
A ranking approach to global optimization

A. Proofs of Section 2
Proof of proposition 1. (RANKING EQUIVALENCE) Let h ∈ C0(X ,R) be any continuous function defined on X and
taking values in R and let f : X → R be any function defined on X and taking values in R.

(⇐) Assume that there exists a strictly increasing function ψ : R → R such that h = ψ ◦ f . Pick any (x, x′) ∈ X 2 and
let sgn : R → {−1, 0, 1} be the standard sign function defined by sgn(x) = 1{x > 0} − 1{x < 0}. Using the fact that
h = ψ ◦ f where ψ is a strictly increasing function directly gives that,

rh(x, x′) = sgn(ψ ◦ f(x)− ψ ◦ f(x′)) = sgn(f(x)− f(x′)) = rf (x, x′).

(⇒) Assume that rf (x, x′) = rh(x, x′) for all (x, x′) ∈ X 2. First case: if rf (x, x′) = rh(x, x′) = 0 for all (x, x′) ∈ X 2,
f = c and h = c′ are constant over X and therefore h = ψ ◦ f where ψ : x 7→ x+ (c′− c) is a strictly increasing function.
Second case: assume that h is not a constant function and introduce the function M : X → [0, 1] defined by

M(x) =

∫
x′∈X

1{rf (x, x′) < 0} dx′ = µ({x′ ∈ X : f(x′) < f(x)}).

We start to show that there exists a strictly increasing function ψ : R → R such that f = ψ ◦M . To properly define this
function, we first show (by contradiction) that for any pair of points (x1, x2) ∈ X 2 satisfyingM(x1) = M(x2) necessarily
f(x1) = f(x2). Let (x1, x2) ∈ X 2 be a pair of points satisfying M(x1) = M(x2) and assume that f(x1) < f(x2).
The equality of the rankings implies that (i) h(x1) < h(x2), (ii) M(x1) = µ({x : h(x) < h(x1)}) and (iii) M(x2) =
µ({x : h(x) < h(x2)}). Putting (i), (ii) and (iii) altogether and using the continuity of the function h leads to the next
contradiction:

M(x1) = µ({x ∈ X : h(x) < h(x1)}) < µ({x ∈ X : h(x) < h(x2)}) = M(x2).

Assuming that f(x2) < f(x1) leads to a similar contradiction. We deduce that for any (x1, x2) ∈ X 2 satisfying M(x1) =
M(x2), necessarily f(x1) = f(x2). As a direct consequence, for any y ∈ Im(M), the function f is constant over the iso
level setM−1(y) = {x ∈ X : M(x) = y} of the functionM . We are now ready to introduce the function ψ̄ : Im(M)→ R
defined by,

ψ̄ : y 7→ f(x) where x ∈M−1(y).

Now, note that for any x ∈ X we have that ψ̄(M(x)) = f(x). Using the same statement gives us that ψ̄(y1) < ḡ(y2) for
any y1 < y2 ∈ Im(M)2. Therefore, f = ψ ◦M where ψ : R → R is any strictly increasing extension of the function
ψ̄ : Im(M) → R over R. Reproducing the same steps with the function h gives us that there exists a strictly increasing
function ψ′ : R → R such that h = ψ′ ◦M . Combining those results, we finally get that h = ψ′ ◦M = (ψ′ ◦ ψ−1) ◦ f
where (ψ′ ◦ ψ−1) is a strictly increasing function. �

B. Proofs of Section 3
In the first subsection, we recall the main definitions and provide some technical lemmas that will be used to prove the
main statements presented in the second subsection.

B.1. RankOpt process, PAS process and technical lemmas

Definition 5. (RANKOPT PROCESS) Let X ⊂ Rd be any compact and convex set, let R ⊆ R∞ be any set of rankings
and let f : X → R be any function such that rf ∈ R. The sequence {Xi}ni=1 is distributed as a RANKOPT process if the
sequence has the same distribution as the process defined by:{

X1 ∼ U(X )

Xt+1| {Xi}ti=1 ∼ U(Xt) ∀t ∈ {1 . . . n− 1}

where Xt = {x ∈ X : ∃r ∈ Rt, r(x,Xı̂t) ≥ 0} denotes the sampling area of the RANKOPT algorithm at iteration
t + 1, Rt = {r ∈ R : Lt(r) = 0} denotes the set of rankings that are still consistent with the sample and ı̂t ∈
arg maxi=1...t f(Xi) denotes the index of the best value observed so far.
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Lemma 1. Using the same notations and assumptions as in Definition 5, for all t ∈ {1 . . . n}, we have that

Xf(Xı̂t )
⊆ Xt ⊆ X ,

where Xt denotes the sampling area of the RANKOPT process after t iterations (see Definition 5) and Xf(Xı̂t )
= {x ∈ X :

f(x) ≥ f(Xı̂t)} denotes the level set of the best value observed so far.

Proof. Noticing that Xt is a subset of X gives the first inclusion. We now state the second inclusion. Since the true
ranking rf always perfectly ranks the sample, we have that rf ∈ {r ∈ R : Lt(r) = 0} = Rt for any t ∈ {1 . . . n}.
Now, pick any x ∈ {x ∈ X : f(x) ≥ f(Xı̂t)}. Using the definition of the true ranking rf , we get that rf (x,Xı̂t) =
sgn(f(x) − f(Xı̂t)) ≥ 0. Therefore, there exists r = rf ∈ Rt such that r(x,Xı̂t) ≥ 0 and we deduce that {x ∈ X :
f(x) ≥ f(Xı̂t)} ⊆ {x ∈ X : ∃r ∈ Rt s.t. r(x,Xı̂t) ≥ 0}.

Definition 6. (PURE ADAPTIVE SEARCH PROCESS (Zabinsky & Smith, 1992) ). Let f : X → R be any function such
that rf ∈ R. The sequence {X?

i }ni=1 is distributed as a PURE ADAPTIVE SEARCH (PAS) process if the sequence has the
same distribution as the Markov process defined by:{

X?
1 ∼ U(X )

X?
t+1| X?

t ∼ U(X ?t ) for t ∈ {1 . . . n− 1},

where X ?t = {x ∈ X : f(x) ≥ f(X?
t )} denotes the sampling area of the PAS process (which is also the level set of the

best value observed so far).

Lemma 2. Let {X?
i }ni=1 be a sequence of n random variables distributed as the PAS process (Definition 6). Then, for any

n ∈ N?, we have that,

P
(
µ(X ?n)

µ(X )
≤ u

)
≤ P

(
n∏
i=1

Ui ≤ u

)
, ∀u ∈ [0, 1],

where X ?n = {x ∈ X : f(x) ≥ f(X?
n)} denotes the sampling area of the PAS process after n iterations and {Ui}ni=1 is a

sequence of n independent copies of U ∼ U([0, 1]).

Proof. The lemma is proved by induction. We start to set some notations. For any u ∈ [0, 1], define ū = min{u′ ∈
Im(f) : µ(Xu′) ≤ u · µ(X )} and let Xū = {x ∈ X : f(x) ≥ ū} be the corresponding level set. By definition, we have
that µ(Xū) ≤ u · µ(X ). We are now ready to prove the statement.

•(n = 1) Fix any u ∈ [0, 1] and let n = 1. Since X?
1 ∼ U(X ), we have that,

P
(
µ(X ?1 )

µ(X )
≤ u

)
= P(X?

1 ∈ Xū) =
µ(Xū)

µ(X )
≤ u.

Now, let U1 ∼ U([0, 1]) be a random variable uniformly distributed over [0, 1]. By definition, we have that u = P(U1 ≤ u),
therefore the result holds for n = 1.

•(Induction) Assume that the statement holds for a fixed n ∈ N? and fix any u ∈ [0, 1]. Conditioning on X?
n and using the

fact that X?
n+1|X?

n ∼ U(X ?n) (Definition 6) gives us that,

P
(
µ(X ?n+1)

µ(X )
≤ u

)
= E[P(X?

n+1 ∈ Xū|X?
n)] = E

[
µ(Xū ∩ X ?n)

µ(X ?n)

]
.

By definition and using the inclusion of the level sets, we have the following equivalences on the events, {f(X?
n) ≥ ū} =

{X ?n ⊆ Xū} and {f(X?
n) ≤ ū} = {Xū ⊆ X ?n}. Therefore, using those equivalences gives us that µ(Xū ∩ X ?n)/µ(X ?n) =

min(1, µ(Xū)/µ(X ?n)) and so,

P
(
µ(X ?n+1)

µ(X )
≤ u

)
= E

[
min

(
1,
µ(Xū)

µ(X ?n)

)]
.
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Now, let Un+1 ∼ U([0, 1]) be a random variable uniformly distributed over [0, 1], independent of X?
n. By definition, we

have that P(Un+1 ≤ µ(Xū)/µ(X ?n)|X?
n) = min(1, µ(Xū)/µ(X ?n)). Therefore, using independence, we get that,

P
(
µ(X ?n+1)

µ(X )
≤ u

)
= E

[
P
(
Un+1 ≤

µ(Xū)

µ(X ?n)
| X?

n

)]
ind.
= P

(
Un+1 ·

µ(X ?n)

µ(X )
≤ µ(Xū)

µ(X )

)
≤ P

(
Un+1 ·

µ(X ?n)

µ(X )
≤ u

)
.

Plugging the induction assumption into the last equation and using independence gives the result.

Lemma 3. Let {Ui}ni=1 be a sequence of n i.i.d. copies of U ∼ U([0, 1]). Then, for any δ ∈ (0, 1), we have that,

P

(
n∏
i=1

Ui < δ · e−n−
√

2n ln(1/δ)

)
< δ.

Proof. The result is a consequence of concentration results of sub-gamma random variables. Taking the logarithm on both
sides of the inequality gives us that

∏n
i=1 Ui < δ · e−n−

√
2n ln(1/δ) ⇔

∑n
i=1− ln(Ui) > n+

√
2n ln(1/δ) + ln(1/δ).

Since Ui ∼ U([0, 1]), we have that − ln(Ui) ∼ Exp(1) and therefore
∑n
i=1− ln(Ui) ∼ Gamma(n, 1) by independence.

We finally get the result by applying concentration results of sub-gamma random variables (see (Boucheron et al., 2013)).

Lemma 4. Let X ⊂ Rd be any compact and convex set, let f ∈ C0(X ,R) be any continuous function that satisfies the
level set assumption (α, cα) and fix any r ∈ (0,maxx∈X ‖x? − x‖2). Then, denoting Sr = {x ∈ X : ‖x? − x‖2 = r} the
intersection of X with the `2-sphere of radius r centered around x?, we have that,

X ∩B(x?, (r/cα)1+α) ⊆ {x ∈ X : f(x) ≥ min
xr∈Sr

f(xr)} ⊆ B(x?, cα · r1/(1+α)).

Proof. Fix any xr ∈ arg minx∈Sr f(x), fix any y ∈ [f(xr), f(x?)] and let f−1(y) = {x ∈ X : f(x) = y} be the
corresponding iso level set. We first show that there exists xy ∈ f−1(y) such that ‖x? − xy‖ ≤ r. Introduce the function
Fxr,x? : [0, 1]→ R that returns the value of the function f over the segment [x?, xr], defined by,

F(x?,xr) : λ 7→ f((1− λ)x? + λxr).

The convexity of the subset X and the continuity of the function f imply that the function F(x?,xr) is well-defined and
continuous. Since F(x?,xr)(0) = f(x?) and F(x?,xr)(1) = f(xr), applying the intermediate value theorem gives us that
there exists λy ∈ [0, 1] such that Fxr (λy) = y. Therefore, there exists xy = λyx

? + (1 − λy)xr ∈ f−1(y) such that
‖x?−xy‖2≤‖x?−xr‖2= r. We now show the second inclusion (by contradiction). Assume that there exist x′y ∈ f−1(y)

such that ‖x?−x′y‖2> cαr
1/(1+α). It implies that maxx∈f−1(y)‖x?−x‖2 ≥ ‖x?−x′y‖2 > cαr

1/(1+α).On the other hand,

we have that cα minx∈f−1(y)‖x? − x‖
1/(1+α)
2 ≤ cα‖x? − xy‖1/(1+α)

2 ≤ cαr1/(1+α). Combining the previous inequalities
together with the level set assumption leads us to a contradiction :

max
x∈f−1(y)

‖x? − x‖2 ≤ cα · min
x∈f−1(y)

‖x? − x‖1/(1+α)
2 < max

x∈f−1(y)
‖x? − x‖2 .

The contradiction holds for any y ∈ [f(xr), f(x?)]. We deduce that {x ∈ X : f(x) ≥ minx∈Sr f(xr)} ⊆ B(x?, cα ·
r1/(1+α)).

We use similar arguments to prove the first inclusion. Assume that there exists x′ ∈ X ∩ B(x?, (r/cα)1+α) such that
f(x) < f(xr). Introducing the function F(x?,x′) : λ 7→ f((1− λ)x? + λx′) and reproducing the same steps as previously
gives us that there exists x′r ∈ f−1(f(xr)) such that ‖x? − x′r‖2< (r/cα)1+α. Hence, cα · minx∈f−1(f(xr))‖x? −
x‖1/(1+α)

2 ≤ cα‖x? − x′r‖
1/(1+α)
2 < r. On the other hand, we have that maxx∈f−1(f(xr))‖x? − x‖2 ≥ ‖x? − xr‖2 = r.

We get a similar contradiction and we deduce that X ∩B(x?, (d/cα)1+α) ⊆ {x ∈ X : f(x) ≥ minxr∈Sr f(xr)}.
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Lemma 5. (From (Zabinsky & Smith, 1992)). Let X ⊂ Rd be any compact and convex set. Then, for any x? ∈ X and any
r ∈ (0,diam(X )), we have that,

µ(B(x?, r) ∩ X )

µ(X )
≥
(

r

diam(X )

)d
.

Proof. Introduce the similarity transformation λ : Rd → Rd defined by

λ : x 7→ x? +
r

diam(X )
(x− x?)

Denote by λ(X ) = {λ(x) : x ∈ X} the image of the subset X after the similarity transformation. Using the convexity of
X and the fact that maxx∈X ‖x? − x‖2 ≤ diam(X ), we have that λ(X ) ⊆ B(x?, r) ∩ X . Hence, µ(B(x?, r) ∩ X ) ≥
µ(λ(X )). Now, using the fact that λ is a similarity transformation and conserves the ratios of the volumes before/after
transformation, we get that,

µ(B(x?, r) ∩ X )

µ(X )
≥ µ(λ(X ))

µ(X )
=
µ(λ(B(x?,diam(X ))))

µ(B(x?,diam(X )))
=

µ(B(x?, r))

µ(B(x?,diam(X )))
.

Finally, using the fact that µ(B(x?, r)) = πd/2rd/Γ(d/2 + 1) where Γ(·) stands for the standard gamma function gives
the result.

B.2. Proofs of the main results

Proof of Proposition 2. The statement is proved by induction. Since X1 ∼ U(X ), the result trivially holds for n = 1.
Assume that the statement holds for a fixed n ∈ N?. For any y ≤ minx∈X f(x) and any y ≥ maxx∈X f(x), the result also
trivially holds. Now, fix any y ∈ (minx∈X f(x),maxx∈X f(x)), let Xy = {x ∈ X : f(x) ≥ y} be the corresponding level
set and let {Xi}n+1

i=1 be a sequence distributed as the RANKOPT process (see Definition 5). Applying the Bayes rule gives
us that,

P(f(Xı̂n+1) ≥ y) = P({Xn+1 ∈ Xy}
n⋂
i=1

{Xi /∈ Xy}) + P(

n⋃
i=1

{Xi /∈ Xy}). (1)

We start to bound the first term. Conditioning on {Xi}ni=1 and using the fact that Xn+1|{Xi}ni=1 ∼ U(Xn) (see Definition
5), we have that,

P({Xn+1 ∈ Xy}
n⋂
i=1

{Xi /∈ Xy}) = E[1{
n⋂
i=1

{Xi /∈ Xy}}·P(Xn+1 ∈ Xy|{Xi}ni=1)] = E

[
1{

n⋂
i=1

{Xi /∈ Xy}} ·
µ(Xn ∩ Xy)

µ(Xn)

]

On the event
⋂n
i=1{Xi /∈ Xy}ni=1 = {f(Xı̂n) < y}, we have that {Xy ⊆ Xn ⊆ X} (see Lemma 1). Hence,

P({Xn+1 ∈ Xy}
n⋂
i=1

{Xi /∈ Xy}) ≥
µ(Xy)

µ(X )
· E[1{

n⋂
i=1

{Xi /∈ Xy}}]. (2)

Plugging (2) into (1) and noticing that E[1{
⋂n
i=1{Xi /∈ Xy}}] = 1− P(f(Xı̂n) ≥ y) give us that

P(f(Xı̂n+1) ≥ y) ≥ P(f(Xı̂n) ≥ y) +
µ(Xy)

µ(X )
· (1− P(f(Xı̂n) ≥ y)). (3)

Now, let {X ′i}
n+1
i=1 be a sequence of (n + 1) i.i.d. random variables uniformly distributed over X . Reproducing the same

steps as previously and using the fact that P(X ′n+1 ∈ Xy) = µ(Xy)/µ(X ), we get that,

P
(

max
i=1...n+1

f(X ′i) ≥ y
)

= P
(

max
i=1...n

f(X ′i) ≥ y
)

+
µ(Xy)

µ(X )
·
(

1− P
(

max
i=1...n

f(X ′i) ≥ y
))

. (4)
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Plugging the induction assumption into (3) and comparing the result with (4) gives us P(f(Xı̂n+1) ≥ y) ≤
P(maxi=1...n+1 f(X ′i) ≥ y). �

Proof of Corollary 1. (CONSISTENCY) We use the same notations and assumptions as in Definition 5 and we further
assume that the maximum of the function f is identifiable. Fix any ε > 0, let Xf?−ε = {x ∈ X : f(x) ≥ maxx∈X f(x)−
ε} be the corresponding level set and fix any n ∈ N?. Applying Proposition 2 gives that P(f(Xı̂n) < maxx∈X f(x) −
ε) ≤ P(maxi=1...n f(X ′i) < maxx∈X f(x) − ε) where {X ′i}ni=1 are n independent copies of X ′ ∼ U(X ). Using the
independence of the {X ′i}ni=1, we get that,

P(f(Xı̂n) < max
x∈X

f(x)− ε) ≤ P(X ′1 /∈ Xf?−ε)n =

(
1− µ(Xf?−ε)

µ(X )

)n
.

Since µ(Xf?−ε) > 0 by the identifiability condition, we have that P(f(Xı̂n) < maxx∈X f(x)− ε) −→
n→∞

0. �

Proof of Theorem 1. (UPPER BOUND) We use the same notations and assumptions as in Definition 5 and we further
assume that the function f has (α, cα)-regular level set. Since the true ranking rf ∈ R ⊆ R∞ is continuous, there exists
a continuous function h ∈ C0(X ,R) such that rh = rf (see Proposition 1). Therefore, without loss of generality, one can
assume that the f is continuous (all the arguments used in the proofs only use function comparisons). We also set some
additional notations: let rδ,n = cαc

1/(1+α)
α diam(X )

1/(1+α)2
(ln(1/δ)/n)1/d(1+α)2 , r′δ,n = (rδ,n/cα)1+α and r′′δ,n =

(r′δ,n/cα)1+α = diam(X ) (ln(1/δ)/n)1/d. First, note that the result trivially holds when rδ,n ≥ maxx∈X ‖x− x?‖2.
Now, assume that rδ,n < maxx∈X ‖x− x?‖2 (it also implies, thanks to the level set assumption, that ln(1/δ) < n). Using
the second inclusion of Lemma 4 and Theorem 1, we have that,

P(‖Xı̂n − x?‖2 ≤ rδ,n) = P(Xı̂n ∈ B(x?, rδ,n))

≥ P(f(Xı̂n) ≥ min
x∈Sr′

δ,n

f(x)) (Lemma 4)

≥ P( max
i=1...n

f(X ′i) ≥ min
x∈Sr′

δ,n

f(x)), (Theorem 1)

where {X ′i}ni=1 are n i.i.d. copies of X ∼ U(X ). Now, using the first inclusion of Lemma 4 and the fact that {X ′i}ni=1 are
n independent random variables uniformly distributed over X , we have that,

P(‖Xı̂n − x?‖2 ≤ rδ,n) ≥ P

(
n⋃
i=1

{X ′i ∈ X ∩B(x?, r′′δ,n)}

)
i.i.d.
= 1−

(
1−

µ(X ∩B(x?, r′′δ,n))

µ(X )

)n
.

Applying lemma 5 gives us that µ(X ∩B(x?, r′′δ,n))/µ(X ) ≤ (r′′δ,n/ diam(X ))d = ln(1/δ)/n. Therefore,

P(‖Xı̂n − x?‖2 ≤ rδ,n) ≥ 1−
(

1− ln(1/δ)

n

)n
.

Finally, using the fact that 1− x ≤ e−x for any x ∈ R gives us that P(‖Xı̂n − x?‖2 ≤ rδ,n) ≥ 1− δ. �

Proof of Proposition 3. We prove the proposition by induction and we use the same notations and assumptions as in
Definition 6. Since X1 and X?

1 are uniformly distributed over X , the result trivially holds for n = 1. Assume that the
statement holds for a fixed n ∈ N?. As mentioned in the proof of Proposition 2, the result trivially holds for any y ≤
minx∈X f(x) and any y ≥ maxx∈X f(x). Fix any y ∈ (minx∈X f(x),maxx∈X f(x)) and let Xy = {x ∈ X : f(x) ≥ y}
be the corresponding level set. Let {Xi}ni=1 be a sequence distributed as the RANKOPT process (Definition 5), let Xn
be the corresponding sampling area and let Xf(Xı̂n ) = {x ∈ X : f(x) ≥ f(Xı̂n)} be the level set of the highest value
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observed so far. Reproducing the same steps as in the proof of Proposition 2 gives us that,

P(f(Xı̂n+1
) ≥ y) = E

[
1{f(Xı̂n) ≥ y}+

µ(Xy ∩ Xn)

µ(Xn)
· 1{f(Xı̂n) < y}

]
Applying Lemma 1 gives us that on the event {f(Xı̂n) < y}, we also have that {Xy ⊆ Xf(Xı̂n ) ⊆ Xn}. Therefore, we
have that,

P(f(Xı̂n+1) ≥ y) ≤ E
[
1{f(Xı̂n) ≥ y}+

µ(Xy)

µ(Xf(Xı̂n ))
1{f(Xı̂n) < y}

]
= E

[
min

(
1,

µ(Xy)

µ(Xf(Xı̂n ))

)]

Using the fact that E[X] =
∫ 1

0
P(X > t) dt for any random variable X ∈ [0, 1], we get that,

P(f(Xı̂n+1) ≥ y) ≤
∫ 1

0

P
(

min

(
1,

µ(Xy)

µ(Xf(Xı̂n ))

)
> t

)
dt =

µ(Xy)

µ(X )
+

∫ 1

µ(Xy)

µ(X)

P
(
µ(Xf(Xı̂n )) <

µ(Xy)

t

)
dt (5)

Now, let {X?
i }
n+1
i=1 be a sequence distributed as a PAS process (Definition 6). Reproducing the same steps, we get that

P(f(X?
n+1) ≥ y) = E

[
min

(
1,

µ(Xy)

µ(Xf(X?n))

)]
=
µ(Xy)

µ(X )
+

∫ 1

µ(Xy)

µ(X)

P
(
µ(Xf(X?n)) <

µ(Xy)

t

)
dt. (6)

Now, fix any t ∈ (µ(Xy)/µ(X ), 1) and let ȳt = min{y′ ∈ Im(f) : µ(Xy′) < µ(Xy)/t}. Using the induction assumption,
we get that,

P
(
µ(Xf(Xı̂n )) <

µ(Xy)

t

)
= P(f(Xı̂n) ≥ ȳt) ≤ P(f(X?

n) ≥ ȳt) = P
(
µ(Xf(X?n)) <

µ(Xy)

t

)
. (7)

Since the previous inequality holds for any t ∈ (µ(Xy)/µ(X ), 1), plugging equation (7) into inequality (5) and comparing
the result with equation (6) gives that P(f(Xı̂n) ≥ y) ≤ P(f(X?

n) ≥ y). �

Proof of Theorem 2. (LOWER BOUND) We use the same notations and assumptions as in Definition 5 and we fur-
ther assume that the function f has (α, cα)-regular level sets. As mentioned in the proof of Theorem 1, since the
true ranking rf ∈ R ⊆ R∞ is continuous, there exists a continuous function h ∈ C0(X ,R) such that rh = rf
(see Proposition 1). Therefore, one can assume, without loss of generality, that the function f is continuous (all the
arguments used in the proofs only use function comparisons). We also set some additional notations: let rδ,n =

c
−(1+α)(2+α)
α rad(X )

(1+α)2
δ(1+α)2/d exp(−(1+α)2(n+

√
2n ln (1/δ)/d), r′δ,n = cαr

1/(1+α)
δ,n and r′′δ,n = cαr

′1/(1+α)
δ,n =

rad(X ) δ1/d exp(−(n+
√

2n ln (1/δ))/d). Using the first inclusion of Lemma 4 and Proposition 3 gives that,

P(‖Xı̂n − x?‖2 ≤ rδ,n) = P(Xı̂n ∈ B(x?, rδ,n) ∩ X )

≤ P(f(Xı̂n) ≥ min
x∈Sr′

δ,n

f(x)) (Lemma 4)

≤ P(f(X?
n) ≥ min

x∈Sr′
δ,n

f(x)), (Proposition 3)

where {X?
i }ni=1 is a sequence distributed as the PAS process (Definition 6). Now, denoting by X ?n = {x ∈ X : f(x) ≥

f(X?
n)} the sampling area of the PAS process after n iterations and using the second inclusion of Lemma 4 gives that,

P(‖Xı̂n − x?‖2 ≤ rδ,n) ≤ P

(
µ(X ?n) ≤ µ({x ∈ X : f(x) ≥ min

x∈Sr′
δ,n

f(x)})

)
≤ P

(
µ(X ?n)

µ(X )
≤
µ(B(x?, r′′δ,n))

µ(X )

)
.

Using the definition of rad(X ), we know that there exists x′ ∈ X such that B(x′, rad(X )) ⊆ X . Hence, µ(X ) ≥
µ(B(x′, rad(X ))). Therefore, using the volume of the ball (see Lemma 5) we get that,

P(‖Xı̂n − x?‖2 ≤ rδ,n) ≤ P
(
µ(X ?n)

µ(X )
≤

µ(B(x?, r′δ,n))

µ(B(x′, rad(X )))

)
= P

(
µ(X ?n)

µ(X )
≤
(

r′′δ,n
rad(X )

)d)
.
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Applying Lemma 2 and using the fact that (r′′δ,n/ rad(X ))d = δ exp (−n−
√

2n ln(1/δ)) gives that

P(‖Xı̂n − x?‖2 ≤ rδ,n) = P

(
n∏
i=1

Ui ≤ δ · e−n−
√

2n ln(1/δ)

)

where {Ui}ni=1 is a sequence of n i.i.d. copies of U ∼ U([0, 1]). Applying Lemma 3 finally gives us that P(‖Xı̂n − x?‖2 ≤
rδ,n) < δ. �

C. Proofs of section 4
C.1. AdaRank process and additional results

Definition 7. (ADARANKOPT PROCESS) Fix any p ∈ (0, 1), let {RN}N∈N? be any sequence of nested sets of rankings
and let f : X → R be any function such that rf ∈ R∞. We say that the sequence {Xi}ni=1 is distributed as the
ADARANKOPT(n, f,X , p, {RN}N∈N?) process if the sequence has the same distribution as the process defined by:{

X1 ∼ U(X )

Xt+1| Bt+1, {Xi}ti=1 ∼ Bt+1 · U(X ) + (1−Bt+1) · U(Xt) ∀t ∈ {1 . . . n− 1}

where Xt = {x ∈ X : ∃r ∈ RNt , r(x,Xı̂t) ≥ 0} denotes the sampling area, Nt = min{N ∈ N? : minr∈RN Lt(r) = 0}
denotes the index of the smallest set of rankings that may contain rf , ı̂t ∈ arg maxi=1...t f(Xi) denotes the index of the best
value observed so far andBt+1 is a Bernoulli random variable of parameter p (i.e. p = P(Bt+1 = 1) = 1−P(Bt+1 = 0)),
independent of {Xi}ti=1 and {Bi}ti=1.

The next proposition will be needed later.

Proposition 9. [From (Clémençon et al., 2010)] Let {Xi}ni=1 be a sequence of n independent copies of X ∼ U(X ), letR
be any set of rankings and let f be any function defined on X taking values in R. Define the Rademacher average

Rn(R) = sup
r∈R

1

bn/2c

∣∣∣∣∣∣
bn/2c∑
i=1

εi · 1{rf (Xi, Xbn/2c+i) 6= r(Xi, Xbn/2c+i)}

∣∣∣∣∣∣
where {εi}bn/2ci=1 are bn/2c independent Rademacher random variables (i.e., random symmetric sign variables), indepen-
dent of {Xi}ni=1. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

∀r ∈ R, |Ln(r)− L(r)| ≤ 2E[Rn(R)] + 2

√
log(1/δ)

n− 1
,

where L(r) = P(rf (X,X ′) 6= r(X,X ′)) denotes the true ranking loss and (X,X ′) is a couple of independent random
variables uniformly distributed over X .

Corollary 3. Assume that there exists V > 0 such that E[Rn(R)] ≤
√
V/n for any n ∈ N? and assume that

infr∈R L(r) > 0. Let {Xi}i∈N? be a sequence of i.i.d. random variables uniformly distributed over X and let
τ = min{n ∈ N? : minr∈R Ln(r) > 0} be the stopping time corresponding to the number of samples required to
be certain that rf /∈ R where Ln denotes the empirical ranking loss taken over the first n samples {Xi}ni=1. Then, for any
δ ∈ (0, 1), with probability at least 1− δ,

τ ≤ 10 ·
(
V + log(1/δ)

infr∈R L(r)2

)
.

Proof. Fix any δ ∈ (0, 1), let nδ = b10 · (V + log(1/δ))/(infr∈R L(r)2)c be the integer part of the upper bound and let
Lnδ be the empirical ranking loss taken over the first nδ i.i.d. samples of the sequence {Xi}nδi=1. By definition, we have
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that P(τ ≤ nδ) = P(minr∈R Lnδ(r) > 0). Now, since L(r) ≥ minr∈R L(r) for any r ∈ R, applying Proposition 9 gives
us that, with probability at least 1− δ,

min
r∈R

Lnδ(r) ≥ inf
r∈R

L(r)− 2

√
V

nδ
− 2

√
log(1/δ)

nδ − 1
.

We end the proof by pointing out that the right hand term of the previous inequality is strictly positive due to the definition
of nδ .

C.2. Proofs of the results

Proof of Proposition 4. (CONSISTENCY) We use the same notations and assumptions as in Definition 7 and we fur-
ther assume that the maximum of the function f is identifiable. Fix any ε > 0 and let Xf?−ε = {x ∈ X : f(x) ≥
maxx∈X f(x)− ε} be the corresponding level set. We show by induction that, for any n ∈ N?,

P(f(Xı̂n) < max
x∈X

f(x)− ε) ≤
(

1− p · µ(Xf?−ε)
µ(X )

)n
−→
n→∞

0.

• Since X1 ∼ U(X ), we directly get that,

P(f(Xı̂1) < max
x∈X

f(x)− ε) = P(X1 /∈ Xf?−ε) =

(
1− µ(Xf?−ε)

µ(X )

)
≤
(

1− p · µ(Xf?−ε)
µ(X )

)
.

• Assume that the statement holds for a fixed n ∈ N? and let {Xi}n+1
i=1 be a sequence of n+1 random variables distributed

as the ADARANKOPT process. Conditioning on {Xi}ni=1 gives us that

P(f(Xı̂n+1
) < max

x∈X
f(x)− ε) = P

(
n+1⋂
i=1

{Xi /∈ Xf?−ε}

)
= E

[
P(Xn+1 /∈ Xf?−ε|{Xi}ni=1) · 1{

n⋂
i=1

{Xi /∈ Xf?−ε}}

]
Now, using the distribution of Xn+1|{Xi}ni=1 (Definition 7), we get that,

P(f(Xı̂n+1
) < max

x∈X
f(x)− ε) = E

[(
1− p · µ(Xf?−ε)

µ(X )
− (1− p) · µ(Xn ∩ Xf?−ε)

µ(Xn)

)
· 1{

n⋂
i=1

{Xi /∈ Xf?−ε}}

]

≤
(

1− p · µ(Xf?−ε)
µ(X )

)
· P

(
n⋂
i=1

{Xi /∈ Xf?−ε}

)
.

Plugging the induction assumption into the previous equation gives the result. �

Proof of Proposition 5. (STOPPING TIME UPPER BOUND) We use the same assumptions and notations as in Definition
7. Let {Xi}i∈N? be a sequence distributed as the ADARANKOPT and let {Bi}i∈N? be the sequence of associated random
variables corresponding to the exploration/exploitation tradeoff. Assume that 1 < N? = min{N ∈ N? : rf ∈ RN} <
∞, assume that there exists a constant V > 0 such that E[Rn(RN?−1)] ≤

√
V/n for any n ∈ N? and assume that

infr∈RN?−1L(r) > 0. Fix any δ ∈ (0, 1), let nδ = b10 · (V + log(2/δ))/(p · infr∈RN?−1
L(r)2)c be the integer part

of the upper bound, let n′δ = bp · nδ −
√
nδ log(2/δ)/2c and denote by Lnδ the empirical ranking loss taken over the

nδ first samples {Xi}nδi=1. Since {RN}N∈N? forms a nested sequence minr∈R1
Lnδ(r) ≤ minr∈R2

Lnδ(r) ≤ . . . ≤
minr∈RN?−1

Lnδ(r). Therefore,

P(τ ≤ nδ) = P
(

min
r∈RN?−1

Lnδ(r) > 0

)
≥ P

(
min

r∈RN?−1

Lnδ(r) > 0 ∩ {
nδ∑
i=1

Bi ≥ n′δ}

)
. (8)

We now lower bound the empirical risk by only keeping the first n′δ (i.i.d.) explorative samples:

Lnδ(r) ≥
2

nδ(nδ − 1)

∑
1≤i<j≤nδ

1{rf (Xi, Xj) 6= r(Xi, Xj)} · 1{(i, j) ∈ I2},



A ranking approach to global optimization

where I = {i ∈ N? : Bi = 1 and
∑i
j=1Bi ≤ n′δ}. Conditioning on |I| and using Definition 7 gives us that {Xi}i∈I ||I| is

a sequence of |I| independent random variables uniformly distributed over X . Therefore, on the event {
∑nδ
i=1Bi ≥ n′δ} =

{|I| = n′δ}, the right hand term of the previous inequality has the same distribution as,

Ln′δ(r) =
2

nδ(nδ − 1)

∑
1≤i<j≤nδ′

1{rf (X ′i, X
′
j) 6= r(X ′i, X

′
j)}

where {X ′i}
n′δ
i=1 is a sequence of n′δ i.i.d. copies ofX ∼ U(X ), independent of {Bi}nδi=1. Combining the previous statement

with (8) gives us that,

P(τ ≤ nδ) ≥ P
(

min
r∈RN?−1

Ln′δ(r) > 0

)
· P

(
nδ∑
i=1

Bi ≥ n′δ

)
,

where the empirical risk is taken over a sample of nδ′ independent copies of X ∼ U(X ). Due to the definition of n′δ ,
applying Corollary 3 gives us that P(minr∈RN?−1

Ln′δ(r) > 0) ≥ 1 − δ/2 and using Hoeffding’s inequality gives us that
P(
∑nδ
i=1Bi ≥ n′δ) ≥ 1− δ/2. Noticing that (1− δ/2)2 ≥ 1− δ, for any δ ∈ (0, 1) completes the proof. �

Proof of Theorem 3. (UPPER BOUND) We use the same setting as in the previous proof: we use the same as-
sumptions and notations as in Definition 7, we assume 1 < N? < ∞, we assume that there exists V > 0 such
that E[Rn(RN?−1)] ≤

√
V/n for all n ∈ N? and we assume that infr∈RN?−1

L(r) > 0. Let {Xi}i∈N? be a se-
quence distributed as the ADARANKOPT and let {Nt}t∈N? be the random variables corresponding to the model se-
lection. Fix any δ ∈ (0, 1), let nδ/2 = b10(V + ln(4/δ))/(p · infr∈RN?−1

L(r)2)c be the integer part of the upper
bound of proposition 5 (with probability 1 − δ/2) and let rδ/2,n be the upper bound of the Theorem 1 (with probability
1 − δ/2). Fix any n > nδ/2, let {Xi}ni=1 be a sequence distributed as the ADARANKOPT process (Definition 7) and let
τN? = min{t ∈ {1 . . . n} : Nt = N?} be the stopping time corresponding to the number of iterations required to identify
the true ranking structureRN? . Applying the Bayes rules gives us that

P(‖Xı̂n − x?‖2 ≤ rδ,n) ≥ P(‖Xı̂n − x?‖2 ≤ rδ,n | τN? < nδ/2) · P(τN? < nδ/2).

Applying proposition 5 gives us that P(τ < nδ/2) ≥ 1−δ/2. To lower bound the first term, we use the fact that on the event
{τ < nδ/2}, for any iteration n > nδ/2, the true ranking structureRN? is identified. Therefore, one can bound the distance
‖Xı̂n − x?‖2 by using the n − nδ/2 samples with a similar technique as the one used in the RANKOPT process when the
ranking structure is known (see proof of Theorem 1) and we get that P(‖Xı̂n − x?‖2 ≤ rδ,n | τ < nδ/2) ≥ 1 − δ/2.
Noticing that (1− δ/2)2 ≥ 1− δ for any δ ∈ (0, 1) ends the proof. �

D. Proofs of section 6
D.1. Convex hulls and technical lemmas

Definition 8. Let {Xi}ni=1 be any set of n points of Rd. The convex hull of {Xi}ni=1 can be defined as

CH{Xi}ni=1 =

{
n∑
i=1

λiXi : (λ1, . . . , λn) ∈ Rn+,
n∑
i=1

λi = 1

}
, where R+ = {x ∈ R : x ≥ 0}.

Lemma 6. Fix any ε > 0, let X ⊂ Rd be any compact and convex set and let B(X , ε) = {x ∈ Rd : d(x,X ) ≤ ε} be
the ε-ball of X where d(x,X ) = minx′∈X ‖x − x′‖2 denotes the distance between x ∈ Rd and X . Then, the ε-ball of X
B(X , ε) is also a convex set

Proof. Fix any ε > 0 and let (b1, b2) ∈ B(X , ε) be any pair of points that belong to the ε-ball of X . Since b1 ∈ B(X , ε),
there exists x1 ∈ X and ε1 ∈ Rd satisfying ‖ε1‖2 ≤ ε such that b1 = x1 + ε1. We also know that there also exists b2 and
ε2 satisfying the same conditions such that b2 = x2 + ε2. Now, fix any λ ∈ (0, 1). The convexity of X implies that

(1− λ)b1 + λb2 = λx1 + (1− λ)x2︸ ︷︷ ︸
∈X

+ λε1 + (1− λ)ε2︸ ︷︷ ︸
‖·‖2≤ε

.
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Therefore, (1−λ)b1 +λb2 ∈ B(X , ε) also belongs to the ε-ball. Since the result holds for any (b1, b2) ∈ B(X , ε) and any
λ ∈ (0, 1), we deduce that B(X , ε) is also a convex set.

Lemma 7. Let {Xi}ni=1 be any set of n points of Rd. Then, there exists a separating hyperplane h ∈ Rd such that
〈h,Xi〉 > 0 for any i ∈ {1 . . . n} if and only if ~0 /∈ CH{Xi}ni=1 where ~0 = {0 . . . 0} ∈ Rd.

Proof. (⇒) Assume that there exists h ∈ Rd such that 〈h,Xi〉 > 0 for all i ∈ {1 . . . n}. We show (by contradiction)
that ~0 /∈ CH{Xi}ni=1. If ~0 ∈ CH{Xi}ni=1, it implies that there exists (λ1, . . . , λn) ∈ Rn+ such that ~0 =

∑n
i=1 λiXi and∑n

i=1 λi = 1 (see Definition 8). It leads us to the contradiction

0 = 〈h,~0〉 =

n∑
i=1

λi〈h,Xi〉 > 0.

(⇐) Assume that ~0 /∈ CH{Xi}ni=1. Since n and d are finite CH{Xi}ni=1 is a closed, compact and convex set. Therefore,
minx∈CH‖x‖2 = d exists and the condition~0 /∈ CH implies that d > 0. Let xd ∈ CH{Xi}ni=1 be the (unique) point of the
convex hull that satisfies ‖xd‖2 = d. We show (by contradiction) that for any x ∈ CH{Xi}ni=1 we have that 〈x, xd〉 ≥ d2.
Assume that there exists x′ ∈ CH{Xi}ni=1 such that 〈x′, xd〉 < d2. The convexity of CH{Xi}ni=1 implies that the whole
lineL = (x′, xd) ⊆ CH{Xi}ni=1 also belongs to the convex hull. However, since ‖xd‖2 = d and 〈x′, xd〉 < ‖xd‖2, the line
L is not tangent and intersect the ball the ball B(~0, d). We deduce that there exists x′′ ∈ L∩B(~0, d) such that ‖x′′‖2 < d.
Since x′′ ∈ L ⊆ CH{Xi}ni=1 also belongs to the convex hull, the previous statement leads us to the contradiction

min
x∈CH{Xi}ni=1

‖x‖2 ≤ ‖x
′′‖2 < d = min

x∈CH{Xi}ni=1

‖x‖2 .

Therefore, for any x ∈ CH{Xi}ni=1 we have that 〈xd, x〉 ≥ d > 0. Finally, since {Xi}ni=1 ∈ CH{Xi}ni=1, there exists
h = xd ∈ Rd such that 〈h,Xi〉 > 0 for all i ∈ {1 . . . n}.

Lemma 8. LetR ⊆ R∞ be any continuous ranking structure, let {(Xi, f(Xi))}n+1
i=1 be any sample satisfying f(X(1)) <

f(X(2)) < . . . < f(X(n+1)) and denote by Ln+1 the empirical ranking loss taken over the sample. Then, we have the
following equivalence:

{r ∈ R : Ln+1(r) = 0} = {r ∈ R : r(X(i+1), X(i)) = 1, ∀i ∈ {1 . . . n}}.

Proof. (⊆) The first inclusion is a direct consequence of the definition of the empirical ranking loss. Let r ∈ R be any
ranking such that Ln+1(r) = 0. Since r perfectly ranks the sample, it implies that for any i ∈ {1 . . . n},

r(X(i+1), X(i)) = rf (X(i+1), X(i)) = sgn(f(Xi+1)− f(X(i))) = 1.

(⊇) The second inlusion is a consequence of the transitivity of the rankings. Let r ∈ R ⊆ R∞ be any ranking such that
r(X(i+1), X(i)) = 1, ∀i ∈ {1 . . . n}. Since r is acontinuous ranking, there exists a function f ′ ∈ C0(X ,R) such that
r(x, x′) = sgn(f(x)− f(x)) ∀(x, x′) ∈ X 2. Now, fix any j ∈ {2 . . . n+ 1} and fix any k < j. Using the function f ′ and
the assumption, we have that

r(X(j), X(k)) = sgn(f ′(X(j))− f ′(X(k))) = sgn

(
j−1∑
i=k

∣∣f ′(X(i+1))− f ′(X(i))
∣∣ · sgn(f ′(X(i+1))− f ′(X(i)))

)
= 1.

Switching k and j gives us that r(X(j), X(k)) = −1 for any j < k. Therefore, r(X(j), X(k)) = sgn(f(X(j))− f(X(k)))
for any (j, k) ∈ {1 . . . n+ 1}2 and we deduce that r perfectly ranks the sample so Ln+1(r) = 0.

D.2. Proofs of the results

Proof of Proposition 6. Let {(Xi, f(Xi))}ni=1 be any sample satisfying f(X(1)) < f(X(2)) < . . . < f(X(n+1)) and let
RP,N be the set of polynomial rankings of degree N .

(⇒) Assume that there exists r ∈ RP,N such that Ln+1(r) = 0. Since r is induced by a polynom of degree N , there
exists a polynom f ′r = 〈hr, φN (x)〉 + cr where hr ∈ RD(d,N) and cr ∈ R such that r(x, x′) = sgn(f ′r(x) − f ′r(x′)) =
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sgn(〈hr, φN (x)〉+cr−〈hr, φN (x′)〉−cr) = sgn(〈hr, φN (x)−φN (x′)〉). Combining the previous statement with Lemma
8 gives the first part of the equivalence.

(⇐) Assume that there exists h ∈ RD(d,N) such that 〈h, φ(X(i+1)) − φ(X(i))〉 > 0 for all i ∈ {1 . . . n}. Define the
(multivariate) polynom f ′(x) = 〈h, φN (x)〉 + c where c ∈ R is any constant. The polynomial ranking induced by f ′ is
given by rf ′(x, x′) = sgn(f ′(x)− f ′(x′)) = sgn(〈h, φN (x)− φN (x′)〉) ∈ RN . Then, for any i ∈ {1 . . . n},

rf ′(X(i+1), X(i)) = sgn(〈h, φN (x)− φN (x′)〉) = 1.

Using Lemma 8 directly gives that Ln+1(rh) = 0, which is the second part of the equivalence. �

Proof of Corollary 2. Let {(Xi, f(Xi))}ni=1 be any sample satisfying f(X(1)) < f(X(2)) < . . . < f(X(n+1)) and let
RP,N be the set of polynomial rankings of degree at most N . Applying Proposition 6 and Lemma 7 gives us that,

min
r∈RP,N

Ln+1(r) = 0⇔ ∃h ∈ Rd s.t. 〈h, φN (X(i+1))− φN (X(i))〉 > 0,∀i ∈ {1 . . . n} (Proposition 6)

⇔ ~0 /∈ CH{(φN (X(i+1))− φN (X(i)))}ni=1. (Lemma 7)

Finally, using the definition of the convex hull, we know that ~0 ∈ CH{(φN (X(i+1)) − φN (X(i)))}ni=1 if and only if
there exists λ = (λ1, . . . , λn) ∈ Rn+ such that

∑n
i=1 λi(φN (X(i+1)) − φN (X(i))) = ~0 and

∑n
i=1 λi = 1. Putting those

constraints into matricial form gives the last equivalence,

min
r∈RN

Ln+1(r) = 0⇔ {λ ∈ Rn : MNλ
T = ~0, 〈~1, λ〉 = 1, λ � ~0} is empty,

where MN is the (D(d, n), n)-matrix where its i-th column is equal to (φN (X(i+1)) − φN (X(i)))
T and � stands for the

inequality ≥ component-wise (i.e. x � x′ ⇔ xi ≥ x′i, ∀i ∈ {1 . . . d}). �

Proof of Proposition 7. Fix any N ∈ N?, let RC,N be the set of convex rankings of degree N , let d = 1 and let
{(Xi, f(Xi))}ni=1 be any sample satisfying f(X(1)) < f(X(2)) < . . . < f(X(n+1)) .

(⇒) Assume that minr∈RC,N Ln+1(r) = 0 and let r ∈ RC,N be any convex ranking that perfectly ranks the sample.
Applying Lemma 8 gives us that r(X(i+1), X(i)) = 1 for all i ∈ {1 . . . n}. Now, let {hi}n+1

i=1 be the sequence of classifiers
defined by hi(x) = 1{r(x,X(i)) ≥ 0}. Since r ∈ RC,N is a convex ranking of degree N , all the classifiers are of
the form hi(x) =

∑N
k=1 1{li,k ≤ x ≤ ui,k} and since r is a continuous ranking and so transitive (see Lemma 8),

h1 ≥ h2 ≥ . . . ≥ hn+1.

(⇐)Assume that there exists a sequence of classifiers {hi}n+1
i=1 of the form hi(x) =

∑N
k=1 1{li,k ≤ x ≤ ui,k}

satisfying: (i) h1 ≥ h2 ≥ . . . ≥ hn+1 and (ii) hi(X(j)) = 1{(j) ≥ i} for all (i, j) ∈ {1 . . . n + 1}2. Let
f ′ε =

∑n+1
i=1

∑N
k=1 φε(x, li,k, ui,k) be an approximation of the function f(x) =

∑n+1
i=1 hi(x), for which Ln+1(rf ) = 0,

where

φε(x, l, u) =

(
1− l − x

ε

)
· 1{l − ε ≤ x < l[}+ 1{l ≤ x ≤ u}+ 1{u < x ≤ u+ ε} ·

(
1− x− u

ε

)
is an approximation of the function x 7→ 1{l ≤ x ≤ u}. Since the functions φε(·, l, u) are continuous, it also implies
that their sum, f ′ε, is continuous. Now, note that f ′ε(x) = f(x) + erε(x) where erε(x) =

∑n+1
i=1

∑N
k=1(1 − (li,k −

x)/ε)1{x ∈ [li,k − ε, li,k[} + (1 − (x − ui,k)/ε)1{x ∈]ui,k, ui,k + ε]}. For any ε < ε1 = min{|x1 − x2| : x1 6= x2 ∈
{X(i)}n+1

i=1 ∪ {li,k}k=1...N
i=1...n+1 ∪ {ui,k}k=1...N

i=1...n+1} small enough and any i ∈ {1 . . . n+ 1}, we have that erε(X(i)) = 0. We
deduce that Ln+1(rf ′ε) = Ln+1(rf ) = 0 whenever ε < ε1. Using the same decomposition, one can easily show that for
any ε < ε2 = min{|x1 − x2| : x1 6= x2 ∈ {li,k}k=1...N

i=1...n+1 ∪ {ui,k}k=1...N
i=1...n+1}/2 all the level sets of fε are a union of at

most N segements (convex sets). Putting previous statements altogether and denoting ε? = min(ε1, ε2)/2, gives us that
rf ′
ε?
∈ RC,N and Ln+1(rf ′

ε?
) = 0. �

Proof of Proposition 8. Fix any d ∈ N?, let N = 1, and let {(Xi, f(Xi))}ni=1 be any sample satisfying f(X(1)) <
f(X(2)) < . . . < f(X(n+1)).
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(⇒) Assume that minr∈RC,1 Ln+1(r) = 0 and let r ∈ RC,1 be any ranking that perfectly ranks the sample. Since r
perfectly ranks the sample, for any k ∈ {1 . . . n+ 1}, r(X(j), X(k)) = 21{(j) > (k)} − 1 ∀j 6= k and since r is a convex
ranking, the set {x ∈ X : r(x,X(k))} is a convex set. Now, fix any k ∈ {1 . . . n}. Using the previous statements, we
get that {X(i)}n+1

i=k+1 ∈ {x ∈ X : r(x,X(k+1)) ≥ 0} and X(k) /∈ {x ∈ X : r(x,X(k+1)) ≥ 0}. Since CH{X(i)}n+1
i=k+1

is the smallest convex set that contains {X(i)}n+1
i=k+1 and since {x ∈ X : r(x,X(k+1)) ≥ 0} is also a convex set that

contains {X(i)}n+1
i=k , necessarily CH{X(i)}n+1

i=k+1 ⊆ {x ∈ X : r(x,X(k+1)) ≥ 0}. Combining the previous statements
gives us that X(k) /∈ CH{X(i)}n+1

i=k+1. Therefore, using the definition of convex hull, we know that there does not exist
any (λ1 . . . λk) ∈ Rk such that

∑k
i=1 λiX(n+2−i) = X(n+1−k),

∑k
i=1 λi = 1 and λi ≥ 0. Rewriting this constraint in a

matricial form gives us that the polyhedron

{λ ∈ Rk : Mkλ
T = XT

(n+1−k), 〈~1, λ〉 = 1, λ � ~0}

where Mk is the (d, k)-matrix where its i-th column is equal to XT
(n+2−i), is empty.

(⇐) Assume that the cascade of polyhedrons is empty. Reproducing the (inverse) same steps as in the first equivalence of
the proof, we get that X(k) /∈ CH{X(i)}n+1

i=k+1 for any k ∈ {1 . . . n}. Therefore the convex hulls form a nested sequence
CH{X(n+1)} ⊂ CH{X(i)}n+1

i=n ⊂ . . . ⊂ CH{X(i)}n+1
i=1 . Now, let f ′ε(x) =

∑n+1
i=1 φε,i(x) be an approximation of the

function f(x) =
∑n+1
i=1 1{x ∈ CH{X(j)}n+1

j=i }, for which Ln+1(r) = 0, where for any i ∈ {1 . . . n+ 1}

φε,i(x) =

{
1− d(x,B(CH{X(j)}n+1

j=i , 2(n+ 1− i)ε))/ε if d(x,B(CH{X(j)}n+1
j=i , 2(n+ 1− i)ε) ≤ ε

0 otherwise.

is an approximation of the function x 7→ 1{x ∈ CH{X(j)}j=i}n. For any convex set X , the function x 7→ d(x,X )

is continuous. we deduce that the functions {φε,i}n+1
i=1 are continuous and so is their sum f ′ε. First, using the same

decomposition as in the proof of Proposition 7, one can show that Ln+1(rf ′ε) = Ln+1(rf ) = 0 for any ε < ε? =

mini=1...n d(X(i),CH{X(j)}n+1
j=i+1)/(2n + 2) small enough. Secondly, using the fact that for any convex set X ⊂ Rd,

its ε-Ball B(X , ε) is also a convex set (see Lemma 6), for any ε < ε? and any x′ ∈ X , we have that the level set
{x ∈ X : fε(x) ≥ fε(x

′)} is a convex set. Putting the previous statements altogether gives us that rf ′ε ∈ RC,1 and
Ln+1(rf ′ε) = 0. �
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