From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

A. Supplementary Material
A.1. Proof of Prop. 1

The Lagrangian of the optimization problem in Eq. 2 is:

1
Lz ) =5lp— 2"~ p"p+7(1Tp - 1) (37)
The optimal (p*, pu*, 7*) must satisfy the following Karush-Kuhn-Tucker conditions:
pr—z—p +71=0, (38)
17p* =1, p*>0, p* >0, (39)
pip; =0, Vi€ [K]. (40)

If for ¢ € [K] we have pf > 0, then from Eq. 40 we must have pj = 0, which from Eq. 38 implies p} = z; — 7. Let
S(z) = {j € [K] | pj > 0}. From Eq. 39 we obtain } ;. ¢(,)(2; — 7) = 1, which yields the right hand side of Eq. 4.
Again from Eq. 40, we have that p > 0 implies p; = 0, which from Eq. 38 implies p] = 7* — 2; > 0, i.e., 2; < 7" for
i ¢ S(z). Therefore we have that k(z) = |S(z)|, which proves the first equality of Eq. 4.

A.2. Proof of Prop. 2

We start with the third property, which follows from the coordinate-symmetry in the definitions in Eqs. 1-2. The same
argument can be used to prove the first part of the first property (uniform distribution).

Let us turn to the second part of the first property (peaked distribution on the maximal components of z), and define
t = e~ 1. For the softmax case, this follows from
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For the sparsemax case, we invoke Eq. 4 and the fact that k(tz) = |A(2)] if v(tz) > 1/|A(z)|. Since y(tz) = tvy(z), the
result follows.

The second property holds for softmax, since (e*¢)/ >, e*T¢ = % /3", e**; and for sparsemax, since for any p €
AK=1 we have |[p — z — c1||? = ||p — z||? — 2¢1 7 (p — 2) + ||c1]||?, which equals ||p — z||? plus a constant (because
1"p=1).

Finally, let us turn to fourth property. The first inequality states that z; < z; = p;(2) < p;j(2) (i.e., coordinate
monotonicity). For the softmax case, this follows trivially from the fact that the exponential function is increasing. For the
sparsemax, we use a proof by contradiction. Suppose z; < z; and sparsemax;(z) > sparsemax; (z). From the definition
in Eq. 2, we must have ||p — z||?> > ||sparsemax(z) — z||?, for any p € AKX L, This leads to a contradiction if we choose
pr = sparsemaxy (z) for k ¢ {i,j}, p; = sparsemax;(z), and p; = sparsemax;(z). To prove the second inequality
in the fourth property for softmax, we need to show that, with z; < z;, we have (e* — e*)/ ", e* < (z; — 2z;)/2.
Since ), e* > e* + e, it suffices to consider the binary case, i.e., we need to prove that tanh((z; — 2;)/2) =
(e# — e*)/(e* + €*) < (z; — 2i)/2, that is, tanh(¢) < ¢ for t > 0. This comes from tanh(0) = 0 and tanh’(t) =
1 — tanh? (t) < 1. For sparsemax, given two coordinates i, j, three things can happen: (i) both are thresholded, in which
case p;(2) — pi(2) = z; — z;; (ii) the smaller (z;) is truncated, in which case p;(z) — pi(2) = z; — 7(2) < z; — 2;; (iil)
both are truncated, in which case p;(z) — p;(2) =0 < z; — 2.

A.3. Proof of Prop. 3

To prove the first claim, note that, for j € S(z),

=27(2)— = = , (42)

where we used Eq. 10. We then have
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That is, V, Lsparsemax (2; k) = —0j, + sparsemax(z).

To prove the second statement, from the expression for the Jacobian in Eq. 11, we have that the Hessian of Lgparsemax
(strictly speaking, a “sub-Hessian” (Penot, 2014), since the loss is not twice-differentiable everywhere) is given by

a2Lspa1rsemax(z;k) _ 61‘3‘ - \S(lz)| le,] S S(Z)
O0x;0x; 0 otherwise.

(43)

This Hessian can be written in the form Id — 117 /|S(2)| up to padding zeros (for the coordinates not in S(z)), where Id is
the identity matrix; hence it is positive semi-definite (with rank |S(z)| — 1), which establishes the convexity of Leparsemax-

For the third claim, we have Lgparsemax (2 + ¢1) = —z;, —c + 3 Zjes(z)(zf- —732)+2c(zj — 7))+ 5= -2z —c+
% Zjes(z)(z? —72(2) + 2ep;) + % = Lgparsemax(2), since Zjes(z) p; = L.

From the first two claims, we have that the minima of Lgparsemax have zero gradient, i.e., satisfy the equation
sparsemax(z) = 8. Furthemore, from Prop. 2, we have that the sparsemax never increases the distance between two co-
ordinates, i.e., sparsemax (z) —sparsemax;(z) < 2, — z;. Therefore sparsemax(z) = dy, implies z; > 1 +max;»y, z;.
To prove the converse statement, note that the distance above can only be decreased if the smallest coordinate is truncated

to zero. This establishes the equivalence between (ii) and (iii) in the fifth claim. Finally, we have that the minimum loss
value is achieved when S(z) = {k}, in which case 7(z) = 2z, — 1, leading to

1 1
Lsparsemax(z; k) =—zp+ 5(213 - (Zk - 1)2) + 5 =0. (44)

This proves the equivalence with (i) and also the fourth claim.



