Supplementary Material A Variational Analysis of Stochastic Gradient Algorithms

Stephan Mandt

Columbia University, Data Science Institute, New York, USA

Matthew D. Hoffman

Adobe Research, San Francisco, USA

David M. Blei

Columbia University, Departments of CS and Statistics, New York, USA

A. Stationary Covariance

The Ornstein-Uhlenbeck process has an analytic solution in terms of the stochastic integral (Gardiner et al., 1985),

$$\theta(t) = \exp(-At)\theta(0) + \sqrt{\frac{\epsilon}{s}} \int_0^t \exp[-A(t-t')]BdW(t') \quad (1)$$

Following Gardiner's book we derive an algebraic relation for the stationary covariance of the multivariate Ornstein-Uhlenbeck process. Define $\Sigma = \mathbb{E}[\theta(t)\theta(t)^{\top}]$. Using the formal solution for $\theta(t)$ given in the main paper, we find

$$\begin{split} A\Sigma + \Sigma A^{\top} &= \frac{\epsilon}{S} \int_{-\infty}^{t} A \exp[-A(t-t')] BB^{\top} \exp[-A^{\top}(t-t')] dt' \\ &+ \frac{\epsilon}{S} \int_{-\infty}^{t} \exp[-A(t-t')] BB^{\top} \exp[-A^{\top}(t-t')] dt' A^{\top} \\ &= \frac{\epsilon}{S} \int_{-\infty}^{t} \frac{d}{dt'} \left(\exp[-A(t-t')] BB^{\top} \exp[-A^{\top}(t-t')] \right) \\ &= \frac{\epsilon}{S} BB^{\top}. \end{split}$$

We used that the lower limit of the integral vanishes by the positivity of the eigenvalues of *A*.

B. Stochastic Gradient Fisher Scoring

We start from the Ornstein-Uhlenbeck process

$$d\Theta(t) = -HA\theta(t)dt + H[B_{\epsilon/S} + E]dW(t)$$

= $-A'\theta(t)dt + B'dW(t).$ (2)

We defined $A' \equiv HA$ and $B' \equiv H[B_{\epsilon/S} + E]$. As derived in the paper, the variational bound is (up to a constant)

$$KL \stackrel{c}{=} \frac{N}{2} \operatorname{Tr}(A\Sigma) - \log(|NA|).$$
(3)

To evaluate it, the task is to remove the unknown covariance Σ from the bound. To this end, as before, we use the identity for the stationary covariance $A'\Sigma + \Sigma A'^{\top} = B'B'^{\top}$. The criterion for the stationary covariance is equivalent to

$$HA\Sigma + \Sigma AH = \epsilon HBB^{\mathsf{T}}H + HEE^{\mathsf{T}}H^{\mathsf{T}}$$

$$\Leftrightarrow A\Sigma + H^{-1}\Sigma AH = \epsilon BB^{\mathsf{T}}H + EE^{\mathsf{T}}H$$

$$\Rightarrow \operatorname{Tr}(A\Sigma) = \frac{1}{2}\operatorname{Tr}(H(\epsilon BB^{\mathsf{T}} + EE^{\mathsf{T}})) \quad (4)$$

We can re-parametrize the covariance as $\Sigma = TH$, such that *T* is now unknown. The KL divergence is therefore

$$KL = -\frac{N}{2} \operatorname{Tr}(A\Sigma) + \log(|NA|) = \frac{N}{4} \operatorname{Tr}(H(\epsilon BB^{\top} + EE^{\top})) + \frac{1}{2} \log|T| + \frac{1}{2} \log|H| + \frac{1}{2} \log|NA| + \frac{D}{2},$$
(5)

which is the result we give in the main paper.

C. Square root preconditioning

Finally, we analyze the case where we precondition with a matrix that is proportional to the square root of the diagonal entries of the noise covariance.

We define

$$G = \sqrt{\operatorname{diag}(BB^{\top})} \tag{6}$$

as the diagonal matrix that contains square roots of the diagonal elements of the noise covariance. We use an additional scalar learning rate ϵ .

Theorem (taking square roots). Consider SGD preconditioned with G^{-1} as defined above. Under the previous assumptions, the constant learning rate which minimizes KL divergence between the stationary distribution of this process and the posterior is

$$\epsilon^* = \frac{2DS}{N\mathrm{Tr}(BB^{\mathsf{T}}G^{-1})}.$$
 (7)

sm3976@columbia.edu

MATHOFFM@ADOBE.COM

DAVID.BLEI@COLUMBIA.EDU

For the proof, we read off the appropriate KL divergence from the proof of Theorem 2 with $G^{-1} \equiv H$:

$$KL(q||f) \stackrel{c}{=} \frac{\epsilon N}{2S} \operatorname{Tr}(BB^{\top}G^{-1}) - \operatorname{Tr}\log(G) + \frac{D}{2}\log\frac{\epsilon}{S} - \frac{1}{2}\log|\Sigma|$$
(8)

Minimizing this KL divergence over the learning rate ϵ yields Eq. 7 \Box .