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A. Stationary Covariance
The Ornstein-Uhlenbeck process has an analytic solution
in terms of the stochastic integral (Gardiner et al., 1985),

θ(t) = exp(−At)θ(0) +

√
ε
S

∫ t

0
exp[−A(t − t′)]BdW(t′) (1)

Following Gardiner’s book we derive an algebraic relation
for the stationary covariance of the multivariate Ornstein-
Uhlenbeck process. Define Σ = E[θ(t)θ(t)>]. Using the
formal solution for θ(t) given in the main paper, we find

AΣ + ΣA> = ε
S

∫ t

−∞

A exp[−A(t − t′)]BB> exp[−A>(t − t′)]dt′

+ ε
S

∫ t

−∞

exp[−A(t − t′)]BB> exp[−A>(t − t′)]dt′A>

= ε
S

∫ t

−∞

d
dt′

(
exp[−A(t − t′)]BB> exp[−A>(t − t′)]

)
= ε

S BB>.

We used that the lower limit of the integral vanishes by the
positivity of the eigenvalues of A.

B. Stochastic Gradient Fisher Scoring
We start from the Ornstein-Uhlenbeck process

dΘ(t) = −HAθ(t)dt + H
[
Bε/S + E

]
dW(t)

= −A′θ(t)dt + B′dW(t). (2)

We defined A′ ≡ HA and B′ ≡ H
[
Bε/S + E

]
. As derived in

the paper, the variational bound is (up to a constant)

KL c
=

N
2

Tr(AΣ) − log(|NA|). (3)

To evaluate it, the task is to remove the unknown covari-
ance Σ from the bound. To this end, as before, we use the
identity for the stationary covariance A′Σ + ΣA′> = B′B′>.

The criterion for the stationary covariance is equivalent to

HAΣ + ΣAH = εHBB>H + HEE>H>

⇔ AΣ + H−1ΣAH = εBB>H + EE>H

⇒ Tr(AΣ) =
1
2

Tr(H(εBB> + EE>)) (4)

We can re-parametrize the covariance as Σ = T H, such that
T is now unknown. The KL divergence is therefore

KL = −
N
2

Tr(AΣ) + log(|NA|)

=
N
4

Tr(H(εBB> + EE>)) +
1
2

log |T |

+
1
2

log |H| +
1
2

log |NA| +
D
2
, (5)

which is the result we give in the main paper.

C. Square root preconditioning
Finally, we analyze the case where we precondition with a
matrix that is proportional to the square root of the diagonal
entries of the noise covariance.

We define

G =
√

diag(BB>) (6)

as the diagonal matrix that contains square roots of the di-
agonal elements of the noise covariance. We use an addi-
tional scalar learning rate ε .

Theorem (taking square roots). Consider SGD precon-
ditioned with G−1 as defined above. Under the previous
assumptions, the constant learning rate which minimizes
KL divergence between the stationary distribution of this
process and the posterior is

ε∗ = 2DS
NTr(BB>G−1) . (7)
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For the proof, we read off the appropriate KL divergence
from the proof of Theorem 2 with G−1 ≡ H:

KL(q|| f ) c
= εN

2S Tr(BB>G−1)−Tr log(G) + D
2 log ε

S −
1
2 log |Σ|

(8)
Minimizing this KL divergence over the learning rate ε
yields Eq. 7 �.
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