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Abstract
We consider the problem of maximizing an un-
known function f over a compact and convex set
X ⊂ Rd using as few observations f(x) as possi-
ble. We observe that the optimization of the func-
tion f essentially relies on learning the induced
bipartite ranking rule of f . Based on this idea,
we relate global optimization to bipartite ranking
which allows to address problems with high di-
mensional input space, as well as cases of func-
tions with weak regularity properties. The pa-
per introduces novel meta-algorithms for global
optimization which rely on the choice of any bi-
partite ranking method. Theoretical properties
are provided as well as convergence guarantees
and equivalences between various optimization
methods are obtained as a by-product. Eventu-
ally, numerical evidence is given to show that the
main algorithm of the paper which adapts empir-
ically to the underlying ranking structure essen-
tially outperforms existing state-of-the-art global
optimization algorithms in typical benchmarks.

1. Introduction
In many applications such as complex system design or hy-
perparameter calibration for learning systems, the goal is
to optimize some output value of a non-explicit function
with as few evaluations as possible. Indeed, in such con-
texts, one has access to the function values only through nu-
merical evaluations by simulation or cross-validation with
significant computational cost. Moreover, the operational
constraints generally impose a sequential exploration of
the solution space with small samples. The generic prob-
lem of sequentially optimizing the output of an unknown
and potentially non-convex function is often referred to as
global optimization (Pintér, 1991), black-box optimization
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(Jones et al., 1998) or derivative-free optimization (Rios
& Sahinidis, 2013). There are several algorithms based
on various heuristics which have been introduced in order
to address complicated optimization problems with limited
regularity assumptions, such as genetic algorithms, model-
based algorithms, branch-and-bound methods... (see (Rios
& Sahinidis, 2013) for a recent overview). This paper
follows the line of the approaches recently considered in
the machine learning literature (Bull, 2011; Munos, 2011;
Sergeyev et al., 2013). These approaches extend the semi-
nal work on Lipschitz optimization of (Hansen et al., 1992;
Jones et al., 1993) and they led to significant relaxations
of the conditions required for convergence, e.g. only the
existence of a local smoothness around the optimum is re-
quired (Munos, 2011; Grill et al., 2015). More precisely, in
the work of (Bull, 2011; Munos, 2011), specific conditions
have been identified to derive a finite-time analysis of the
algorithms. However, these guarantees do not hold when
the unknown function is not assumed to be locally smooth
around (one of) its optimum.

In the present work, we propose to explore concepts from
ranking theory based on overlaying estimated level sets
(Clémençon et al., 2010) in order to develop global opti-
mization algorithms that do not rely on the smoothness of
the function. The idea behind this approach is simple: even
if the unknown function presents arbitrary large variations,
most of the information required to identify its optimum
may be contained in its induced ranking rule, i.e. how the
level sets of the function are included one in another. To
exploit this idea, we introduce a novel optimization scheme
where the complexity of the function is characterized by the
underlying pairwise ranking which it defines. Our contri-
bution is twofold: first, we introduce two novel global opti-
mization algorithms that learn the ranking rule induced by
the unknown function with a sequential scheme, and sec-
ond, we provide mathematical results in terms of statistical
consistency and convergence to the optimum. Moreover
the algorithms proposed lead to efficient implementation
and they display good performance on the classical bench-
marks for global optimization as shown at the end of the
paper.
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The rest of the paper is organized as follows. In Section 2
we introduce the framework and give the main definitions.
In Section 3, we introduce and analyze the RANKOPT al-
gorithm which requires a prior information on the ranking
structure underlying the unknown function. In Section 4,
an adaptive version of the algorithm is presented. Compan-
ion results which establish the equivalence between learn-
ing algorithms and optimization procedures are discussed
in Section 5 as they support implementation choices. The
adaptive version of the algorithm is compared to other
global optimization algorithms in Section 6. Proof sketches
are postponed to the Appendix section and full proofs can
be found in the supplementary material provided as a sepa-
rate document.

2. Global optimization and ranking structure
2.1. Setup and notations

Setup. We consider the problem of sequentially maximiz-
ing an unknown real-valued function f : X → R which
is assumed to admit at least one global maximum over the
compact and convex set X ⊂ Rd. The objective is to iden-
tify some point

x? ∈ argmax
x∈X

f(x)

with a minimal amount of function evaluations. The
setup we consider is the following: at each iteration
t = 1 . . . n − 1, an algorithm selects an evaluation point
Xt+1 ∈ X which depends on the previous evaluations
{(Xi, f(Xi))}ti=1 and receives the evaluation of the un-
known function f(Xt+1) at this point. After n iterations,
the algorithm returns the argument of the highest value ob-
served so far:

Xı̂n where ı̂n ∈ argmax
i=1,...,n

f(Xi).

The analysis provided in the paper considers that the num-
ber n of evaluation points is not fixed and it is assumed that
function evaluations are noiseless.

Notations. For any x = {x1 . . . xd} ∈ Rd, we define the
standard `2-norm ‖x‖22 =

∑d
i=1 x

2
i , we denote by 〈·, ·〉 the

corresponding inner product and we denote by B(x, r) =
{x′ ∈ Rd : ‖x− x′‖2 ≤ r} the `2-ball of radius r ≥ 0 cen-
tered in x. For any set X ⊂ Rd, we define its inner-radius
as rad(X ) = max{r > 0 : ∃x ∈ X s.t. B(x, r) ⊆ X},
its diameter as diam(X ) = max(x,x′)∈X 2 ‖x− x′‖2 and
we denote by µ(X ) its volume where µ stands for the
Lebesgue measure. Finally, we denote by C0(X ,R) the set
of continuous functions defined on X taking values in R,
we denote by PN (X ,R) the set of (multivariate) polyno-
mial functions of degree N defined on X and we denote by
U(A) the uniform distribution over a bounded measurable
domain A.

2.2. The ranking structure of a real-valued function

In this section, we introduce the ranking structure as a
complexity characterization for a general real-valued func-
tion to be optimized. First, we observe that real-valued
functions induce an order relation over the input space X ,
and the underlying ordering induces a ranking rule which
records pairwise comparisons between evaluation points.
Definition 1. (INDUCED RANKING RULE) The ranking
rule rf : X × X → {−1, 0, 1} induced by a function
f : X → R is defined by:

rf (x, x
′) =


1 if f(x) > f(x′)

0 if f(x) = f(x′)

−1 if f(x) < f(x′)

for all (x, x′) ∈ X 2.

The key argument of the paper is that the optimization
of any weakly regular real-valued function only depends
on the nested structure of its level sets. Hence there is
an equivalence class of real-valued functions that share
the same induced ranking rule as shown by the following
proposition.

Proposition 1. (RANKING RULE EQUIVALENCE) Let h ∈
C0(X ,R) be any continuous function. Then, a function f :
X → R shares the same induced ranking rule with h (i.e.
rf = rh) if and only if there exists a strictly increasing
(not necessary continuous) function ψ : R → R such that
h = ψ ◦ f .

Proposition 1 states that even if the unknown function f
admits non-continuous or large variations, up to a transfor-
mation ψ, there might exist a simpler function h = ψ ◦ f
that shares the same induced ranking rule. Figure 1 gives
an example of two functions that share the same ranking
while they display highly different regularity properties. As
a second example, we may consider the problem of maxi-
mizing the function f(x) = 1 − 1/ |ln(x)| if x 6= 0 and 1
otherwise over X = [0, 1/2]. The function f in this case
is not ’smooth’ around its unique global maximizer x? = 0
but shares the same induced ranking rule with h(x) = −x
over X .

We can now introduce a complexity characterization of
real-valued functions of a set X through the complexity
class of its induced ranking rule. We call this class a rank-
ing structure.

Figure 1. Two functions f and h that share the same ranking
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Definition 2. (CONTINUOUS RANKING STRUCTURE
AND CONTINUOUS RANKING RULES) We say that a real-
valued function f has a continuous ranking rule if rf ∈
R∞ where R∞ = {rh : h ∈ C0(X ,R)} denotes the set
of continuous ranking rules (i.e. ranking rules induced by
continuous functions).

In the continuation of this definition, we further introduce
two examples of more stringent ranking structures.

Definition 3. (POLYNOMIAL RANKING RULES) The set
of polynomial ranking rules of degree N ≥ 1 is defined as

RP(N) = {rh : h ∈ PN (X ,R)}.

We point out that even a polynomial function of degree N
may admit a lower degree polynomial ranking rule. For
example, consider the polynomial function f(x) = (x2 −
3x+1)9. Since f(x) = ψ(x2−3x) where ψ : x 7→ (x+1)9

is a strictly increasing function, the ranking rule induced by
f is a polynomial ranking rule of degree 2.

The second class of ranking structures we introduce is a
class of non-parametric rankings.
Definition 4. (CONVEX RANKING RULES) The set of con-
vex ranking rules of degree N ≥ 1 is defined as

RC(N) = {r ∈ R∞ such that for any x′ ∈ X , the set

{x ∈ X : r(x, x′) ≥ 0} is a union of Nconvex sets}.

It is easy to see that the ranking rule of a function f is a
convex ranking rule of degree N if and only all the level
sets of the function f are unions of at most N convex sets.

2.3. Identifiability and regularity

We now state two conditions that will be used in the theo-
retical analysis: the first condition is about the identifiabil-
ity of the maximum of the function and the second is about
the regularity of f around its maximum.
Condition 1. (IDENTIFIABILITY) The maximum of a func-
tion f : X → R is said to be identifiable if for any ε > 0
arbitrarily small,

µ({x ∈ X : f(x) ≥ max
x∈X

f(x)− ε}) > 0.

Condition 1 prevents the function from having a jump on
its maximum and will be useful to state asymptotic results
of the type f(Xı̂n)→ maxx∈X f(x) when n→ +∞.

Condition 2. (REGULARITY OF THE LEVEL SETS) A
function f : X → R has (cα, α)-regular level sets for some
cα > 0, α ≥ 0 if:

1. The global optimizer x? ∈ X is unique.

2. For any y ∈ Im(f), the iso-level set f−1(y) = {x ∈
X : f(x) = y} satisfies

max
x∈f−1(y)

‖x? − x‖2 ≤ cα · min
x∈f−1(y)

‖x? − x‖1/(1+α)2 .

Condition 2 guarantees that the points associated with
high evaluations are close to the unique optimizer with re-
spect to the Euclidean distance. This condition will be
used to derive some finite-time bounds on the distance
‖x? −Xı̂n‖2 between the optimizer and its estimation.
Note that for any iso-level set f−1(y) with finite distance
to the optimum, the condition is satisfied with α = 0
and cα = diam(X ) /minx∈f−1(y) ‖x? − x′‖2. Therefore,
this condition concerns the behavior of the level sets when
minx∈f−1(y) ‖x? − x‖2 → 0. As an example, the iso-level
sets of three simple functions satisfying the condition with
different values of α are shown in Figure 2.

x?· · ·

Figure 2. Illustration of the regularity of the level sets on two
simple functions. Left: f(x1, x2) = exp (−x21 − 2x22) where
α = 0. Middle: f(x) = − |x1|3 − 2x22 where α = 1/2. Right:
f(x1, x2) = −x41 − 2x22 where α = 1.

3. Optimization with fixed ranking structure
In this section, we consider the problem of optimizing an
unknown function f given the prior knowledge that its
ranking rf belongs to a given ranking structureR ⊆ R∞.

3.1. The RANKOPT algorithm

The input of Algorithm 1 are a number n of iterations,
the unknown function f , a compact and convex set X ⊂
Rd and a ranking structure R ⊆ R∞. At each iteration
t < n, a point Xt+1 is uniformly sampled over X and the
algorithm decides, whether or not, to evaluate the function
at this point. The decision rule involves the active subset of
R which contains the ranking rules that are consistent with
the ranking rule induced by f over the points sampled so
far. We thus set Rt = {r ∈ R : Lt(r) = 0} where Lt is
the empirical ranking loss:

Lt(r) =
2

t(t+ 1)

∑
1≤i<j≤t

1 {rf (Xi, Xj) 6= r(Xi, Xj)} .

Algorithm 1 RANKOPT(n, f,X ,R)
1. Initialization: Let X1 ∼ U(X )
..... Evaluate f(X1), t← 1,R1 ← R, ı̂1 ← 1
2. Iterations: Repeat while t < n
..... Let Xt+1 ∼ U(X )
..... If there exists r ∈ Rt such that r(Xt+1, Xı̂t) ≥ 0
........... Evaluate f(Xt+1), t← t+ 1
........... Rt ← {r ∈ R : Lt(r) = 0}
........... ı̂t ∈ argmaxi=1...t f(Xi)
3. Output: Return Xı̂n
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Figure 3. Two samples generated by the RANKOPT algorithm af-
ter n = 30 iterations with the polynomial ranking rulesRP(4) on
the Styblinski-Tang function defined in Section 6.

As a direct consequence of the definition of the active
subset, if there does not exist any r ∈ Rt such that
r(Xt+1, Xı̂n) ≥ 0, it implies that rf (Xt+1, Xı̂t) = −1
which means that f(Xt+1) < f(Xı̂t). Thus, the algorithm
never evaluates the function at a point that will not return
certainly an evaluation at least equal to the highest evalua-
tion f(Xı̂t) observed so far.

Remark 1. (APPROXIMATION OF THE LEVEL SETS)
Since rf can be any ranking of Rt, at each iteration, the
sampling area Xt = {x ∈ X : ∃r ∈ Rt s.t. r(x,Xı̂t) ≥ 0}
is the smallest set that contains certainly the level set {x ∈
X : f(x) ≥ f(Xı̂t)} of the best value observed so far.

Remark 2. (CONNECTION WITH ACTIVE LEARNING)
The algorithm can be seen as an extension to ranking of
the baseline active learning algorithm CAL (Cohn et al.,
1994; Hanneke, 2011). However, in active learning we aim
at estimating a classifier h : X 7→ {0, 1} where the goal
in global optimization is to estimate the winner of a tour-
nament deriving from the ranking rule rf : X × X 7→
{−1, 0, 1} and not the ranking rule itself.

3.2. Convergence analysis

We state here some convergence properties of the
RANKOPT algorithm. The results are stated in a proba-
bilistic framework. The source of randomness comes from
the algorithm itself (which generates uniform random vari-
ables) and not from the evaluations which are assumed
noiseless. The next result will be important in order to for-
mulate the consistency property of the algorithm.

Proposition 2. Fix any n ∈ N?, let X ⊂ Rd be any com-
pact and convex set and let R ⊆ R∞ be any set of rank-
ing rules. Then, for any function f : X → R such that
rf ∈ R and any y ∈ R, if Xı̂n denotes the random output
of RANKOPT(n, f,X ,R), we have that,

P(f(Xı̂n) ≥ y) ≥ P( max
i=1...n

f(X ′i) ≥ y),

where {X ′i}ni=1 are n independent random variables, uni-
formly distributed over X .

Combining the previous proposition with the identifiability
condition gives the following asymptotic result.

Corollary 1. (CONSISTENCY) Using the same notations
and assumptions as in Proposition 2 and if the maximum of
the function f is identifiable (Condition 1), then,

f(Xı̂n)
P→ max

x∈X
f(x).

We now provide our finite-sample loss bounds.

Theorem 1. (UPPER BOUND) Under the same assump-
tions as in Proposition 2 and if the function f has (cα, α)-
regular level sets (Condition 2), then, for any δ ∈ (0, 1),
with probability at least 1− δ,

‖x? −Xı̂n‖2 ≤ Cα,X ·
(
ln(1/δ)

n

) 1
d(1+α)2

where Cα,X = c
(2+α)/(1+α)
α diam(X )1/(1+α)

2

.

More surprisingly, a lower bound can be derived by mak-
ing the link with the theoretical PURE ADAPTIVE SEARCH
(Zabinsky & Smith, 1992) that uses the knowledge of the
level sets of the unknown function.

Proposition 3. Fix any n ∈ N? and let {X?
i }ni=1 be a se-

quence distributed as the Markov process defined by{
X?

1 ∼ U(X )
X?
t+1| X?

t ∼ U(X ?t ) ∀t ∈ {1 . . . n− 1}
where X ?t = {x ∈ X : f(x) ≥ f(X?

t )}. Then, using the
same notations and assumptions as in Proposition 2, for
any y ∈ R, we have that,

P(f(Xı̂n) ≥ y) ≤ P(f(X?
n) ≥ y).

We are now ready to establish our second loss bound by
combining Proposition 3 with the level set assumption.

Theorem 2. (LOWER BOUND) Under the same assump-
tions as in Proposition 2 and if the function f has (cα, α)-
regular level sets (Condition 2), then, for any δ ∈ (0, 1),
with probability at least 1− δ,

Cα,X · e−
(1+α)2

d

(
n+
√

2n ln(1/δ)+ln(1/δ)
)
≤ ‖x? −Xı̂n‖2 ,

where Cα,X = c
−(1+α)(2+α)
α rad(X )(1+α)

2

.

Remark 3. (ON THE PERFORMANCE CRITERION) The
level set assumption, which is used in Theorem 1 and The-
orem 2, is invariant to any strictly increasing composition
ψ (i.e. if f has (cα, α)-regular level sets so has ψ ◦ f ). It
implies that the bounds on the distance ‖x? − Xı̂n‖2 be-
tween the exact solution and its approximation hold inde-
pendently of the smoothness of the function.

Remark 4. (RELATED WORK) To the best of our knowl-
edge, this is the first analysis of an optimization algorithm
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which uses the ranking rule induced by the unknown func-
tion. For a different approach to global optimization, we
refer to the work of (Munos, 2011) where the function is
assumed to be locally smooth around (one of) its optimum.
In the latter work, finite-time bounds on the difference
maxx∈X f(x)−f(Xı̂n) are obtained when the smoothness
is known (DOO) and the smoothness is unknown (SOO).

4. Adaptive algorithm and stopping time
analysis

4.1. The ADARANKOPT algorithm

The ADARANKOPT algorithm (Algorithm 2) is an ex-
tension of the RANKOPT algorithm which involves model
selection following the principle of Structural Risk Mini-
mization. We consider a parameter p ∈ (0, 1) and a nested
sequence of ranking structures {RN}N∈N? satisfying:

R1 ⊂ R2 ⊂ · · · ⊂ R∞. (1)

The algorithm is initialized by considering the smallest
ranking structure R1 of the sequence. At each iteration
t < n, a Bernoulli random variable Bt+1 of parameter p is
sampled. If Bt+1 = 1, the algorithm explores the space by
evaluating the function at a point uniformly sampled over
X . If Bt+1 = 0, the algorithm exploits the previous eval-
uations by making an iteration of the RANKOPT algorithm
with the smallest ranking structure RNt of the sequence
that probably contains the true ranking rf . Once a new
evaluation has been made, the index Nt+1 is updated. The
parameter p drives the trade-off between the exploitation
phase and the exploration phase which prevents the algo-
rithm from getting stuck in a local maximum.

Remark 5. (NESTED SEQUENCES) Condition (1) is cru-
cial for practical reasons discussed in Section 5. We point
out that both the sequence of polynomial ranking rules
{RP(N)}N∈N? and the sequence of convex ranking rules
{RC(N)}N∈N? defined in Section 2 satisfy this condition.

Algorithm 2 ADARANKOPT(n, f,X , p, {RN}N∈N?)
1. Initialization: Let X1 ∼ U(X )
Evaluate f(X1), t← 1,R ← R1, ı̂1 ← 1
2. Iterations: Repeat while t < n
Let Bt+1 ∼ B(p)
If Bt+1 = 1 {Exploration}
..... Let Xt+1 ∼ U(X )
If Bt+1 = 0 {Exploitation}
..... Let Xt+1 ∼ U({x ∈ X : ∃r ∈ R s.t. r(x,Xı̂t) ≥ 0})
Evaluate f(Xt+1), t← t+ 1
ı̂t ∈ argmaxi=1...t f(Xi)
Nt ← min{N ∈ N? : minr∈RN Lt(r) = 0} {Update}
R ← {r ∈ RNt : Lt(r) = 0}
3. Output: Return Xı̂n

4.2. Theoretical properties of ADARANKOPT

We start by casting the consistency result for the
ADARANKOPT algorithm.

Proposition 4. (CONSISTENCY) Fix any p ∈ (0, 1) and
any sequence of ranking structures {RN}N∈N? satisfy-
ing (1). Then, if the function f has an identifiable maxi-
mum (Condition 1) and Xı̂n denotes the random output of
ADARANKOPT(n, f,X , p, {RN}N∈N?), we have that,

f(Xı̂n)
P→ max

x∈X
f(x).

Proposition 4 reveals that even if the algorithm is poorly
tuned, it will end up finding the true maximum of any func-
tion with an identifiable maximum.

We now investigate the number of iterations required to
identify a ranking structure that contains the true ranking
rule.

Definition 5. (STOPPING TIME) Let N? = min{N ∈
N? : rf ∈ RN} be the index of the smallest rank-
ing structure that contains the true ranking rule and let
{Nt}t∈N? be the sequence of random variables defined in
the ADARANKOPT algorithm. Define the stopping time:

τN? = min{t ∈ N? : Nt = N?}

which corresponds to the number of iterations required to
identify N?.

In order to bound τN? , we need to control the complexity
of the sequence of ranking structures. Let us denote by
L(r) = P(rf (X,X ′) 6= r(X,X ′)) the true ranking loss
where (X,X ′) is a couple of independent random variables
uniformly distributed over X and define the Rademacher
average of a ranking structureR as

Rn=sup
r∈R

1

bn/2c

∣∣∣∣∣∣
bn/2c∑
i=1

εi1[rf (Xi,Xbn/2c+i)6=r(Xi,Xbn/2c+i)]

∣∣∣∣∣∣
where {Xi}ni=1 are n i.i.d. copies of X ∼ U(X ) and
ε1 . . . εbn/2c are bn/2c independent Rademacher random
variables (i.e. random symmetric sign variables), indepen-
dent of {Xi}ni=1.

Proposition 5. (STOPPING TIME UPPER BOUND) As-
sume that the index N? > 1 is finite, and that
infr∈RN?−1

L(r) > 0, and that there exists V > 0
such that the Rademacher complexity of RN?−1 satisfies
E [Rn] ≤

√
V/n for all n ∈ N?. Then, for any δ ∈ (0, 1),

with probability at least 1− δ,

τN? ≤
10

p
·
(

V + ln(2/δ)

infr∈RN?−1
L(r)2

)
.
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In the situation described above, one can recover an up-
per bound similar to the one of Theorem 1 by combining
the previous result with the analysis of the RANKOPT al-
gorithm where the structureRN? is assumed to be known.

Theorem 3. (UPPER BOUND) Consider the same as-
sumptions as in Proposition 5 and assume that the
function f has (cα, α)-regular level sets (Condition
2). Then, if Xı̂n denotes the random output of
ADARANKOPT(n, f,X , p, {RN}N∈N?), for any δ ∈
(0, 1) and any n > nδ , with probability at least 1− δ,

‖x? −Xı̂n‖2 ≤ Cα,X ·
(
ln(2/δ)

n− nδ

) 1
d(1+α)2

whereCα,X is the same constant as in Theorem 1 and nδ =
b10(V + ln(4/δ))/(p · infr∈RN?−1

L(r)2)c.

Remark 6. (COMPLEXITY ASSUMPTION) We refer here
to (Clémençon, 2011) and we point out that standard VC-
type arguments can be used in order to bound E [Rn]. If
the set of functions F = {(x, x′) ∈ X 2 7→ 1{rf (x, x′) 6=
r(x, x′)} : r ∈ R} is a VC major class with finite VC di-
mension V , then E [Rn] ≤ c

√
V/n for a universal constant

c > 0. This covers the case of polynomial ranking rules.

5. Computational aspects
We discuss here some technical aspects involved in the
practical implementation of the ADARANKOPT algorithm.

5.1. General ranking structures

Fix any nested sequence of ranking structures {RN}N∈N?
and any sample {(Xi, f(Xi))}ni=1. We address the ques-
tions of (i) sampling Xn+1 uniformly over the non-trivial
subset Xn = {x ∈ X : ∃r ∈ RNn s.t. Ln(r) =
0 and r(x,Xı̂n) ≥ 0} and (ii) updating the index Nn+1

once f(Xn+1) has been evaluated. We start to show that
both these steps can be done by testing if

min
r∈RN

Ln+1(r) = 0 (2)

holds true for a given N ∈ N? where the empirical ranking
loss is taken over a set of n+ 1 samples.

(i) Sampling X ∼ U(X ) until X ∈ Xn allows to sample
uniformly over Xn. Using the definition of the subset, we
know that X ∈ Xn if there exists a ranking r ∈ RNn ∩{r :
Ln(r) = 0} such that r(X,Xı̂n) = 0 or 1. Rewriting
the previous statement in terms of minimal error gives that
X ∈ Xn if:

- either minr∈RNn Ln+1(r) = 0 where Ln+1 is taken
over the sample {(Xi, f(Xi))}ni=1 ∪ (X, f(Xı̂n)),

- or minr∈RNn Ln+1(r) = 0 where Ln+1 is taken over
the sample {(Xi, f(Xi))}ni=1∪(X, f(Xı̂n)+c) where
c > 0 is any strictly positive constant.

(ii) Assume now that f(Xn+1) has been evaluated. Since
{RN}N∈N? forms a nested sequence, we have that
Nn+1 = Nn +min{i ∈ N? : minr∈RNn+i

Ln+1(r) = 0}
where the empirical loss is taken over {(Xi, f(Xi))}n+1

i=1 .
Therefore, Nn+1 can be updated by sequentially testing if
minr∈RNn+i

Ln+1(r) = 0 for i = 0, 1, 2 . . .

As mentioned earlier, both the previous steps can be done
using a generic procedure that tests if (2) holds true. We
now provide some equivalences that can be used to design
this procedure for the ranking structures introduced in Sec-
tion 2. For simplicity, we assume that all the evaluations of
the sample are distinct:

f(X(1)) < f(X(2)) < . . . < f(X(n+1)). (3)

where (1) . . . (n+1) denote the indexes of the correspond-
ing reordering.

5.2. Polynomial ranking rules

Consider the sequence of polynomial ranking rules
{RP(N)}N∈N? and let φN : Rd → Rdim(φN ) be the func-
tion that maps any point of Rd into the polynomial feature
space of degree N where dim(φN ) =

(
N+d
d

)
− 1. For ex-

ample, φ2(x1, x2) = {x1, x2, x1x2, x21, x22}. We start by
making the link with linear separability in the polynomial
feature space.
Proposition 6. (LINEAR SEPARABILITY) Fix any N ∈
N? and assume that all the evaluations are distinct (3).
Then, (2) holds true if and only if there exists an axis
ω ∈ Rdim(φN ) such that,

〈ω, φN (X(i+1))− φN (X(i))〉 > 0, ∀i ∈ {1 . . . n}.

Interestingly, testing the linear separability of a sample is
equivalent to testing the emptiness of a sample-dependent
polyhedron.
Corollary 2. Let MN be the (dim(φN ), n)-matrix where
its i-th column is equal to (φN (X(i+1))−φN (X(i)))

T and
let the operator � stands for the inequality ≥ component-
wise (i.e. x � x′ ⇔ xi ≥ x′i ∀i ∈ {1 . . . d}). Then, under
the same assumptions as in Proposition 6, (2) holds true if
and only if the following polyhedron is empty:

{λ ∈ Rn : MNλ
T = ~0, 〈~1, λ〉 = 1, λ � ~0} = ∅ .

Remark. 7 (ALGORITHMIC ASPECTS) The problem of
testing the emptiness of a polyhedron can be seen as the
problem of finding a feasible point of a linear program.
We refer to Chapter 11.4 in (Boyd & Vandenberghe, 2004)
where algorithmic solutions are discussed.
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Figure 4. Empirical estimation of E [maxx∈X f(x)− f(Xı̂t)] in terms of iteration t = 1 . . . n where the expectation was obtained by
running a 1000 times each algorithm.

5.3. Convex ranking rules
Consider the sequence of convex ranking rules
{RC(N)}N∈N? . Following the steps of (Clémençon
& Vayatis, 2010) leads to the next equivalence.

Proposition 7. (OVERLAYING CLASSIFIERS) Fix any
N ∈ N? and let X = [a, b]. Then, (2) holds true
if and only if there a exists a nested sequence h1 ≥
h2 ≥ . . . ≥ hn+1 of n + 1 classifiers of the form
hi(x) =

∑N
k=1 1 {li,k ≤ x ≤ ui,k} satisfying hi(X(j)) =

1 {(j) ≥ i}, ∀(i, j) ∈ {1 . . . n+ 1}2.

The problem of overlaying classifiers admits a tractable so-
lution when d = 1. In the specific case where N = 1 and
d ∈ N?, the problem of testing the existence of nested con-
vex classifiers is equivalent to the problem of testing the
emptiness of a cascade of polyhedrons.

Proposition 8. Fix any d ∈ N?, letN = 1 and assume that
all the evaluations are distinct. Then, (2) holds true if and
only if for each k ∈ {1 . . . n} the polyhedron defined by:

{λ ∈ Rk : Mkλ = XT
(n+1−k), 〈~1, λ〉 = 1, λ � ~0}

where Mk is the (d, k)-matrix where its i-th column is
equal to XT

(n+2−i), is empty.

6. Experiments
We now compare the empirical performances of the
ADARANKOPT algorithm with four global optimization al-
gorithms taken from the NLOpt library (Johnson, 2014):

CRS (Kaelo & Ali, 2006) is a controlled random search
with local mutations. It starts with a random population
and randomly evolve these points by an heuristic rule.

DIRECT (Jones et al., 1993) is a Lipschitz optimization
algorithm where the Lipschitz constant is unknown. It uses
a deterministic splitting technique of the search space.

ESCH (Santos et al., 2010) and ISRES (Runarsson &
Yao, 2000) are two evolutionary algorithms. The evolution

strategies are based on a combination of mutation rules and
differential variations.
The tuning parameters were set to default and the param-
eter p was set to 1/4 for the convex ranking rules and to
1/10 for the polynomial ranking rules. The algorithms
were compared on three synthetic problems:

(a) The task consists in maximizing the function f(x) =
1{x ≤ x?}(| cos (50(x− x?))|3/2 − 15|x− x?|1/2)/10−
1{x > x?}(|x|1/2 + 0.05| sin (50x)|3/2) over X = [0, 1]
where x? = 0.499. The function f has 17 local maxima
and presents a discontinuity around its unique optimizer x?.
The horizon n was set to 200 evaluations and the convex
ranking rules were used.

(b) The task consists in minimizing a perturbed version of
the Styblinski-Tang function f(x) =

∑2
i=1(x

4
i − 16x2i +

5xi)/2+cos(x1+x2) over X = [−5, 5]2. The level sets of
the Styblinski- Tang function are displayed on Figure 3 and
the function has 4 local minima. The polynomial ranking
rules were used and the horizon nwas set to 80 evaluations.

(c) The task consists in maximizing the function f(x) =

1 − |∑10
i=1(xi − 4.5)/10|5/2 over X = [−5, 5]10. The

hyperplane {x ∈ R10 :
∑10
i=1 xi = 45} maximizes the

function. The horizon n was set to 300 evaluations and the
polynomial ranking rules were used.

The results are shown in Figure 5.1. We remark that the
ADARANKOPT converges fast and avoids falling in local
maxima, as opposed to most of its competitors.

7. Conclusion
We have provided a global optimization strategy based on a
sequential estimation of the ranking of the unknown func-
tion. We introduced two algorithms: RANKOPT which
requires a prior knowledge of the ranking rule of the un-
known function and its adaptive version ADARANKOPT
which performs model selection. A theoretical analysis is
provided and the adaptive algorithm is shown to be em-
pirically competitive with the state-of-the-art methods on
representative synthetic examples.
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Appendix - Sketch of Proofs
Full proofs can be found in the Supplementary Material.

Proof of Proposition 1. The second inclusion (⇐) is a
direct consequence of the definition of the ranking rules.
To state the first inclusion (⇒), we introduce the function
M(x) = µ({x′ ∈ X : rf (x, x

′) = −1}) and we show
that there exists two strictly increasing functions ψ and ψ′

such that f = ψ ◦M and h = ψ′ ◦M . We finally get that
h = (ψ′ ◦ ψ−1) ◦ f where ψ′ ◦ ψ−1 is strictly increasing.

Proof of Proposition 2. The result is obtained by induc-
tion. SinceX1 ∼ U(X ), the result trivially holds for n = 1.
Assume that the statement holds for a given n ∈ N?, fix any
y ∈ R and let Xy = {x ∈ X : f(x) ≥ y}. First step: using
the fact that {x ∈ X : f(x) ≥ f(Xı̂n)} ⊆ Xn ⊆ X
we show that P(f(Xı̂n+1) ≥ y) ≥ P(f(Xı̂n) ≥ y) +
P(f(Xı̂n) < y)µ(Xy)/µ(X ). Second step: plugging the
induction assumption in the last equation and using the fact
that P(f(X ′n+1) ≥ y) = µ(Xy)/µ(X ) gives the result.

Proof of Corollary 1. Fix any ε > 0 and let Xε = {x ∈
X : f(x) ≥ maxx∈X f(x) − ε} be the corresponding
level set. Applying Proposition 2 leads to P(f(Xı̂n) <
maxx∈X f(x)− ε) ≤ (1− µ(Xε)/µ(X ))n −→

n→∞
0.

Proof of Theorem 1. Fix any δ ∈ (0, 1) and let
rδ,n be the upper bound of the theorem. First step:
using Proposition 3 and the level set assumption, we
show that P(‖Xı̂n − x?‖2 ≤ rδ,n) ≥ P(∪ni=1{X ′i ∈
B(x?,diam(X ) (ln(1/δ)/n)1/d)}) where {X ′i}ni=1 are n
i.i.d. copies of X ′ ∼ U(X ). Second step: we show that
for any r ≤ diam(X ) we have that µ(B(x?, r))/µ(X ) ≥
(r/diam(X ))d. Third step: using independence and the
fact that 1−x ≤ e−x, we finally get that P(‖Xı̂n − x?‖2 ≤
rδ,n) ≥ 1− (1− ln(1/δ)/n)n ≥ 1− δ.

Proof of Proposition 3. We use again an induction
argument. Assume that the result holds for a given
n ∈ N? and fix any y ∈ R. First step: using the fact that
Xf(Xı̂n ) = {x ∈ X : f(x) ≥ f(Xı̂n)} ⊆ Xn we show
that P (f(Xı̂n+1

) ≥ y) ≤ E
[
min(1, µ(Xy)/µ(Xf(Xı̂n )))

]
.

Second step: using the induction assumption
we show that E

[
min(1, µ(Xy)/µ(Xf(Xı̂n )))

]
≤

E
[
min(1, µ(Xy)/µ(Xf(X?n)))

]
= P(f(X?

n+1) ≥ y).
Proof of Theorem 2. Fix any δ ∈ (0, 1) and let rδ,n
be the lower bound of the corollary. First step: us-
ing Theorem 3 and the level set assumption we show
that P(‖Xı̂n − x?‖2 ≤ rδ,n) ≤ P(µ(X ?n)/µ(X ) ≤
δ exp (−n−

√
2n ln(1/δ))) where X ?n = {x ∈ X :

f(x) ≥ f(X?
n)}. Second step: we show that ∀u ∈ (0, 1),

P(µ(X ?n)/µ(X ) ≤ u) ≤ P(
∏n
i=1 Ui ≤ u) where {Ui}ni=1

are n i.i.d. copies of U ∼ U([0, 1]). Third step: using
concentration inequalities for sub-gamma random variables
gives that P(

∏n
i=1 Ui ≤ δ exp (−n−

√
2n ln(1/δ))) < δ.

Proof of Proposition 4. Fix any ε > 0 and let Xε = {x ∈
X : f(x) ≥ maxx∈X f(x)− ε} be the corresponding level
set. Using the fact that P(Xi ∈ Xε) ≥ p · µ(Xε)/µ(X )
for any i ∈ N?, we show by induction that P(f(Xı̂n) <
maxx∈X f(x)− ε) ≤ (1− p · µ(Xε)/µ(X ))n −→

n→∞
0.

Proof of Proposition 5. Fix any δ ∈ (0, 1) and let nδ be
the integer part of the upper bound of the proposition. First
step: since we have a nested sequence of sets of ranking
rules, P(τ ≤ nδ) = P(minr∈RN?−1

Lnδ(r) > 0). Sec-
ond step: using Hoeffding’s inequality gives a lower bound
on the number of i.i.d. samples collected: P(

∑nδ
i=1Bi ≥

bp · nδ −
√
nδ log(2/δ)/2c = n′δ) ≥ 1 − δ/2. Third

step: applying concentration results of ranking rules over
the n′δ i.i.d. samples gives that P(minr∈RN?−1

Ln′δ(r) ≥
minr∈RN?−1

L(r) − 2
√
V/n′δ − 2

√
ln (2/δ)/(n′δ − 1) >

0) ≥ 1− δ/2.

Proof of Theorem 3. Fix any δ ∈ (0, 1). We know that af-
ter nδ iterations the true ranking structureRN? is identified
with probability at least 1− δ/2 (Proposition 5). Once the
structureRN? is identified, one can use a similar technique
as the one used in Theorem 1 to get an upper bound with
probability at least 1− δ/2 thanks to the n− nδ samples.

Proof of Proposition 6. The proof is a consequence of
the definition of polynomial ranking rules: if r ∈ RP(N)

then there exists ωr ∈ Rdim(φN ) and cr ∈ R such
that r(x, x′) = sgn(〈ωr, φN (x)〉 + cr − 〈ωr, φN (x′)〉 −
cr) = sgn(〈ωr, φN (x) − φN (x′)〉). Noticing that
rf (X(i+1), X(i)) = 1 for all i ∈ {1 . . . n} gives the result.

Proof of Corollary 2. Let X ′i = φN (X(i+1))− φN (X(i)),
∀i ∈ {1 . . . n} and let CH{X ′i}ni=1 be the convex hull of
{X ′i}ni=1. First step: we show the following equivalence:
∃ω ∈ Rdim(φN ) such that ∀i ∈ {1 . . . n}, 〈ω,X ′i〉 > 0 ⇔
~0 /∈ CH{X ′i}ni=1. Second step: using the definition of con-
vex hull we get the second equivalence: ~0 ∈ CH{X ′i}ni=1

⇔ ∃(λ1, . . . λn) ∈ Rn s.t. ~0 =
∑n
i=1 λiX

′
i ,
∑n
i=1 λi = 1

and λi ≥ 0, ∀i ∈ {1 . . . n}.
Proof of Proposition 7. The first inclusion (⇒) is a direct
consequence of the definition of convex ranking rules. As-
sume now that there exists a nested sequence of classifiers
h1 ≥ . . . ≥ hn+1 satisfying the conditions. To state the
second inclusion (⇐) we build a continuous approxima-
tion of the step function f(x) =

∑n
i=1 hi(x) that perfectly

ranks the sample and induces a convex ranking.

Proof of Proposition 8. First step: using the defini-
tion of convex hulls, we show that each polyhedron of
the cascade is empty iff CH{X(i)}n+1

i=n ⊂ CH{X ′(i)}n+1
i=n−1

⊂ · · · ⊂ CH{X ′(i)}n+1
i=1 . Second step: we build

a continuous approximation of the function f(x) =∑n
k=1 1

{
x ∈ CH{X(i)}n+1

i=k

}
which induces a convex

ranking rule and perfectly ranks the sample.
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