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A. Stationary Covariance

The Ornstein-Uhlenbeck process has an analytic solution
in terms of the stochastic integral (Gardiner et al., 1985),

0(t) = exp(—AnNBH(0) + \/g‘fo exp[—A(t — )]BAW({') (1)

Following Gardiner’s book we derive an algebraic relation
for the stationary covariance of the multivariate Ornstein-
Uhlenbeck process. Define T = E[0(1)d(r)"]. Using the
formal solution for 6(f) given in the main paper, we find
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We used that the lower limit of the integral vanishes by the
positivity of the eigenvalues of A.

B. Stochastic Gradient Fisher Scoring

We start from the Ornstein-Uhlenbeck process

dO(r) = —HAO(f)dt + H [Bes + E]|dW(r)
= —A'6(t)dt + B'dW(r). 2)
We defined A’ = HA and B’ = H [B¢/s + E]. As derived in

the paper, the variational bound is (up to a constant)

KL= gTr(AZ) — log(INA)). 3)

To evaluate it, the task is to remove the unknown covari-
ance X from the bound. To this end, as before, we use the
identity for the stationary covariance A’S + XA’T = B’'B’".

The criterion for the stationary covariance is equivalent to

HAYL +XAH = eHBB'H+ HEE'H'
o AX+H 'SAH = eBB'H+EE'H
1
= Tr(AY) = ETr(H(eBBT +EET) )

We can re-parametrize the covariance as £ = T H, such that
T is now unknown. The KL divergence is therefore

N
KL ~5 THAZ) + log(INA)

N 1
ZTr(H(eBBT +EE") + 3 log|T|

1 1 D
+§10g|H|+§10g|NA|+5, (5)

which is the result we give in the main paper.

C. Square root preconditioning

Finally, we analyze the case where we precondition with a
matrix that is proportional to the square root of the diagonal
entries of the noise covariance.

We define
G

\/diag(BB) (6)

as the diagonal matrix that contains square roots of the di-
agonal elements of the noise covariance. We use an addi-
tional scalar learning rate € .

Theorem (taking square roots). Consider SGD precon-
ditioned with G~ as defined above. Under the previous
assumptions, the constant learning rate which minimizes
KL divergence between the stationary distribution of this
process and the posterior is

& = 2DS
~  NTx(BB'G')"
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For the proof, we read off the appropriate KL divergence
from the proof of Theorem 2 with G™! = H:

KL(qllf) = %Tr(BBTG’l) —Trlog(G) + % log § — % log |Z]

®)
Minimizing this KL divergence over the learning rate e
yields Eq.[7] .
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