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1 Problem Formulation
Consider a vector autoregressive (VAR) model of order d:

xt = A1xt−1 + . . .+Adxt−d + εt, t = 0,±1,±2, . . . , (1)

where xt ∈ Rp is a random vector, Ai ∈ Rp×p, i = 1, . . . , d are fixed coefficient matrices and εt is a vector of
zero-mean white noise, i.e., E(εt) = 0, E(εtε

T
t ) = Σ and E(εtε

T
t+h) = 0, for h 6= 0. We assume that the noise

covariance matrix Σ is positive definite with bounded largest eigenvalue, i.e., Λmin(Σ) > 0 and Λmax(Σ) <∞.
The above formulation in (1) can be written compactly as a VAR model of order 1:

Xt = AXt−1 + Et, (2)

where Xt =


xt
xt−1

...
xt−(d−1)

 ∈ Rdp, A =


A1 A2 . . . Ad−1 Ad
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

 ∈ Rdp×dp, and Et =


εt
0
...
0

 ∈ Rdp, where

I is the identity matrix I ∈ Rdp×dp. The covariance matrix of the noise term E is now

ΣE =


Σ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .
Note that the first order VAR model in (2) can also be represented in the moving average form [5]

Xt =

∞∑
i=0

AiEt−i, (3)

where Xt is expressed in terms of past and present error vectors.

1.1 VAR Estimation
In the following, we rewrite the VAR model of order d in (1)

xt = A1xt−1 + . . .+Adxt−d + εt, t = 0,±1,±2, . . .

in the form suitable for estimation. We assume that we have a realization of T + 1 samples (x0, x1, . . . , xT ). Trans-
posing the above form, we get

xTt = xTt−1A
T
1 + . . .+ xTt−dA

T
d + εTt .
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Then, stacking all the samples together, we obtain


xTd
xTd+1

...
xTT−1

xTT

 =


xTd−1 xTd−2 . . . xT0
xTd xTd−1 . . . xT1
...

...
. . .

...
xTT−2 xTT−3 . . . xTT−d−1

xTT−1 xTT−2 . . . xTT−d





AT1

AT2

...

ATd


+


εTd
εTd+1

...
εTT−1

εTT

 ,

which we can compactly write as

Y = XB + E, (4)

where Y ∈ RN×p, X ∈ RN×dp, B ∈ Rdp×p, and E ∈ RN×p for N = T − d+ 1. Vectorizing each matrix in (4), we
get (utilizing the fact that vec(AB) = (I ⊗A)vec(B)):

vec(Y ) = vec(XB) + vec(E)

vec(Y ) = (Ip×p ⊗X)vec(B) + vec(E)

y = Zβ + ε,

where y ∈ RNp, Z ∈ RNp×dp2 , β ∈ Rdp2 , and ε ∈ RNp. Note that the covariance matrix of the noise ε is now
E[εεT ] = Σ⊗ IN×N .

In this work we consider the problem of estimating parameter β from the data (x0, x1, . . . , xT ) generated by stable
VAR model of order d using the following form of the estimator:

β̂ = argmin
β∈Rdp2

1

N
||y − Zβ||22 + λNR(β) (5)

where R(β) is any vector norm and λN is a regularization parameter. The only assumption we make about R(β)
is that it is decomposable along the columns of B. Denote β = [βT1 β

T
2 . . . β

T
p ]T , where βi ∈ Rdp. Also let B(:, i)

denote the column of matrix B and Ak(i, :) as the row of matrix Ak for k = 1, . . . , d, then we can write

R(β) =

p∑
i=1

R
(
βi
)

=

p∑
i=1

R
(
B(:, i)

)
=

p∑
i=1

R

([
A1(i, :)TA2(i, :)T . . . Ad(i, :)

T
]T)

. (6)

Note that in the above we also assumed, for simplicity and without the loss of generality, that for each i = 1, . . . , p,
the norm R(·) is the same. It is straightforward to extend our framework to the case when for each i a different norm
is used.

1.2 Matrix X Notations
To simplify derivations, below we define notations for various parts of matrix X

X =


xTd−1 xTd−2 . . . xT0
xTd xTd−1 . . . xT1
...

...
. . .

...
xTT−2 xTT−3 . . . xTT−d−1

xTT−1 xTT−2 . . . xTT−d

 .
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Row. Each row of matrix X is denoted as

Xi,: =


xTT−i
xTT−1−i

...
xTT−d−(i−1)

 ∈ Rdp, (7)

for i = 1, . . . , N . In cases, when the specific row index i is irrelevant, we use a notation X = Xi,:, for all i.
All Rows. All the rows of matrix X , stacked in a single vector, are denoted as

U =


X1,:

X2,:

...
XN,:

 ∈ RNdp. (8)

Column. Each column of matrix X is denoted as

X:,j =


xd−k(:, l)
xd−k+1(:, l)

...
xT−k(:, l)

 ∈ RN ,

where index j = k + l, for 1 ≤ k ≤ d and 1 ≤ l ≤ p, so that j = 1, . . . , dp.
All Columns. All the columns of matrix X , stacked in a single vector, are denoted as

V =


X:,1

X:,2

...
X:,dp

 ∈ RNdp.

Block-Column. Matrix X can be viewed as a concatenation of d block-columns. Each block-column, reshaped into a
vector, is denoted as

Yk =


xd−k
xd−k+1

...
xT−k

 ∈ RNp, (9)

for k = 1, . . . , d. In cases, when the specific index k is irrelevant, we use a notation Y = Yk, for all k.
All Block-Columns. All the reshaped block-columns of matrix X , stacked in a single vector, are denoted as

W =


Y1

Y2

...
Yd

 ∈ RNdp. (10)
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1.3 Stability of VAR Model
The formulation (2) represents a stable VAR model if all the eigenvalues of A are smaller than 1, i.e., eigenvalues of
A must satisfy det(λIdp×dp −A) = 0 for λ ∈ C, |λ| < 1, |λ| 6= 0. Specifically, write

λIdp×dp −A =


Iλ 0 . . . 0 0
0 Iλ . . . 0 0
0 0 . . . 0 0
...

... . . .
...

...
0 0 . . . 0 Iλ

−

A1 A2 . . . Ad−1 Ad
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0



=


Iλ−A1 −A2 . . . −Ad−1 −Ad
−I Iλ . . . 0 0
0 −I . . . 0 0
...

...
. . .

...
...

0 0 . . . −I Iλ

 .

Now multiply last (d-th) block-column by 1
λ and add to (d − 1)-st block-column. Next, multiply the result in

(d− 1)-st block-column by 1
λ and add to (d− 2)-nd block-column. Continuing in this manner, we will arrive at

Q =

[
λIp×p −A1 − 1

λA2 − . . .− 1
λd−1Ad M

0 λIp(d−1)×p(d−1)

]
,

where matrix M ∈ Rp×p(d−1) denotes the result of some of the column operations. Since such column operations
leave the matrix determinant unchanged, we have

det(λIdp×dp −A) = det(Q) = det(λIp×p −A1 −
1

λ
A2 − . . .−

1

λd−1
Ad) · det(λIp(d−1)×p(d−1))

= det(Ip×p −
1

λ
A1 −

1

λ2
A2 − . . .−

1

λd
Ad) · λpd.

Therefore, stability of VAR model in (2) requires det(I −∑d
k=1Ak

1
λk

) = 0 to be satisfied for |λ| < 1, |λ| 6= 0.
Equivalently, det(I −∑d

k=1Akz
k) = 0 must be satisfied for z ∈ C, |z| > 1, or det(I −∑d

k=1Akz
k) 6= 0 must hold

for |z| ≤ 1.

1.4 Autocovariance of VAR Model
In this section we consider autocovariance matrix of VAR model written in different forms as well as establish bounds
on the eigenvalues of these matrices.

1.4.1 VAR Model for xt

The autocovariance matrix of the original VAR process of order d in (1) is defined as Γ(h) = E[xtx
T
t+h]. Fourier

transform of autocovariance matrix is called spectral density and is denoted as (for i =
√
−1)

γ(ω) =

∞∑
h=−∞

Γ(h)e−hiω, ω ∈ [0, 2π]. (11)

Inverse Fourier transform of the spectral density gives back the autocovariance matrix:

Γ(h) =
1

2π

∫ 2π

0

γ(ω)ehiωdω, h ∈ 0,±1,±2, . . . (12)

For our VAR model in (1), the spectral density has a closed form expression [7]

γ(ω) =

(
I −

d∑
k=1

Ake
−kiω

)−1

Σ

(I − d∑
k=1

Ake
−kiω

)−1
∗ ∈ Rp×p, (13)
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where ∗ is the Hermitian of a matrix.
Let V = [xT1 , x

T
2 , . . . , x

T
K ]T be a vector composed from the output of the VAR process during K steps, then

CV = E(V V T ) =


Γ(0) Γ(1) . . . Γ(K − 1)

Γ(1)T Γ(0) . . . Γ(K − 2)
...

...
. . .

...
Γ(K − 1)T Γ(K − 2)T . . . Γ(0)

 ∈ RKp×Kp. (14)

In this work we will be interested in the bounds on the eigenvalues of CV . Note that CV is a block-Toeplitz matrix
and so we can use the following property [3]

inf
1≤j≤p
ω∈[0,2π]

Λj [γ(ω)] ≤ Λk[CV ] ≤ sup
1≤j≤p
ω∈[0,2π]

Λj [γ(ω)], for 1 ≤ k ≤ Kp. (15)

Using (13), we can compute the lower bound. For this we use the following relationships: for any M , ||M ||2 =√
Λmax(MTM), and if M is symmetric, ||M ||2 = Λmax(M). Similarly, for any nonsingular M , ||M−1||2 =

1√
Λmin(MTM)

, and if M is symmetric, ||M−1||2 = 1
Λmin(M) . Since γ(ω) is symmetric, we have

Λmax[γ(ω)] =

∣∣∣∣∣∣
∣∣∣∣∣∣
(
I −

d∑
k=1

Ake
−kiω

)−1

Σ

(I − d∑
k=1

Ake
−kiω

)−1
∗∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
(
I −

d∑
k=1

Ake
−kiω

)−1
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

||Σ||2

≤ Λmax(Σ)

Λmin

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)] (16)

and the upper bound

Λmin[γ(ω)] =


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(
I −

d∑
k=1

Ake
−kiω

)−1

Σ

(I − d∑
k=1

Ake
−kiω

)−1
∗

−1
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2


−1

≥

∣∣∣∣∣
∣∣∣∣∣I −

d∑
k=1

Ake
−kiω

∣∣∣∣∣
∣∣∣∣∣
2

2

||Σ−1||2

−1

≥ Λmin(Σ)

Λmax

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)] . (17)

Therefore, the CV has the following bounds on its eigenvalues

Λmin(Σ)

Λmax

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)] ≤ Λk[CV ] ≤ Λmax(Σ)

Λmin

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)] ,

for 1 ≤ k ≤ Kp, and ω ∈ [0, 2π].
Denoting Λmin(A) = Λmin

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)]

for ω ∈ [0, 2π] and similarly Λmax(A) =

Λmax

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)]

for ω ∈ [0, 2π], we can compactly write the above as

Λmin(Σ)

Λmax(A)
≤ Λk[CV ] ≤ Λmax(Σ)

Λmin(A)
, (18)

for 1 ≤ k ≤ Kp.
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1.4.2 VAR Model for Xj,:

In this section we consider the VAR model of order 1 in (2). Note that this is the same form as the model obtained
from the rows of X (see (7)), i.e.,


xd−i+1

xd−i
...
xi

 =


A1 A2 . . . Ad−1 Ad
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0



xd−i
xd−i−1

...
xi−1

+


εd−i+1

0
...
0

 .

Written in a compact form, the above expression takes the form

Xj,: = AXj−1,: + Ej , for j = 1, . . . , N,

which can be thought to be the transformations of the form

X1,: =


xd−1

xd−2

...
x0

 → X2,: =


xd
xd−1

...
x1

 → · · · → XN,: =


xN+d−2

xN+d−3

...
xN−1

 .
Let

U =

X1,:

...
XN,:

 ∈ RNdp, (19)

be a vector composed from the output of the above VAR model during N steps. Then CU ∈ RNdp×Ndp is the
covariance matrix of vector U

CU = E(UUT ) = E

X1,:

...
XN,:

 [XT
1,: . . . X

T
N,:

]
=


E[X1,:X

T
1,:] E[X1,:X

T
2,:] . . . E[X1,:X

T
N,:]

E[X2,:X
T
1,:] E[X2,:X

T
2,:] . . . E[X2,:X

T
N,:]

...
...

. . .
...

E[XN,:X
T
1,:] E[XN,:X

T
2,:] . . . E[XN,:X

T
N,:]

 . (20)

To establish the bounds on the eigenvalues of CU , we denote the spectral density of the corresponding VAR process as

γX(ω) =

∞∑
h=−∞

ΓX(h)e−hiω, ω ∈ [0, 2π],

where ΓX(h) = E[Xj,:X
T
j+h,:]. Since CU is a block-Toeplitz matrix, we can employ the same relationship as we used

in Section 1.4.1

inf
1≤l≤dp
ω∈[0,2π]

Λl[γX(ω)] ≤ Λk[CU ] ≤ sup
1≤l≤dp
ω∈[0,2π]

Λl[γX(ω)], for 1 ≤ k ≤ Ndp. (21)
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In the following we establish the closed form expression of spectral density γX. For this, we use moving average
representation in (3) and write

γX(ω) =

∞∑
h=−∞

ΓX(h)e−hiω

=

∞∑
h=−∞

E[Xj,:X
T
j+h,:]e

−hiω for any j

=

∞∑
h=−∞

E

[ ∞∑
k=0

AkEj−k,:

( ∞∑
s=0

AsEj+h−s,:

)T]
e−hiω

=

∞∑
h=−∞

E

[ ∞∑
k=0

AkEj−k,:

( ∞∑
s=0

As−hEj−s,:

)T]
e−hiω

=

∞∑
h=−∞

∞∑
k=0

AkΣE

(
Ak−h

)T
e−hiω

=

∞∑
h=−∞

∞∑
k=0

AkΣE

(
Ak−h

)T
e−hiω+kiω−kiω

=

∞∑
h=−∞

∞∑
k=0

Ake−kiωΣE

(
Ak−he−(k−h)iω

)∗
=

∞∑
k=0

Ake−kiωΣE

∞∑
r=0

(
Are−riω

)∗
=
(
I −Ae−iω

)−1

ΣE

[(
I −Ae−iω

)−1
]∗
, (22)

where we have used the fact that
∑∞
k=0 A

ke−kiω =
(
I −Ae−iω

)−1

.
Now, using (21), (22), the results from Section 1.4.1 and the fact that the covariance matrix ΣE has the form

ΣE =


Σ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,
we can establish the following bounds

Λmin(ΣE)

Λmax [(I −AT eiω) (I −Ae−iω)]
≤ Λk[CU ] ≤ Λmax(ΣE)

Λmin [(I −AT eiω) (I −Ae−iω)]
.

Since Λmax(ΣE) = Λmax(Σ), the upper bound becomes

Λmax[CU ] ≤ Λmax(Σ)

Λmin [(I −AT eiω) (I −Ae−iω)]
,

for ω ∈ [0, 2π]. Denoting Λmin(A) = Λmin
[(
I −AT eiω

) (
I −Ae−iω

)]
for ω ∈ [0, 2π], we can compactly write the

above as

Λmax[CU ] ≤ Λmax(Σ)

Λmin(A)
. (23)
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2 Statistical Properties of VAR Estimator

Denote by ∆ = β̂ − β∗ the error between the solution of optimization problem (5) and β∗, the true value of the
parameter. The focus of our work is to determine conditions under which the estimation problem in (5) is consistent,
i.e., the error term is bounded: ||∆||2 ≤ δ for some known δ.

To establish such conditions, we utilize the framework of [2]. Specifically, if the following regularization parameter
bound is satisfied

λN ≥ cR∗[
1

N
ZT ε],

for some constant c > 1, where R∗[ 1
NZ

T ε] is a dual norm of the vector norm R(·), which is defined as R∗[ 1
NZ

T ε] =

sup
R(U)≤1

〈
1
NZ

T ε, U
〉
, for U ∈ Rdp2 , where U = [uT1 , u

T
2 , . . . , u

T
p ]T and ui ∈ Rdp. Then the error vector belongs to

the set

ΩE =

{
∆ ∈ Rdp

2
∣∣∣R(β∗ + ∆) ≤ R(β∗) +

1

c
R(∆)

}
.

Moreover, if the restricted eigenvalue condition holds

||Z∆||2
||∆||2

≥
√
κN,

for ∆ ∈ cone(ΩE) and some constant κ > 0, where cone(ΩE) is a cone of an error set, then the following bound on
the norm of the estimation error can be established

||∆||2 ≤
1 + c

c

λN
κ

Ψ(cone(ΩE)),

where Ψ(cone(ΩE)) is a norm compatibility constant, defined as Ψ(cone(ΩE)) = sup
U∈cone(ΩE)

R(U)
||U ||2 .

In the derivations of the bounds we will be utilizing the following concentration inequality for a Lipschitz function
of standard Gaussian random variable

Lemma 2.1 Let X ∈ Rn be a vector of zero-mean, unit-variance Gaussian entries, i.e., X ∼ N (0, In×n) and let
f : Rn → R be Lipschitz with constant L, which means that |f(X)− f(Y )| ≤ L||X − Y ||2,∀X,Y ∈ Rn. Then for
all τ > 0

P

[∣∣∣f(X)− E
[
f(X)

]∣∣∣ > τ

]
≤ 2 exp

(
− τ2

2L2

)
.

as well as the concentration inequality for `2 - norm of arbitrary Gaussian vector

Lemma 2.2 Let X ∈ Rn be a vector of zero-mean Gaussian entries, i.e., X ∼ N (0, Qn×n). Then for all τ > 0

P

[∣∣∣||X||2 −√trace(Q)
∣∣∣ > τ + 2

√
||Q||2

]
≤ 2 exp

(
− τ2

2||Q||2

)
.

Concentration inequality for supreme of Gaussian processes

Lemma 2.3 Let {Xt}t∈T be a Gaussian processes, then for all τ > 0

P

[∣∣∣sup
t∈T

Xt − E sup
t∈T

Xt

∣∣∣ > τ

]
≤ 2 exp

− τ2

2 sup
t∈T

E(X2
t )

 .

.

Useful probability relationship.
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Lemma 2.4 Let Ai, for i = 1, . . . ,K be a set of probabilistic events. Then

P
[
A1 and A2 and . . . and AK

]
≥

K∑
i=1

P
[
Ai
]
− (K − 1)

Proof 2.5 Using De Morgan’s law, and denoting by Ai the negation of event Ai, we can write

1− P
[
A1 and A2 and . . . and AK

]
= P

[
A1 or A2 or . . . or AK

]
≤ P

[
A1

]
+ P

[
A2

]
+ . . .+ P

[
AK
]

= 1− P
[
A1

]
+ 1− P

[
A2

]
+ . . .+ 1− P

[
AK
]

= K −
K∑
i=1

P
[
Ai
]

where on the second line we used the union bound. Now rearranging the terms we get

P
[
A1 and A2 and . . . and AK

]
≥

K∑
i=1

P
[
Ai
]
− (K − 1).

We will also utilize the notions of Gaussian width and covering net.

Definition 2.6 For any set S and for a vector of independent zero-mean unit variance Gaussian variables g ∼
N (0, I), the Gaussian width of the set is defined as

w(S) = Eg[sup〈g, u〉
u∈S

]. (24)

2.1 Gaussian Noise Model
In this work we assume that the distribution of the noise in VAR process

xt = A1xt−1 + . . .+Adxt−d + εt, t = 0,±1,±2, . . . , (25)

follows a Gaussian distribution, i.e., εt ∼ N (0,Σ). Moreover, we can conclude that the distribution of xt is a zero-
mean Gaussian, i.e., xt ∼ N (0,Γ(0)), where Γ(h) = E(xtx

T
t+h).

Now consider the noise and data matrices from the formulation (2)

E =


εTd
εTd+1

...
εTT−1

εTT

 , X =


xTd−1 xTd−2 . . . xT0
xTd xTd−1 . . . xT1
...

...
. . .

...
xTT−2 xTT−3 . . . xTT−d−1

xTT−1 xTT−2 . . . xTT−d

 . (26)

For our theoretical analysis we require information about the probability distribution of rows and columns of X , as
well as columns of E. In the following sections we present the corresponding derivations.

2.1.1 Columns Distribution of Noise Matrix E

Each column of E in (26), denoted as E:,j , is a Gaussian vector: E:,j ∼ N (0, CE:,j
), where CE:,j

∈ RN×N ,
CE:,j

= E(E:,jE
T
:,j) = Σj,jIN×N , which is a diagonal matrix.

In what follows, we compute trace(CE:,j
) and ||CE:,j

||2 for the covariance matrix CE:,j
, needed in the future

computations. It can be seen that the trace of CE:,j is given by trace(CE:,j ) = NΣj,j and similarly we can establish
the ||CE:,j ||2 = Λmax(CE:,j ) = Σj,j .

9



Note that we can write the following inequality Σj,j ≤ Λmax(Σ) for any j = 1, . . . , p. This follows from Schur-
Horn theorem [4], which states that for a symmetric matrix Σ, if we sort its diagonal elements and eigenvalues in
non-decreasing order, i.e., Σj,j1 ≤ . . . ≤ Σj,jp and Λj1(Σ) ≤ . . . ≤ Λjp(Σ), then

k∑
i=1

Σj,ji ≥
k∑
i=1

Λji(Σ), for k = 1, . . . , p

and it holds with equality when k = p. Since
∑p−1
i=1 Σj,ji ≥

∑p−1
i=1 Λji(Σ) and

∑p
i=1 Σj,ji =

∑p
i=1 Λji(Σ), it

follows that Σj,jp ≤ Λjp(Σ). Therefore, Σj,j ≤ Λmax(Σ), for any j = 1, . . . , p.
Consequently, we can establish the following bounds on trace and spectral norm of CE:,j for any j = 1, . . . , p

||CE:,j
||2 ≤ Λmax(Σ), (27)

and

trace(CE:,j
) ≤ NΛmax(Σ). (28)

2.1.2 Rows Distribution of Data Matrix X

Each row of X , denoted as Xi,: = [xTT−i, x
T
T−1−i, . . . , x

T
T−d−(i−1)]

T ∈ Rdp, 1 ≤ i ≤ N , is distributed as Xi,: ∼
N (0, CX), where the covariance matrix CX, same for all i, is defined as

CX = E(Xi,:X
T
i,:) =


Γ(0) Γ(1) . . . Γ(d− 1)

Γ(1)T Γ(0) . . . Γ(d− 2)
...

...
. . .

...
Γ(d− 1)T Γ(d− 2)T . . . Γ(0)

 ∈ Rdp×dp, (29)

where Γ(h) = E(xtx
T
t+h). Note that, using results from Section 1.4.1 and specifically expression (18), we can

establish the upper and lower bound on the eigenvalues of CX

Λmax[CX] ≤ Λmax(Σ)

Λmin(A)
and Λmin[CX] ≥ Λmin(Σ)

Λmax(A)
. (30)

Now consider a vector q = Xa ∈ RN for any a ∈ Rdp. Since each element XT
i,:a ∼ N (0, aTCXa), it follows that

q ∼ N (0, Q) with a covariance matrix Q ∈ RN×N , which is defined as

Q = E(qqT ) = E

X
T
1,:a
...

XT
N,:a

 [aTX1,: . . . a
TXN,:

]

=


aTE[X1,:X

T
1,:]a aTE[X1,:X

T
2,:]a . . . aTE[X1,:X

T
N,:]a

aTE[X2,:X
T
1,:]a aTE[X2,:X

T
2,:]a . . . aTE[X2,:X

T
N,:]a

...
...

. . .
...

aTE[XN,:X
T
1,:]a aTE[XN,:X

T
2,:]a . . . aTE[XN,:X

T
N,:]a



=


aT 0 . . . 0
0 aT . . . 0
...

...
. . .

...
0 0 . . . aT



E[X1,:X

T
1,:] E[X1,:X

T
2,:] . . . E[X1,:X

T
N,:]

E[X2,:X
T
1,:] E[X2,:X

T
2,:] . . . E[X2,:X

T
N,:]

...
...

. . .
...

E[XN,:X
T
1,:] E[XN,:X

T
2,:] . . . E[XN,:X

T
N,:]



a 0 . . . 0
0 a . . . 0
...

...
. . .

...
0 0 . . . a



= (IN×N ⊗ aT )


E[X1,:X

T
1,:] E[X1,:X

T
2,:] . . . E[X1,:X

T
N,:]

E[X2,:X
T
1,:] E[X2,:X

T
2,:] . . . E[X2,:X

T
N,:]

...
...

. . .
...

E[XN,:X
T
1,:] E[XN,:X

T
2,:] . . . E[XN,:X

T
N,:]

 (IN×N ⊗ a).
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We denote the covariance matrix in the middle as

CU = E(UUT ) = E

X1,:

...
XN,:

 [XT
1,: . . . X

T
N,:

]
=


E[X1,:X

T
1,:] E[X1,:X

T
2,:] . . . E[X1,:X

T
N,:]

E[X2,:X
T
1,:] E[X2,:X

T
2,:] . . . E[X2,:X

T
N,:]

...
...

. . .
...

E[XN,:X
T
1,:] E[XN,:X

T
2,:] . . . E[XN,:X

T
N,:]

 . (31)

Thus, we established that q ∼ N (0, Q), where Q = (I ⊗ aT )CU (I ⊗ a).
In what follows, we compute trace(Q) and ||Q||2 for the covariance matrix Q, needed in the future computations.

It can be seen that the trace of Q is given by

trace(Q) = NaTCXa, (32)

where CX is defined in (29). Next, we compute upper bound on ||Q||2 as follows

||Q||2 = ||(I ⊗ aT )CU (I ⊗ a)||2
≤ ||I ⊗ a||22 ||CU ||2
= ||a||22 Λmax(CU ), (33)

where the last equality follows since ||I ⊗ a||22 = Λmax

(
(I ⊗ aT )(I ⊗ a)

)
= Λmax

(
I ⊗ aTa

)
= ||a||22. We used a

property of Kronecker product which states that for matrices with suitable dimensions, (A⊗B)(C⊗D) = (AC⊗BD).
To establish Λmax(CU ), we use the results from Section 1.4.2, expression (23), which enable us to conclude that

the upper bound of the largest eigenvalue of matrix CU is given by

Λmax(CU ) ≤ Λmax(Σ)

Λmin(A)
.

Therefore, the bound on the covariance matrix ||Q||2 in (33) is now given by

||Q||2 ≤ ||a||22
Λmax(Σ)

Λmin(A)
. (34)

2.2 Bound on Regularization Parameter
To establish lower bound on the regularization parameter λN , we derive an upper bound on R∗[ 1

NZ
T ε] ≤ α, for some

α > 0, which will establish the required relationship λN ≥ α ≥ R∗[ 1
NZ

T ε].
Denote E:,j ∈ RN as a column of matrix E and vector U = [uT1 , . . . , u

T
p ]T ∈ Rdp2 , where ui ∈ Rdp. Note that

since Z = Ip×p ⊗X , and ε = vec(E), we can observe the following

sup
R(U)≤1

〈
1

N
ZT ε, U

〉
= sup
R(U)≤1

1

N

〈(
Ip×p ⊗XT

)
vec(E), U

〉

= sup
R([uT1 ,...,u

T
p ]T )≤1

1

N

(〈
XTE:,1, u1

〉
+, . . . ,+

〈
XTE:,p, up

〉)

=
1

N

(
sup

R([uT1 ,...,u
T
p ]T )≤1

〈
XTE:,1, u1

〉
+, . . . ,+ sup

R([uT1 ,...,u
T
p ]T )≤1

〈
XTE:,p, up

〉)

=
1

N

(
sup

R(u1)≤r1

〈
XTE:,1, u1

〉
+, . . . ,+ sup

R(up)≤rp

〈
XTE:,p, up

〉)

=
1

N

p∑
j=1

sup
R(uj)≤rj

〈
XTE:,j , uj

〉
(35)

where
∑p
j=1 rj ≤ 1 and rj ≥ 0.
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Our objective is to establish a high probability bound of the form

P

[
sup

R(U)≤1

〈
1

N
ZT ε, U

〉
≤ α

]
≥ π

where 0 ≤ π ≤ 1, i.e., upper bound should hold with at least probability π. Using (35) and assuming that α =∑p
j=1 αj , we can rewrite the above probabilistic statement as follows

P

[
sup

R(U)≤1

〈
1

N
ZT ε, U

〉
≤ α

]
= P

[
1

N

p∑
j=1

sup
R(uj)≤rj

〈
XTE:,j , uj

〉
≤

p∑
j=1

αj

]

≥ P

[{
sup

R(u1)≤r1

1

N

〈
XTE:,1, u1

〉
≤ α1

}
and . . . and

{
sup

R(up)≤rp

1

N

〈
XTE:,p, up

〉
≤ αp

}]

≥
p∑
j=1

P
[

sup
R(uj)≤rj

1

N

〈
XTE:,j , uj

〉
≤ αj

]
− (p− 1), (36)

where the last line follows from Lemma 2.4. In the above derivations we used the observation that if the events{
sup

R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
≤ αj

}
, for each j hold, then the event

{∑p
j=1 sup

R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
≤∑p

j=1 αj

}
also holds but the reverse is not always true, implying that the probability space related to the event{∑p

j=1 sup
R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
≤∑p

j=1 αj

}
is larger.

Therefore, based on (36), we see that we need to establish the following concentration bound

P
[

sup
R(uj)≤rj

1

N

〈
XTE:,j , uj

〉
≤ αj

]
≥ πj , (37)

for each j = 1, . . . , p.
In the following our objective would be to first establish that the random variable 1

N

〈
XTE:,j , h

〉
has sub-exponential

tails, where h ∈ Rdp, ‖h‖2 = 1 is a unit norm vector. Based on the generic chaining argument we then use Theo-
rem 1.2.7 in [10] and bound the expectation of the supremum of the original variable 1

N

〈
XTE:,j , uj

〉
, i.e., bound

E

[
sup

R(uj)≤rj

1
N

〈
XTE:,j , uj

〉 ]
. Finally, using Theorem 1.2.9 in [10] we establish the high probability bound on how

sup
R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
concentrates around its mean.

2.2.1 Martingale difference sequence

We start by writing

〈
XTE:,j , h

〉
= 〈E:,j , Xh〉 =

N∑
i=1

Ei,j , (X:,ih) =

N∑
i=1

mi,

where mi = Ei,j(Xi,:h), i = 1, . . . , N . Observe that mi is a martingale difference sequence (MDS), which can be
shown by establishing that E(mi|m1, . . . ,mi−1) = 0 (see [5]). We can introduce a set {E1,:, E2,:, . . . , Ei−1,:} =
{εTd , εTd+1, . . . , ε

T
T } and write

E
[
mi|m1, . . . ,mi−1

]
= E

[
E
[
mi|m1, . . . ,mi−1, E1,:, . . . , Ei−1,:

]]
,

using the technique of iterated expectation. Note that the set {E1,:, E2,:, . . . , Ei−1,:} contains more information than
the set {m1, . . . ,mi−1} and conditioning on it has fixed all the past history of the sequence until time stamp i. Since
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mi = Ei,j(Xi,:h), the termsEi,j andXi,:h are now independent. The independence follows since every row of matrix
X is independent of the corresponding row of matrix E:

E =


εTd
εTd+1

...
εTT−1

εTT

 , X =


xTd−1 xTd−2 . . . xT0
xTd xTd−1 . . . xT1
...

...
. . .

...
xTT−2 xTT−3 . . . xTT−d−1

xTT−1 xTT−2 . . . xTT−d

 ,

which can be verified by noting that the noise vector εd+i is independent from xd−k+i since (d+ i) > (d− k+ i) for
0 ≤ i ≤ T − d and 1 ≤ k ≤ d. In other words, the information contained in xd−k+i does not contain information
from the noise εd+i (see (4)). Moreover,

E
[
mi

]
= E

[
Ei,j(Xi,:h)

]
= E

[
Ei,j

]
E
[
Xi,:h

]
= 0, (38)

due to the zero-mean noise E
[
Ei,j

]
= 0. Consequently, we have shown that E

[
mi|m1, . . . ,mi−1, E1,:, . . . , Ei−1,:

]
=

0 and therefore

E
[
mi|m1, . . . ,mi−1

]
= 0,

proving that mi = Ei,j(Xi,:h), i = 1, . . . , N is a martingale difference sequence.
Next, to show that 1

N

〈
XTE:,j , h

〉
= 1

N

∑N
i=1mi has sub-exponential tails, we first show that mi is sub-

exponential random variable and then use the proof argument similar to Azuma-type [1] and Bernstein-type [11]
inequalities to establish that a sum over sub-exponential martingale difference sequence is itself sub-exponential.

2.2.2 Sub-exponential tails of 1
N

〈
XTE:,j , h

〉
The MDS mi is sub-exponential since it is a product of two Gaussians. Indeed, recall that Eij and Xi,:h are both
Gaussian random variables, independent of each other. Employing a union bound enables us to write for any τ > 0

P
[
|mi| ≥ τ

]
= P

[
|Eij(Xi,:h)| ≥ τ

]
≤ P

[
|Eij | ≥

√
τ
]

+ P
[
|Xi,:h| ≥

√
τ
]

≤ 2e−c1τ + 2e−c2τ

≤ 4e−cτ ,

for some suitable constants c1 > 0, c2 > 0 and c > 0.
To establish that 1

N

∑
imi is sub-exponential, we note that the sub-exponential norm ‖ · ‖ψ1

(see [11], Definition
5.13) of mi can be upper-bounded by a constant. We denote by κ > 0 the largest of these constants, i.e.,

κ = max
i=1,...,N

‖mi‖ψ1
= max
i=1,...,N

‖Xi,:h‖ψ1
.

Now, using Lemma 5.15 in [11], the moment generating function of mi satisfies the following result: for s such
that |s| ≤ η

κ and for all i = 1, . . . , N

E
[
esmi

]
≤ ecs2κ2

, (39)

where c and η are absolute constants. Next, using Markov inequality, we can write for any ε′ > 0

P

[
N∑
i=1

mi ≥ ε′
]

= P

[
exp

(
s

N∑
i=1

mi

)
≥ exp(sε′)

]

≤
E
[
exp

(
s
∑N
i=1mi

)]
exp(sε′)

. (40)
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To bound the numerator, we use (39) and write for |s| ≤ η
κ utilizing the iterated expectation

E

[
exp

(
s

N∑
i=1

mi

)]
= E

[
exp(smN ) exp

(
s

N−1∑
i=1

mi

)]

= Em1,...,mN−1

[
EmN |m1,...,mN−1

[
exp(smN ) exp

(
s

N−1∑
i=1

mi

)]]

= Em1,...,mN−1

[
EmN |m1,...,mN−1

[
exp(smN )

]
exp

(
s

N−1∑
i=1

mi

)]
using (39)
≤ exp(cs2κ2)Em1,...,mN−1

[
exp

(
s

N−1∑
i=1

mi

)]

≤ exp(cs2κ2) exp(cs2κ2)Em1,...,mN−2

[
exp

(
s

N−2∑
i=1

mi

)]
...

≤ exp(Ncs2κ2)

Substituting back to (40), we get for |s| ≤ η
κ

P

[
N∑
i=1

mi ≥ ε′
]
≤ exp(−sε′ +Ncs2κ2). (41)

We now select s to minimize the right hand side of (41). For this, note that if the minimum is achieved for an s,
which satisfies |s| ≤ η

κ , then we simply minimize −sε′ + Ncs2κ2 and get s = ε′

N2cκ2 . On the other hand, if the
minimum is achieved for an s outside the range |s| ≤ η

κ , we pick the one on boundary s = η
κ . Thus, choosing

s = min
(

ε′

N2cκ2 ,
η
κ

)
, we obtain

P

[
N∑
i=1

mi ≥ ε′
]
≤ exp

(
−min

(
ε′

2

4cNκ2
,
ηε′

2κ

))
.

Finally, setting ε′ = Nε, for a suitable constant c > 0, we get

P

[
1

N

N∑
i=1

mi ≥ ε
]
≤ exp

(
−cmin

(
Nε2

κ2
,
Nε

κ

))
.

Repeating the above argument for − 1
N

∑N
i=1mi, we obtain same bound and a combination of both of them gives the

required concentration inequality for the sum over the martingale difference sequence

P

[
1

N

∣∣∣∣∣
N∑
i=1

mi

∣∣∣∣∣ ≥ ε
]

= P

[
1

N

∣∣∣∣∣ 〈XTE:,j , h
〉 ∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−cmin

(
Nε2

κ2
,
Nε

κ

))
. (42)

2.2.3 Establishing bound on E

[
sup

R(uj)≤rj

1
N

〈
XTE:,j , uj

〉 ]
To establish a high probability bound on the mean of sup

R(uj)≤rj

〈
XTE:,j , uj

〉
, we use a generic chaining argument from

[10], in particular Theorem 1.2.7 in [9]. For this, we define (Yuj )uj∈R(uj)≤rj = 1
N

〈
XTE:,j , uj

〉
and (Yvj )vj∈R(vj)≤rj =

1
N

〈
XTE:,j , vj

〉
to be two centered random symmetric process, indexed by a fixed vectors uj and vj , respectively.

They are centered due to (38) and they are symmetric since, for example, the process (Yuj )uj∈R(uj)≤rj has the same
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law as process
(
− (Yuj )uj∈R(uj)≤rj

)
(see the results established in (42)). Consider now the absolute difference of

these two processes∣∣∣(Yuj )uj∈R(uj)≤rj − (Yvj )vj∈R(vj)≤rj

∣∣∣ =
1

N

∣∣∣∣∣ 〈XTE:,j , uj − vj
〉 ∣∣∣∣∣ = ‖uj − vj‖2

1

N

∣∣∣∣∣
〈
XTE:,j ,

uj − vj
‖uj − vj‖2

〉 ∣∣∣∣∣.
Using now the bound obtained in (42), we get

P

[
1

N

∣∣∣∣∣
〈
XTE:,j ,

uj − vj
‖uj − vj‖2

〉 ∣∣∣∣∣ ≥ ε
]

=P

[
‖uj − vj‖2

1

N

∣∣∣∣∣
〈
XTE:,j ,

uj − vj
‖uj − vj‖2

〉 ∣∣∣∣∣ ≥ ‖uj − vj‖2ε
]

=P

[
1

N

∣∣∣∣∣ 〈XTE:,j , uj − vj
〉 ∣∣∣∣∣ ≥ τ

]
≤ 2 exp

(
−cmin

(
Nτ2

‖uj − vj‖22κ2
,

Nτ

‖uj − vj‖2κ

))
,

where τ = ‖uj − vj‖2ε. Then, according to Theorem 1.2.7 in [9], we obtain the following bound on the expectation
of the supremum of the difference between the processes

E

[
sup

R(uj)≤rj ,R(vj)≤rj

1

N

∣∣∣∣∣ 〈XTE:,j , uj
〉
−
〈
XTE:,j , vj

〉 ∣∣∣∣∣
]
≤ c

(
γ1

(
Sj ,
‖uj − vj‖2

N

)
+ γ2

(
Sj ,
‖uj − vj‖2√

N

))
,

(43)

where c is a constant, fi(Sj , di), i = 1, 2, are the majorizing measures, which are defined in [10], Definition 1.2.5;
d1 =

‖uj−vj‖2
N and d2 =

‖uj−vj‖2√
N

are the distance measures on the set Sj defined for all vectors s ∈ Sj : R(s) ≤ rj .
The definition of majorizing measure is as follows, for α > 0

γα(Sj , d) = inf sup
t

∑
k≥0

2
k
α∆(Ak(t)), (44)

where inf is taken over all possible admissible sequences of the set Sj ; ∆(Ak(t)) denotes the diameter of element
Ak(t) with respect to the distance metric d defined as

∆(Ak(t)) = sup
t1,t2∈Ak(t)

d(t1, t2), (45)

andAk(t) ∈ Ak is an element of an admissible sequence in generic chaining, see Definition 1.2.3 in [10] for a detailed
discussion on how Ak are constructed.

Observe that from definition of a diameter ∆(·) in (45) and majorizing measure in (44) we can immediately see
that for any constant c > 0

γα (Sj , cd) = cγα (Sj , d) , (46)

since inf sup
t

∑
k≥0 2

k
α sup
t1,t2∈Ak(t)

cd(t1, t2) = c inf sup
t

∑
k≥0 2

k
α sup
t1,t2∈Ak(t)

d(t1, t2). Moreover, in the next result we

establish the following useful Lemma which would enable us to bound the γ1 with the square of γ2.

Lemma 2.7 Given a metric space (Sj , d), we have

γ1(Sj , ‖.‖2) ≤ γ2
2(Sj , ‖.‖2). (47)

To prove this Lemma, we define d(s, t) = ‖s − t‖2. We use the traditional definition of majorizing measure
γ′α(Sj , d) from [8], equation (1.2):

γ′α(SJ , d) = inf sup
s∈S

(∫ ∞
0

(
log

1

µ(Bd(s, ε))

)1/α

dε

)
,
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where Bd(s, ε) is the closed ball of center t and radius ε based on the distance d and the infimum is taken over all the
probability measure µ on Sj .

Note that γ′α(Sj , d) relates to the majorizing measure γα(Sj , d) used in (43) as (see [8], Theorem 1.2)

K(α)−1γα(Sj , d) ≤ γ′α(Sj , d) ≤ K(α)γα(Sj , d),

where K(α) is a constant depending on α only. As a result, it is enough to show that γ′1(Sj , d) ≤ γ′2
2
(Sj , d). The

required relationship is then established as follows

γ′1(Sj , d) = inf sup
t

(∫ ∞
0

(
log

1

µ(Bd(t, ε))

)
dε

)

≤ inf sup
t

(∫ ∞
0

(
log

1

µ(Bd(t, ε))

)1/2

dε

)2

= γ′2
2
(Sj , d).

And this completes the proof. Now using Theorem 2.1.1 in [10], and the definition of γα(Sj , d) in (44) we can
establish that

γ2

(
Sj ,
‖.‖2√
N

)
=

1√
N
γ2(Sj , ‖.‖2) using (46)

≤ 1√
N

E
[

sup
R(z)≤rj

〈g, z〉
]

using Theorem 2.1.1 in [10]

= rj
1√
N

E
[

sup
R(u)≤1

〈g, u〉
]

since E
[

sup
R(z)≤rj

〈g, z〉
]

= rjE
[

sup
R(u)≤1

〈g, u〉
]

for z = rju

= rj
1√
N
w(ΩR), (48)

where in the last line we used the description of Gaussian width in Definition 2.6. Using Lemma 2.7 and (46) above,
we also get

γ1

(
Sj ,
‖.‖2
N

)
=

1

N
γ1 (Sj , ‖.‖2) using (46)

≤ 1

N
γ2

2 (S, ‖.‖2) using Lemma 2.7

≤ r2
j

1

N2
w2(ΩR) using (48)

≤ rj
1

N2
w2(ΩR), (49)

where in the last line we used the fact that rj < 1. Finally, substituting (48) and (49) into (43) and using Lemma 1.2.8
in [9], we get

E

[
sup

R(uj)≤rj ,R(vj)≤rj

1

N

∣∣∣∣∣ 〈XTE:,j , uj
〉
−
〈
XTE:,j , vj

〉 ∣∣∣∣∣
]

= E

[
sup

R(uj)≤rj

∣∣∣∣∣ 1

N

〈
XTE:,j , uj

〉 ∣∣∣∣∣
]

≤ crj
(
w(ΩR)√

N
+
w2(ΩR)

N2

)
. (50)

2.2.4 Establishing high probability concentration bound

Next, in order to establish a high probability concentration of the supremum of the random variable 1
N

〈
XTE:,j , uj

〉
around its mean, we use Theorem 1.2.9 from [10]. For any ε1 > 0 and ε2 > 0, we have

P

[
sup

R(uj)≤rj

∣∣∣∣∣ 1

N

〈
XTE:,j , uj

〉 ∣∣∣∣∣ ≥ E

[
sup

R(uj)≤rj

∣∣∣∣∣ 1

N

〈
XTE:,j , uj

〉 ∣∣∣∣∣
]

+ ε1D1 + ε2D2

]
≤ c exp(−min(ε22, ε1)). (51)
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where Di ≤ γi(Sj , d), i = 1, 2, where γi(Sj , d) are as defined in the discussion after (43). Therefore, using the result
(50), the concentration inequality (51) can now be written as

P

[
sup

R(uj)≤rj

∣∣∣∣∣ 1

N

〈
XTE:,j , uj

〉 ∣∣∣∣∣ ≥
(
c2(1 + ε2)rj

w(ΩR)√
N

+ c1(1 + ε1)rj
w2(ΩR)

N2

)]
≤ c exp(−min(ε22, ε1)). (52)

To adapt to the form required in (37), we reverse the direction of inequality

P

[
sup

R(uj)≤rj

∣∣∣∣∣ 1

N

〈
XTE:,j , uj

〉 ∣∣∣∣∣ ≤
(
c2(1 + ε2)rj

w(ΩR)√
N

+ c1(1 + ε1)rj
w2(ΩR)

N2

)]
≥ 1− c exp(−min(ε22, ε1)).

(53)

2.2.5 Overall bound

Now we can combine the results obtained in (53) for each j = 1, . . . , p using the fact that
∑p
j=1 rj ≤ 1 and using the

form of the overall bound in (36). Therefore, we get

P

[
sup

R(U)≤1

〈
1

N
ZT ε, U

〉
≤
(
c2(1 + ε2)

w(ΩR)√
N

+ c1(1 + ε1)
w2(ΩR)

N2

)]
≥ 1− c exp(−min(ε22, ε1) + log(p)).

This concludes our proof on establishing the bound on the regularization parameter.

2.3 Restricted Eigenvalue Condition

To establish restricted eigenvalue (RE) condition, we need to show that ||(Ip×p⊗X)∆||2
||∆||2 ≥

√
κN , κ > 0, for all ∆ =

β̂−β∗, ∆ ∈ cone(ΩE), where cone(ΩE) is a cone of an error set ΩE =
{

∆ ∈ Rdp2
∣∣∣R(β∗ + ∆) ≤ R(β∗) + 1

cR(∆)
}

.

To show ||(Ip×p⊗X)∆||2
||∆||2 ≥

√
κN for all ∆ ∈ cone(ΩE), we will show that inf

∆∈cone(ΩE)

||(Ip×p⊗X)∆||2
||∆||2 ≥ √ρ, for some

ρ > 0 and then set κN = ρ.
Note that the error vector can be written as ∆ = [∆T

1 ,∆
T
2 , . . . ,∆

T
p ]T , where ∆i is of size dp × 1. Also let

β∗ = [β∗T1 β∗T2 . . . β∗Tp ]T , for β∗i ∈ Rdp, then using our assumption in (6) that the norm R(·) is decomposable, we can
represent original set ΩE as a Cartesian product of subsets ΩEi , i.e., ΩE = ΩE1 × ΩE2 × · · · × ΩEp , where

ΩEi =

{
∆i ∈ Rdp

∣∣∣R(β∗i + ∆i) ≤ R(β∗i ) +
1

c
R(∆i)

}
,

which also implies that cone(ΩE) = cone(ΩE1
)× cone(ΩE2

)×· · ·× cone(ΩEp). Also, if ||∆||2 = 1, then we denote
||∆i||2 = δi > 0, so that

∑p
i=1 δ

2
i = 1. With this information, we can write

inf
∆∈cone(ΩE)

||(Ip×p ⊗X)∆||22
||∆||22

= inf
∆∈cone(ΩE)
||∆||2=1

||(Ip×p ⊗X)∆||22

= inf
∆∈cone(ΩE)
||∆||2=1

||X∆1||22 + ||X∆2||22 + . . .+ ||X∆p||22

=

p∑
i=1

inf
∆i∈cone(Ωei )
||∆i||2=δi

||X∆i||22. (54)

Our objective is to establish a high probability bound of the form

P

[
inf

∆∈cone(ΩE)

||(Ip×p ⊗X)∆||2
||∆||2

≥ ρ
]
≥ π
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where 0 ≤ π ≤ 1, i.e., lower bound should hold with at least probability π. Note that if we square the terms inside the
probability statement above, the probability of the resulting expression does not change since the squared terms are
positive. Therefore, using (54) and assuming that ρ2 =

∑p
i=1 ρ

2
i we can rewrite the above as follows

P

[
inf

∆∈cone(ΩE)

||(Ip×p ⊗X)∆||2
||∆||2

≥ ρ
]

= P

[
inf

∆∈cone(ΩE)

||(Ip×p ⊗X)∆||22
||∆||22

≥
p∑
i=1

ρ2
i

]

= P

[
p∑
i=1

inf
∆i∈cone(ΩEi )
||∆i||2=δi

||X∆i||22 ≥
p∑
i=1

ρ2
i

]
using (54)

≥ P

[{
inf

∆1∈cone(ΩE1
)

||∆1||2=δ1

||X∆1||22 ≥ ρ2
i

}
and . . . and

{
inf

∆p∈cone(ΩEp )

||∆p||2=δp

||X∆p||22 ≥ ρ2
i

}]

≥
p∑
i=1

P

[
inf

∆i∈cone(ΩEi )
||∆i||2=δi

||X∆i||22 ≥ ρ2
i

]
− (p− 1) using Lemma 2.4

=

p∑
i=1

P

[
inf

∆i∈cone(ΩEi )
||∆i||2=δi

||X∆i||2 ≥ ρi
]
− (p− 1) taking square root

=

p∑
i=1

P

[
inf

∆i∈cone(ΩEi )
||∆i||2=δi

||X∆i||2
||∆i||2

≥ ρi
||∆i||2

]
− (p− 1)

=

p∑
i=1

P

[
inf

ui∈cone(ΩEi )∩Sdp−1
||Xui||2 ≥

ρi
δi

]
− (p− 1) (55)

where we defined ui = ∆i

||∆i||2 and Sdp−1 is a unit sphere. Therefore, if we denote Θi = cone(ΩEi)∩Sdp−1, we need
to establish a lower bound of the form

P

[
inf
ui∈Θi

||Xui||2 ≥ ρ′i

]
≥ πi, (56)

where ρ′i = ρi
δi

. In the following derivations we set Θ = cone(ΩEi) ∩ Sdp−1 and u = ui for all i = 1, . . . , p since the
specific index i is irrelevant.

2.3.1 Bound on inf
u∈Θ
||Xu||2

Using results from Section 2.1.2 we can establish that Xu ∈ RN is a Gaussian random vector, i.e., Xu ∼ N (0, Qu),
where covariance matrix Qu = (IN×N ⊗ uT )CU (IN×N ⊗ u), CU is defined in (31), and u ∈ Θ is a fixed vector.

To establish inf
u∈Θ
||Xu||2, we invoke a generic chaining argument from [10], specifically Theorem 2.1.5. For

this we let (Zu)u∈Θ = ||Xu||2 − E(||Xu||2) and (Zv)v∈Θ = ||Xv||2 − E(||Xv||2) be two centered symmetric
random processes. They are centered since, for example, E

[
(Zu)u∈Θ

]
= E(||Xu||2)− E(||Xu||2) = 0, and they are

symmetric due to the later result shown in (58).

Sub-gaussianity of the process Zu − Zv .
We can show that the process difference

(Zu)u∈Θ − (Zv)v∈Θ = ‖u− v‖2
(∥∥∥∥X u− v

‖u− v‖2

∥∥∥∥
2

− E
(∥∥∥∥X u− v

‖u− v‖2

∥∥∥∥
2

))
(57)

is a sub-Gaussian random process. This is indeed the case since we can establish that for Z = ||X u−v
‖u−v‖2 ||2 −

E(||X u−v
‖u−v‖2 ||2), the sub-gaussian norm ‖Z‖ψ2

≤ K for some constant K > 0 (see [11], Definition 5.7). To show
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this, let ξ = u−v
‖u−v‖2 and use Lemma 2.1 for the concentration of a Lipschitz function of Gaussian random variables.

Specifically, observe that Xξ ∼ N (0, Qξ) is distributed same as
√
Qξg ∼ N (0, Qξ), where g ∼ N (0, IN×N ).

Therefore, we can write

P
[
|‖Xξ‖2 − E(‖Xξ‖2)| > τ

]
= P

[ ∣∣∣‖√Qξg‖2 − E(‖
√
Qξg‖2)

∣∣∣ > τ
]
.

Moreover, note that ‖
√
Qξg‖2 is a Lipschitz function with constant ‖

√
Qξ‖2 since we can write

∣∣∣‖√Qξg1‖2 −
‖
√
Qξg2‖2

∣∣∣ ≤ ‖√Qξ(g1− g2)‖2 ≤ ‖
√
Qξ‖2 ‖g1 − g2‖2. Using Lemma 2.1, we can obtain for all τ > 0

P
[
|‖Xξ‖2 − E(‖Xξ‖2)| > τ

]
= P

[ ∣∣∣‖√Qξg‖2 − E(‖
√
Qξg‖2)

∣∣∣ > τ
]

≤ 2 exp

(
− τ2

2‖Qξ‖2

)
≤ 2 exp

(
− τ2

2M

)
, (58)

where ||Qξ||2 ≤ ||ξ||22 Λmax(Σ)
Λmin(A) = Λmax(Σ)

Λmin(A) = M (see (34)), and which shows that ‖Xξ‖2 is sub-Gaussian with constant

K =
√
M.

Now, using (58) we can establish the sub-Gaussian tails of (57). Define τ ′ = ‖u− v‖2τ and write

P
[ ∣∣∣‖u− v‖2(‖Xξ‖2 − E(‖Xξ‖2)

)∣∣∣ > ‖u− v‖2τ] = P
[
|(Zu)u∈Θ − (Zv)v∈Θ| > τ ′

]
≤ 2 exp

(
− τ ′

2

2‖u− v‖22M

)
. (59)

Establishing bound on E
(

inf
u∈Θ
||Xu||2

)
.

Using the results established in (59) and Theorem 2.1.5 in [10], we can conclude that the distance measure on the
set Θ is d(u, v) = ‖u − v‖2 for u, v ∈ Θ. Moreover, we can now obtain an upper bound on the expectation of the
supremum of the process difference |Zu − Zv|

E
(

sup
u,v∈Θ

∣∣∣Zu − Zv∣∣∣) = E
(

sup
u,v∈Θ

∣∣∣ ||X(u− v)||2 − E(||X(u− v)||2)
∣∣∣)

= E
(

sup
u∈Θ

∣∣∣ ||Xu||2 − E(||Xu||2)
∣∣∣) using Lemma 1.2.8 in [10]

≤ E
[
sup
u∈Θ
〈g, u〉

]
≤ cw(Θ), (60)

where g ∼ N (0, I), w(Θ) is the Gaussian width of set Θ and c is a constant.
Since we are interested in the bound on inf

u∈Θ
||Xu||2, we can extract from (60) the lower bound on the expectation

of the infimum of the process. Specifically, note that (60) can be written as

E
(∣∣∣∣ inf

u∈Θ
||Xu||2 − inf

u∈Θ
E(||Xu||2)

∣∣∣∣) ≤ E
(

sup
u∈Θ

∣∣∣∣ ||Xu||2 − E(||Xu||2)

∣∣∣∣) ≤ cw(Θ),

leading to

−cw(Θ) ≤ E
(

inf
u∈Θ
||Xu||2 − inf

u∈Θ
E(||Xu||2)

)
≤ cw(Θ).

The lower bound then takes the form

E
(

inf
u∈Θ
||Xu||2

)
≥ inf
u∈Θ

E(||Xu||2)− cw(Θ) (61)
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Note that the vector Xu is distributed as Xu ∼ N (0, Qu), which is the same as a vector
√
Qug ∼ N (0, Qu) for

g ∼ N (0, I). Therefore, using results of Lemma I.2 from [6], we can extract the following inequality∣∣∣√trace(Qu)− E(‖
√
Qug‖2)

∣∣∣ ≤ 2
√

Λmax(Qu).

Moreover, based on our discussion, the same inequality holds for the random vector Xu since E(‖√Qug‖2) =
E(‖Xu‖2) ∣∣∣√trace(Qu)− E(‖Xu‖2)

∣∣∣ ≤ 2
√

Λmax(Qu).

which leads to a lower bound on the expectation of the norm

E(‖Xu‖2) ≥
√
trace(Qu)− 2

√
Λmax(Qu). (62)

We will lower-bound the first term on the right hand side of (62) and upper bound the second one. In particular, using
(32) we write trace(Qu) = NuTCXu for any u ∈ Θ and bound

trace(Qu) = NuTCXu = N ||C
1
2

X u||22 ≥ N inf
u∈Θ

uTCXu ≥ N inf
u∈Rdp

uTCXu = NΛmin(CX) ≥ N Λmin(Σ)

Λmax(A)
= NL.

(63)

Moreover, using (34), we bound

||Qu||2 ≤ ||u||22
Λmax(Σ)

Λmin(A)
=

Λmax(Σ)

Λmin(A)
= M. (64)

Therefore, substituting (64) and (63) into (62), we get

E(‖Xu‖2) ≥
√
NL− 2

√
M.

Since E(‖Xu‖2) is bounded from below, we can write

inf
u∈Θ

E(‖Xu‖2) ≥
√
NL− 2

√
M. (65)

Finally, substituting (65) in (61) gives us

E
(

inf
u∈Θ
||Xu||2

)
≥
√
NL− 2

√
M− cw(Θ). (66)

Establishing concentration inequality of inf
u∈Θ
||Xu||2.

Now from Lemma 2.1.3 in [10] and the results in [2] we extract the form of the high probability concentration inequal-
ity of inf

u∈Θ
||Xu||2 around its mean, for τ > 0

P
[

inf
u∈Θ
||Xu||2 ≤ E

(
inf
u∈Θ
||Xu||2

)
− τ
]
≤ c1 exp(−c2τ2).

In order to bring the above expression into the form of (56), we write

P
[

inf
u∈Θ
||Xu||2 ≥ E

(
inf
u∈Θ
||Xu||2

)
− τ
]
≥ 1− c1 exp(−c2τ2).

Substituting the bound on the expectation from (66) gives us

P
[

inf
u∈Θ
||Xu||2 ≥

√
NL− 2

√
M− cw(Θ)− τ

]
≤ c1 exp(−c2τ2). (67)
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2.3.2 Overall bound

Observe that in (67) we established a bound for each ui = ∆i

||∆i||2 of the form

P

 inf
∆i∈cone(ΩEi )
||∆i||2=δi

||X∆i||2
||∆i||2

≥ ||∆i||2 ρ′i

 ≥ 1− c1 exp(−c2η2
i ),

where ρ′i =
√
NL− 2

√
M− cw(Θ)− ηi. Then using the fact that ρi = ρ′iδi, ρ

2 =
∑p
i=1 ρ

2
i ,
∑p
i δ

2
i = 1 and setting

ηi = η for all i = 1, . . . , p, we get

ρ2 =

[√
NL− 2

√
M− cw(Θ)− η

]2 p∑
i=1

δ2
i =

[√
NL− 2

√
M− cw(Θ)− η

]2

.

Taking the square root of the above and using (55) we finally get

P

[
inf

∆∈cone(ΩE)

||(Ip×p ⊗X)∆||2
||∆||2

≥
√
NL− 2

√
M− cw(Θ)− η

]
≥ 1− pc1 exp(−c2η2). (68)

Establishing bound on N .
Now setting η = ε

√
NL for 0 < ε < 1, the right hand side of the inequality inside the probability statement in (68)

must be equal to
√
κN =

√
NL− 2

√
M− cw(Θ)− ε

√
NL = ε′

√
NL− 2

√
M− cw(Θ),

for some positive constant ε′. Since κN > 0, it follows that we require

ε′
√
NL > 2

√
M + cw(Θ),

or equivalently

√
N >

2
√
M + cw(Θ)

ε′
√
L

= O(w(Θ)).

This concludes our proof on establishing the restricted eigenvalue conditions.
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Figure 1: Results for estimating parameters of a stable first order Sparse Group Lasso VAR (top row) and OWL-
regularized VAR (bottom row). Problem dimensions for Sparse Group Lasso : p ∈ [10, 410], N ∈ [10, 5000],
λN
λmax

∈ [0, 1], K ∈ [2, 60] and d = 1. Problem dimensions for OWL: p ∈ [10, 410], N ∈ [10, 5000], λN
λmax

∈ [0, 1],
s ∈ [4, 260] and d = 1. All the results are shown after averaging across 50 runs.

3 Experiments
In this Section we provide additional results on testing structured VAR estimation using synthetic data and additional
details about the experimental setup for building the VAR model on real flight data.

3.1 Synthetic Data
Using synthetic data we present additional results on testing regularized VAR estimation under Sparse Group Lasso
and OWL norms.

3.1.1 Sparse Group Lasso

To evaluate the estimation problem with Sparse Group Lasso norm, we constructed first-order VAR process for the
following set of problem sizes p ∈ [10, 400], s ∈ [10, 200], sG ∈ [2, 20] and N ∈ [10, 5000]. The parameter α was
set to 0.5. Results are shown in Figure 1, top row. Similarly as in main paper, we can see that the errors are scaled
by N

(αs+(1−α)sG)(m+log(K)) . Moreover, the λN parameter is decreasing when number of samples N increases. On the
other hand, as the problem dimension p increases, the selected λN grows at the rate similar to

√
log p.

3.1.2 OWL

To test the VAR estimation problem under OWL norm we constructed a first-order VAR process with p ∈ [10, 410],
s ∈ [4, 260] and N ∈ [10, 5000]. The vector of weights c was set to be a monotonically decreasing sequence of
numbers in the range [1, 0). Figure 1, bottom row, shows the results. It can be seen from Figure 1-f that when the
errors are plotted against c̄N

s log(p) , they become tightly aligned, confirming the bounds established in Section 3.3.4 in
the main paper for the error norm. As shown in Figure 1-g,h the selected regularization parameter λN grows with the
problem dimension p and decreases with the number of samples N .
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1 Altitude
2 Corrected angle of attack
3 Brake temperature
4 Computed airspeed
5 Drift angle
6 Engine temperature
7 Low rotor speed
8 High rotor speed
9 Engine oil pressure

10 Engine oil quantity
11 Engine oil temperature
12 Engine pre-cooler outlet temperature
13 Fuel mass flow rate
14 Lateral acceleration
15 Longitudinal acceleration
16 Normal acceleration
17 Glide slope deviation
18 Ground speed
19 Localization deviation
20 Magnetic heading
21 Burner pressure
22 Pitch angle
23 Roll angle
24 HPC exit temperature
25 Angle magnitude
26 Angle true
27 Total fuel quantity
28 True heading
29 Vertical speed
30 True airspeed
31 MACH

Table 1: 31 features selected for structured VAR estimation on real flight data.

3.2 Real Flight Data
In Table 1 we show the list of parameters which were selected for building VAR model on the flight dataset in Section
4.2 of the main paper.
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