E.

The ROC curve in Figure 4(c) can be plotted by adjusting
the sensitivity of each method: Tuning the regularization
parameter of the proposed method and LL, or the threshold
parameter of Diff.

As we can see, the proposed method has the best overall
performance on all p choices, comparing to both LL and
Diff. Also, as the links within each group get more and
more powerful (by increasing p), the performance of LL
and Diff decay significantly, while the proposed method
almost remain unchanged.

As the proposed method is capable of handling complex
models, we draw 50 samples from a 52-dimensional “di-
amond” distribution used in (Liu et al., 2014) where the
correlation among random variables are non-linear. To
speed-up the sampling procedure, the graphical model of
this distribution is constructed by concatenating 13 simple
4-variable MNs whose density functions are defined as

P(Tay T, Tey Tg) X EXP (—pxixf, — DX Te — .5xba:d) N,

where N is short for a normal density N(0,.514) over
ZTa,Tp, T and x4. Notice this distribution does not have
a closed form normalization term. The graphical model
of such a distribution is illustrated in Figure 4(b). In
this experiment, the coefficient p is used to control the
strength of inter-group interactions (z, <> x3), and we set
(x4, T,) = 2222, Other than LL, we include SKEPTIC
due to the non-Gaussian nature of this dataset. The perfor-
mance is compared in Figure 4(d) using ROC curves.

The correlation among random variables are completely
non-linear. As the power of interactions on passages in-
creases, LL performs worse and worse since it still relies
on the Gaussian model assumption. Thanks to the correct
PR model, the proposed method performs reasonably well
and gets better when p increases. As the density model
does not fit into the Gaussian copula model, SKEPTIC also
performs poorly.

6.2. Bipartisanship in 109" US Senate

We use the proposed method to study the bipartisanship
between Democrats and Republicans in the 109** US Sen-
ate via the recorded votes. There were totally 100 senators
(45 Democrats and 55 Republicans) casting votes on 645
questions with “yea”, “nay” or “not voting”. The task is to
discover the cross-party links between senators. We con-
struct a dataset {z(V}94% ~ X using all 645 questions as
observations, where each observation € {1,—1,0}1%°
corresponds to the votes on a single question by 100 sena-
tors, and random variables X = (X(1, 451, X {46,100} )
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Figure 5. Bipartisanship in 109*" US Senate. Prefix “(D)” or
“(R)” indicates the party membership of a senator. Red: positive
influence, Blue: negative influence. Edge widths are proportional
t0 [0u,v].

are senators partitioned according to party memberships.

We run the proposed method directly on this dataset, and
decrease A from 10 until |S| > 15. To avoid complication,
we only plot edges that contain nodes from different groups
in Figure 5.

It can be seen that Ben Nelson, a conservative Demo-
crat, who “frequently voting against his party” (Wikipedia,
2016a), has multiple links with the other side. On
the right, Democrat Tom Carper tends to agree with
Republican Lincoln Chafee. Carper collaborated with
Chafee on multiple bipartisan proposals (Press-Release,
a;b) while Chafee, who “support for fiscal and social poli-
cies that often opposed those promoted by the Republican
Party” (Wikipedia, 2016b) finally switched his affiliation to
Democratic in 2013. Interestingly, we have also observed
a cluster of senators who tend to disagree with each other.

6.3. Pairwise Sequences Alignment

PMN can also be used to “align” sequences. Given a pair
of sequences where points are collected from the domain
X, we pick sequence 1 and construct the dataset by slid-
ing a window sized n toward future, until reaching the end.
Suppose there are m; windows generated, then we can cre-
ate a dataset {wgz)}?zl, x € X™. Similarly, we construct
another dataset {mg) 1, € X™2 on sequence 2, and
make joint samples by letting (") = (mgi), mg)) After
learning a PMN over two groups, if X, and X, are con-
nected, then we regard the elements in the u-th window and
the elements in the v-th window are “aligned”. See Figure
7 in Appendix for an illustration.

We run the proposed method to learn PMNs over two
datasets: Twitter keyword count sequences (Liu et al.,
2013) and Amino acid sequences with Genebank ID:
AADO01939 and AAQ67266. The results were obtained by
decreasing A from 10 so | S| > 15.

For the Twitter dataset, we collect normalized frequen-
cies of keywords as time-series over 8§ months, during the

June 15, Obama addresses at Oval Office; June 16, Obama meets BP executives.

"Obama"

"Spill"

Feb1 Mar1 Apr1 May1 Jun1 Jul1 Aug1 Sep1 Oct1

(a) Twitter keyword frequency time-series alignments. n =

50, m = 962 and X = R.
R REn | W II+I

| | Intervals found by Needleman-Wunsch (NW) algorithm

\
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(b) Amino acid sequence alignments between AAD01939 (human)
and AAQ67266 (fly). n = 10,m = 592, ¢(zi,z;) = 6(xs, ;)
and X = {amino acid dictionary}.

Figure 6. Sequence alignment. For two aligned windows with
size n, we plot n gray lines between two windows linking each
pair of elements. Since lines are so close to each other, they look
like “gray shades” on the plot. The color box contains the region
of consecutively aligned windows.

event “Deepwater Horizon oil spill” in 2010. We learn
alignments between two pairs of keywords: “Obama” vs.
“Spill” and “Spill” vs. “BP”. The results are plotted in Fig-
ure 6(a) where we can see the sequences of two pairs are
aligned well in chronological order. The two popular key-
words, “BP” and “Spill” are synchronized throughout al-
most the entire event while “Spill” and “Obama” are only
synchronized later on after he delivered his speech in Oval
Office on this crisis on June 15th, 2010.

The next experiment uses two amino acid string sequences,
consisting codes such as ‘V’, ‘I’, ‘L’ and ‘F’, etc. Fig-
ure 6(b) shows that the proposed method has successfully
identified the aligned segment between eyeless gene of
Drosophila melanogaster (a fruitfly) and human aniridia
genes. The same segment is also spotted by widely used
Needleman-Wunsch (NW) algorithm (Needleman & Wun-
sch, 1970) with statistical significance.
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