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Abstract

While considerable advances have been made
in estimating high-dimensional structured mod-
els from independent data using Lasso-type mod-
els, limited progress has been made for settings
when the samples are dependent. We consider es-
timating structured VAR (vector auto-regressive
model), where the structure can be captured by
any suitable norm, e.g., Lasso, group Lasso, or-
der weighted Lasso, etc. In VAR setting with
correlated noise, although there is strong de-
pendence over time and covariates, we establish
bounds on the non-asymptotic estimation error of
structured VAR parameters. The estimation error
is of the same order as that of the corresponding
Lasso-type estimator with independent samples,
and the analysis holds for any norm. Our anal-
ysis relies on results in generic chaining, sub-
exponential martingales, and spectral represen-
tation of VAR models. Experimental results on
synthetic and real data with a variety of structures
are presented, validating theoretical results.

1. Introduction

The past decade has seen considerable progress on ap-
proaches to structured parameter estimation, especially in
the linear regression setting, where one considers regular-
ized estimation problems of the form:

A 1
B = argmin ——|ly - ZBI3 + A R(B), (1)
BeRY

where {(y;,2:),4 = 1,...,M}, y; € R,z € R, such
that y = [yf,..., 917 and Z = [],... 217, is
the training set of M independently and identically dis-
tributed (i.i.d.) samples, A\p; > 0 is a regularization
parameter, and R(-) denotes a suitable norm (Tibshirani,
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1996; Zou & Hastie, 2005; Yuan & Lin, 2006). Specific
choices of R(-) lead to certain types of structured parame-
ters to be estimated. For example, the decomposable norm
R(B) = ||B]1 yields Lasso, estimating sparse parameters,
R(B) = ||B]|¢ gives Group Lasso, estimating group sparse
parameters, and R(8) = ||B|lowi, the ordered weighted
L1 norm (OWL) (Bogdan et al., 2013), gives sorted L1-
penalized estimator, clustering correlated regression pa-
rameters (Figueiredo & Nowak, 2014). Non-decomposable
norms, such as K-support norm (Argyriou et al., 2012) or
overlapping group sparsity norm (Jacob et al., 2009) can be
used to uncover more complicated model structures. The-
oretical analysis of such models, including sample com-
plexity and non-asymptotic bounds on the estimation er-
ror rely on the design matrix Z, usually assumed (sub)-
Gaussian with independent rows, and the specific norm
R(-) under consideration (Raskutti et al., 2010; Rudelson &
Zhou, 2013). Recent work has generalized such estimators
to work with any norm (Negahban et al., 2012; Banerjee
et al., 2014) with i.i.d. rows in Z.

The focus of the current paper is on structured estimation
in vector auto-regressive (VAR) models (Lutkepohl, 2007),
arguably the most widely used family of multivariate time
series models. VAR models have been applied widely,
ranging from describing the behavior of economic and fi-
nancial time series (Tsay, 2005) to modeling the dynamical
systems (Ljung, 1998) and estimating brain function con-
nectivity (Valdes-Sosa et al., 2005), among others. A VAR
model of order d is defined as

= A1xe + Aoxp_o + -+ AgTi—q + €, 2

where x; € RP denotes a multivariate time series, A, €
RP*P k = 1,...,d are the parameters of the model, and
d > 1 is the order of the model. In this work, we as-
sume that the noise ¢; € RP follows a Gaussian distribu-
tion, e, ~ N(0,%), with E(es¢] ) = ¥ and E(esef, ) = 0,
for 7 # 0. The VAR process is assumed to be stable and
stationary (Lutkepohl, 2007), while the noise covariance
matrix ¥ is assumed to be positive definite with bounded
largest eigenvalue, i.e., Apin(X) > 0 and Ay (Z) < 0.

In the current context, the parameters { Ay} are assumed
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to be structured, in the sense of having low values accord-
ing to a suitable norm R(-). We consider a general setting
where any norm can be applied to the rows Ay (i,:) € RP
of Ay, allowing the possibility of different norms being ap-
plies to different rows of Ay, and different norms for dif-
ferent parameter matrices Ag,k = 1,...,d. Choosing L-
norm || Ag(4,:)|; for all rows and all parameter matrices
is a simple special case of our setting. We discuss certain
other choices in Section 2.1, and discuss related results in
Section 4. In order to estimate the parameters, one can
consider regularized estimators of the form (1), where y;
and z; correspond to x; in the VAR setting. Unfortunately,
unlike (y;, z;) in (1), the x; are far from independent, hav-
ing strong dependence across time and correlated across
dimensions. As a result, existing results from the rich lit-
erature on regularized estimators for structured problems
(Zhao & Yu, 2006; Wainwright, 2009; Meinshausen & Yu,
2009) cannot be directly applied to get sample complexities
and estimation error bounds in VAR models.

Related Work: In recent literature, the problem of esti-
mating structured VAR models has been considered for the
special case of L; norm. (Han & Liu, 2013) analyzed a
constrained estimator based on the Dantzig selector (Can-
des & Tao, 2007), and established the recovery results for
the special case of L; norm. (Song & Bickel, 2011) con-
sidered a regularized VAR estimation problem under Lasso
and Group Lasso penalties and derived oracle inequalities
for the prediction error and estimation accuracy. However,
their analysis is for the case when the dimensionality of the
problem is fixed with respect to the sample size. Moreover,
they employed an assumption on the dependency struc-
ture in the VAR, thus limiting the sample correlation is-
sues mentioned earlier. The work of (Kock & Callot, 2015)
studied regularized Lasso-based estimator while allowing
for problem dimensionality to grow with sample size, uti-
lizing suitable martingale concentration inequalities to ana-
lyze dependency structure. (Loh & Wainwright, 2011) con-
sidered L1 VAR estimation for first order models (d = 1)
assuming [|A1||2 < 1, and the analysis was not extended to
the general case of d > 1. In recent work, (Basu & Michai-
lidis, 2015) considered a VAR Lasso estimator and estab-
lished the sample complexity and error bounds by building
on the prior work of (Loh & Wainwright, 2011). Their ap-
proach exploits the spectral properties of a general VAR
model of order d, providing insights on the dependency
structure of the VAR process. However, in line with the
existing literature, the analysis was tailored to the special
case of L; norm, thus limiting its generality.

Our Contributions: Compared to the existing literature,
our results are substantially more general since the results
and analysis apply to any norm R(-). One may wonder—
given the popularity of L; norm, why worry about other
norms? Over the past decade, considerable effort has been

devoted to generalize L; norm based results to other norms
(Negahban et al., 2012; Chatterjee et al., 2012; Banerjee
et al., 2014; Figueiredo & Nowak, 2014). Our work obvi-
ates the need for a similar exercise for VAR models. Fur-
ther, some of these norms have found key niche in specific
application areas e.g., (Zhou et al., 2012; Yang et al., 2015).
From a technical perspective, one may also wonder—once
we have the result for L; norm, why should not the exten-
sion to other norms be straightforward? A key technical
aspect of the estimation error analysis boils down to get-
ting sharp concentration bounds for R*(Z7¢), where R*(-)
is the dual norm of R(-), Z is the design matrix, and e is
the noise (Banerjee et al., 2014). For the special case of
L4, the dual norm is L., and one can use union bound to
get the required concentration. In fact, this is exactly how
the analysis in (Basu & Michailidis, 2015) was done. For
general norms, the union bound is inapplicable. Our anal-
ysis is based on a considerably more power tool,generic
chaining (Talagrand, 2006), yielding an analysis applicable
to any norm, and producing results in terms of geometric
properties, such as Gaussian widths (Ledoux & Talagrand,
2013), of sets related to the norm. Results for specific
norms can then be obtained by plugging in suitable bounds
on the Gaussian widths (Chandrasekaran et al., 2012; Chen
& Banerjee, 2015). We illustrate the idea by recovering
known bounds for Lasso and Group Lasso, and obtaining
new results for Spare Group Lasso and OWL norms. Fi-
nally, in terms of the core technical analysis, the applica-
tion of generic chaining to the VAR estimation setting is not
straightforward. In the VAR setting, generic chaining has to
consider a stochastic process derived from sub-exponential
martingale difference sequence (MDS). We first general-
ize the classical Azuma-Hoeffding inequality applicable to
sub-Gaussian MDSs to get an Azuma-Bernstein inequality
for sub-exponential MDSs. Further, we use suitable rep-
resentations of Talagrand’s ~-functions (Talagrand, 2006)
in the context of generic chaining to obtain bounds on
R*(ZT€) in terms of the Gaussian width w({2z) of the unit
norm ball Qi = {u € R%?|R(u) < 1}. Our estimation er-
ror bounds in the VAR setting are exactly of the same order
as Lasso-type models in the i.i.d. setting implying, surpris-
ingly, that the strong temporal dependency in the VAR set-
ting has no adverse effect on the estimation.

The rest of the paper is organized as follows. In Section 2
we present the estimation problem for the structured VAR
model. The main results on estimation guarantees are es-
tablished in Section 3. We present experimental results in
Section 4 and conclude in Section 5.

2. Structured VAR Models

In this section we formulate structured VAR estimation
problem and discuss its properties, which are essential in



Estimating Structured VAR

characterizing sample complexity and error bounds.

2.1. Regularized Estimator

To estimate the parameters of the VAR model, we trans-
form the model in (2) into the form suitable for regularized
estimator (1). Let (g, x1,...,2r) denote the T+ 1 sam-
ples generated by the stable VAR model in (2), then stack-
ing them together we obtain

T T T T T T

fzqrwd Ty q x%_Q xOT AlT ;d
Tdy1 Tg Tg1 - N A; €d+1

. = . + 1.

T T T T T T
Tt Tp_y Tpog - Tp_g| [Ag €T

which can also be compactly written as
Y=XB+E, 3)

where Y € RV*P, X € RNXdp B ¢ RI¥®P*P and F €
RN*P for N = T — d + 1. Vectorizing (column-wise) each
matrix in (3), we get

vee(Y) = (Ipxp ® X)vec(B) + vec(E)
y =128 +¢,

where y € RVP, Z = (I, ® X) € RNPXdP° g ¢ RiP,
€ € RMP, and ® is the Kronecker product. The covari-
ance matrix of the noise € is now E[ee’] = ¥ ® Inxn.
Consequently, the regularized estimator takes the form

~ o1
B = argmin—||y — Zﬂ||§ + AN R(B), 4)
BeRdp? N

where R((3) can be any vector norm, separable along the
rows of matrices Ay. Specifically, if we denote 3 =
(BT ...8F 1" and Ak(i,:) as the row of matrix Ay for
k =1,...,d, then our assumption is equivalent to

i R([Al (i,)7. .. Aa(i, ;)T} ‘) . (5)

To reduce clutter and without loss of generality, we assume
the norm R(-) to be the same for each row i. Since the
analysis decouples across rows, it is straightforward to ex-
tend our analysis to the case when a different norm is used
for each row of Ay, e.g., Ly for row one, Ly for row two,
K -support norm (Argyriou et al., 2012) for row three, etc.
Observe that within a row, the norm need not be decompos-
able across columns.

R(B)=) R(8:)=

1=

K2

The main difference between the estimation problem in (1)
and the formulation in (4) is the strong dependence between
the samples (zg, 1, ...,2z7), violating the i.i.d. assump-
tion on the data {(y;,2;),7 = 1,..., Np}. In particular,
this leads to the correlations between the rows and columns

of matrix X (and consequently of Z). To deal with such
dependencies, following (Basu & Michailidis, 2015), we
utilize the spectral representation of the autocovariance of
VAR models to control the dependencies in matrix X.

2.2. Stability of VAR Model

Since VAR models are (linear) dynamical systems, for the
analysis we need to establish conditions under which the
VAR model (2) is stable, i.e., the time-series process does
not diverge over time. For understanding stability, it is con-
venient to rewrite VAR model of order d in (2) as an equiv-
alent VAR model of order 1

A Ay ... Ay, A
xxt I 02 %1 od it—l 3
t—1 t—2
_lo 1 .0 o™ e
@yl | g o ... 1 ¢ | LO

A

where A € R9%*9_ Therefore, VAR process is stable if
all the eigenvalues of A satisfy det(Agpxap — A) = 0
for A € C, |A\| < 1. Equivalently, if expressed in terms
of original parameters Ay, stability is satisfied if det(I —
S, Aksk) = 0 (see Section 2.1.1 of (Lutkepohl, 2007)
and Section 1.3 of the supplement for more details).

2.3. Properties of Design Matrix X

In what follows, we analyze the covariance structure of ma-
trix X in (3) using spectral properties of VAR model. The
results will then be used in establishing the high probability
bounds for the estimation guarantees in problem (4).

Define any row of X as X;. € R% 1 < i < N. Since
we assumed that ¢, ~ A(0,Y), it follows that each row
is distributed as X; . ~ N(0,Cx), where the covariance
matrix Cx € R%*9 is the same for all i

I'(0) (1) ... Td-1)
T
Cy rq) r(:()) F(d:—Z) o
I'd—1)T T(d—2)T ... T(0)

where I'(h) = E(xaxl,,) € RP*P. It turns out that
since Cyx is a block-Toeplitz matrix, its eigenvalues can be
bounded as (see (Gutierrez-Gutierrez & Crespo, 2011))

sup Aj[p(@)], ()

1<j<p
wel0,27]

inf Aj[p(w)] < Ax[Cx] <
1<j<p 1<k<dp
we(0,27]

where A [-] denotes the k-th eigenvalue of a matrix and for
i=+-1 pw) =Y,  T(he " —wel0,2n],is
the spectral density, i.e., a Fourier transform of the autoco-
variance matrix I'(h). The advantage of utilizing spectral
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density is that it has a closed form expression (see Section
9.4 of (Priestley, 1981))

d -1 d -1
p(w)= <I—Z A;&"”“) b <I—Z Ake_k'i‘“) ,
k=1 k=1

where * denotes a Hermitian of a matrix. Therefore, from
(8) we can establish the following lower bound

Amin [CX] > Amin(z)/Amax(A) = 'C7 (9)
where we defined Ap,ax(A) = rr[1(;<u2< ]AmaX (A(w)) for
we|0,27

d d
Alw)= (1 - ZA{e’W> (1 - ZAke—kM> . (10)
k=1 k=1

In establishing high probability bounds we will also need
information about a vector ¢ = Xa € RN for any a € RAP,
alls = 1. Since each element X[ .a ~ N(0,a”Cxa),
it follows that ¢ ~ A(0,Q,) with a covariance matrix
Q. € RYXN_ 1t can be shown (see Section 2.1.2 of the
supplement) that (), can be written as

Qo= (I ®a")Cy(I ®a), (11)
where Gy = EUUT) for U = [XT, x5 e
RN which is obtained from matrix X by stacking all the
rows in a single vector, i.e, U = vec(XT). In order to
bound eigenvalues of Cy; (and consequently of @,), ob-
serve that U/ can be viewed as a vector obtained by stacking
N outputs from VAR model in (6). Similarly as in (8),
if we denote the spectral density of the VAR process in
(6) as px(w) = >_p__ Tx(h)e ", w € [0,2n], where
Ix(h) = E[X;.XT,, ] € R%>P, then we can write

inf Ajfpx(w)] < Ag[Cy] < sup Ajpx(w)].
1<I<dp 1<k<Ndp 1<i<dp
w€e(0,27] w€el0,27]

The closed form expression of spectral density is
—iw) 1 —iw) 1 *
px(w) = (I —Ae™™) ¢ [(I —Ae™™) } )

where ¢ is the covariance matrix of a noise vector and A
are as defined in expression (6). Thus, an upper bound on
Cyy can be obtained as Ay [Cy] < Amax(X) * where we

Amin (A)
defined Apin(A) = rr[101r21 ]Amin(.A(w)) for
we

A(w) = (I —ATe™) (I —Ae ™). (12)
Referring back to covariance matrix @), in (11), we get
AmaX[Qa] S Amax(z)//\min(ﬂ) =M. (13)

‘We note that for a general VAR model, there might not exist
closed-form expressions for Ayax(A) and Apin (A). How-
ever, for some special cases there are results establishing
the bounds on these quantities (e.g., see Proposition 2.2 in
(Basu & Michailidis, 2015)).

3. Regularized Estimation Guarantees

Denote by A = ,é' — 3* the error between the solution of
optimization problem (4) and 3*, the true value of the pa-
rameter. The focus of our work is to determine conditions
under which the optimization problem in (4) has guaran-
tees on the accuracy of the obtained solution, i.e., the error
term is bounded: ||Al|z < ¢ for some known §. To estab-
lish such conditions, we utilize the framework of (Banerjee
etal., 2014). Specifically, estimation error analysis is based
on the following known results adapted to our settings. The
first one characterizes the restricted error set {2, where the
error A belongs.

Lemma 3.1 Assume that
N Z N )

for some constant v > 1, where R* [%ZTG] is a

dual form of the vector norm R(-), which is defined as

R*[%ZTE] = sup <%ZT€, U>, forU € R, where
R(U)<1

U= [ul,uj,...,ul]" and u; € R¥. Then the error

vector | Al|2 belongs to the set

QEZ{A € R’

R(B+4) < R(ﬁ*)Jr:,R(A)} L (15)

The second condition in (Banerjee et al., 2014) establishes
the upper bound on the estimation error.

Lemma 3.2 Assume that the restricted eigenvalue (RE)
condition holds

128l 5 /o5 (16)
[1A[l2

for A € cone(Qg) and some constant k > 0, where
cone(Qg) is a cone of the error set, then

1+rA
1A]l2 < — =S W(cone(Qp)), (A7)
Tk
where U(cone(lg)) is a norm compatibility constant, de-
fined as ¥(cone(Qg)) =  sup ‘IFI%) .
U€cone(Qg) 2

Note that the above error bound is deterministic, i.e., if (14)
and (16) hold, then the error satisfies the upper bound in
(17). However, the results are defined in terms of the quan-
tities, involving Z and €, which are random. Therefore, in
the following we establish high probability bounds on the
regularization parameter in (14) and RE condition in (16).
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3.1. High Probability Bounds

In this Section we present the main results of our work,
followed by the discussion on their properties and illustrat-
ing some special cases based on popular Lasso and Group
Lasso regularization norms. In Section 3.4 we will present
the main ideas of our proof technique, with all the details
delegated to the supplement.

To establish lower bound on the regularization parameter
An, we derive an upper bound on R*[+Z%€] < a, for
some a > 0, which will establish the required relationship
AN > a> R [+ Z7€.

Theorem 3.3 Let Qg = {u € R?|R(u) < 1}, and define
w(Qgr) = E| bup (g,u)] to be a Gaussian width of set

ueQr
Qg for g ~ N(0,I). For any ¢; > 0 and e > 0 with
probability at least 1 — cexp(— min(e3, 1) + log(p)) we
can establish that
w(2r)

R* [;ZTG] < <02(1+€2) N

where ¢, c1 and co are positive constants.

+ 61(1+€1)

U/Q](V%R))

To establish restricted eigenvalue condition, we will show
that inf  Uexp@X)All2
A€cone(Qp) [[ATl2

then set VKN = v.

Theorem 3.4 Let © = cone(Q;) N S~1, where S%P~!
is a unit sphere. The error set (), is defined as Qp;, =
{Aj e ]de‘R(B; +A;) < R(B:) + LR(A )} for v >
Lj=1,....pand A=[AT,...,AT|T, for A; is of size
dp x 1, and B* =[BT ... B5T]T, for B € R¥. The set
Qp, is a part of the decomposition in Qg = Qp, X -+ X
g, due to the assumption on the row-wise separability of
norm R(-) in (5). Also define w(©) = E[sup (g,u)] to
ueO

be a Gaussian width of set © for g ~ N(0,1) and u €
R, Then with probability at least 1 — c; exp(—con® +
log(p)), for any n > 0, inf  1Upxp®0All2 v,

A€Econe(QE) IENIE
where v = VNL — 2vM — cw(©) —nand ¢, ¢, co are

positive constants, and £, M are defined in (9) and (13).

> v, for some v > 0 and

3.2. Discussion

From Theorem 3.4, we can choose = %\/ NL and set

V&N =V NL —2v/M — cw(©) — n and since V&N > 0

must be satisfied, we can establish a lower bound on the

number of samples N: N > Q\ﬁ\/tc/';’(e) O(w(©)).

Examining this bound and using (9) and (13), we can con-
clude that the number of samples needed to satisfy the
restricted eigenvalue condition is smaller if A, (A) and

Amin(2) are larger and A5 (A) and Apax (2) are smaller.
In turn, this means that matrices A and .A in (10) and (12)
must be well conditioned and the VAR process is stable,
with eigenvalues well inside the unit circle (see Section
2.2). Alternatively, we can also understand the bound on
N as showing that large values of M and small values of
L indicate stronger dependency in the data, thus requiring
more samples for the RE conditions to hold with high prob-
ability.

Analyzing Theorems 3.3 and 3.4 we can interpret the es-
tablished results as follows. As the size and dimension-
ality N, p and d of the problem increase, we emphasize
the scale of the results and use the order notations to de-
note the constants. Select a number of samples at least
N > O(w?(©)) and let the regularization parameter sat-

isfy Ay > O (&%) +! “”“) With high probability

then the restricted eigenvalue condition lHZ AAHllz > VeN
for A € cone(Qg) holds, so that K = O(1) is a pos-
itive constant. Moreover, the norm of the estimation er-
ror in optimization problem (4) is bounded by ||A]2 <

0 (“’\(/S%R) + “’zjigR)) W(cone(Q2g, )). Note that the norm

compatibility constant ¥(cone({2g; )) is assumed to be the
same for all j = 1,.. ., p, which follows from our assump-
tion in (5).

Consider now Theorem 3.3 and the bound on the regu-
larization parameter Ay > O (w\(/Q—R) + mR)). As
the dimensionality of the problem p and d grows and
the number of samples IV increases, the first term %

will dominate the second one % This can be seen
by computing N for which the two terms become equal
“’%) = U’QIE[%R), which happens at N = w3 (Qp) <
w(Q2r). Therefore, we can rewrite our results as fol-
lows: once the restricted eigenvalue condition holds and

Ay > O (w\(/ﬂf)) the error norm is upper-bounded by

1A]l2 < 0 (“22)) w(cone(%2s,).

3.3. Special Cases

While the presented results are valid for any norm R(-),
separable along the rows of Ay, it is instructive to special-
ize our analysis to a few popular regularization choices,
such as L; and Group Lasso, Sparse Group Lasso and
OWL norms.

3.3.1. LASSsO

To establish results for L; norm, we assume that the pa-
rameter 3* is s-sparse, which in our case is meant to rep-
resent the largest number of non-zero elements in any [;,
i = 1,...,p, ie., the combined i-th rows of each Ay,
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k=1,...,d. Since L, is decomposable, it can be shown
that W(cone(Qp,)) < 44/s. Next, since Qr = {u €
R%|R(u) < 1}, then using Lemma 3 in (Banerjee et al.,
2014) and Gaussian width results in (Chandrasekaran et al.,
2012), we can establish that w(Qr) < O(y/log(dp)).
Therefore, based on Theorem 4.3 and the discussion at the
end of Section 3.2, the bound on the regularization parame-

ter takes the form Ay > O ( 10g(dp)/N> . Hence, the es-

timation error is bounded by || A2 < O ( slog(dp)/N)
as long as N > O(log(dp)).

3.3.2. GROUP LASSO

To establish results for Group norm, we assume that for
each i = 1,...,p, the vector 3; € R can be parti-
tioned into a set of K disjoint groups, G = {G1,...,Gk},
with the size of the largest group m = m]?x|G k|- Group

Lasso norm is defined as ||B|lcL. = Zszl Ba,ll2. We
assume that the parameter 3* is sg-group-sparse, which
means that the largest number of non-zero groups in any
Bi, i =1,...,pis sg. Since Group norm is decompos-
able, as was established in (Negahban et al., 2012), it can
be shown that ¥(cone(§2g;)) < 4,/s¢. Similarly as in
the Lasso case, using Lemma 3 in (Banerjee et al., 2014),
we get w(Qp, ) < O(y/m+1log(K)). The bound on

the \y takes the form \y > O <\/(m+log(K))/N>.
Combining these derivations, we obtain the bound ||A]j2 <
O (\/SG(m Flog(K)) /N) for N > O(m + log(K)).

3.3.3. SPARSE GROUP LASSO

Similarly as in Section 3.3.2, we assume that we have
K disjoint groups of size at most m. The Sparse Group
Lasso norm enforces sparsity not only across but also
within the groups and is defined as ||3||sa. = «||B]]1 +
(1-a) Zle By ll2, where oo € [0,1] is a parame-
ter which regulates a convex combination of Lasso and
Group Lasso penalties. Note that since |32 < [|8]1,
it follows that ||Bllc. < ||BllscL- As a result, for
,3 S QRSGL = ﬁ S QRGL’ so that QRSGL - QRGL
and thus w(Qre, ) < wW(Qry) < O(m +1log(K)),
according to Section 3.3.2. Assuming (3* is s-sparse
and sg-group-sparse and noting that the norm is de-
composable, we get ¥(cone(Q2g;)) < 4(av/s + (1 —
@)y/3G)). Consequently, the error bound is |[Af, <

] (\/(as + (1 —a)sg)(m+ log(K))/N).

3.3.4. OWL NORM

Ordered weighted L; norm is a recently introduced regu-
larizer and is defined as ||3low1 = Z?ﬁl ci|Bl(:), where
€1 2> ... > cgp > 0is a predefined non-increasing se-

quence of weights and |B[(1) > ... > [B](4p) is the se-
quence of absolute values of 3, ranked in decreasing order.
In (Chen & Banerjee, 2015) it was shown that w(Qg) <
O(y/log(dp)/e), where ¢ is the average of ci,...,Cap
and the norm compatibility constant is W(cone(Q2g,)) <
20% \/s/¢. Therefore, based on Theorem 4.3, we get Ay >

O ( log(dp)/(eN )) and the estimation error is bounded
by [ All2 < O (22 /sTog(dp) /() ).

We note that the bound obtained for Lasso and Group Lasso
is similar to the bound obtained in (Song & Bickel, 2011;
Basu & Michailidis, 2015; Kock & Callot, 2015). More-
over, this result is also similar to the works, which dealt
with independent observations, e.g., (Bickel et al., 2009;
Negahban et al., 2012), with the difference being the con-
stants, reflecting correlation between the samples, as we
discussed in Section 3.2. The explicit bound for Sparse
Group Lasso and OWL is a novel aspect of our work for
the non-asymptotic recovery guarantees for the VAR esti-
mation problem with norm regularization, being just a sim-
ple consequence from our more general framework.

3.4. Proof Sketch

In this Section we outline the steps of the proof for Theo-
rem 3.3 and 3.4, all the details can be found in Sections 2.2
and 2.3 of the supplement.

3.4.1. BOUND ON REGULARIZATION PARAMETER

Recall that our objective is to establish for some o« > 0
a probabilistic statement that Ay > o > R*[+Z7€] =
sup (Z27€,U), where U = [uf,...,ul]" € R’
R(U)<1
for u; € R% and € = vec(E) for E in (3). We denote
E. ;€ RY as a column of noise matrix E and note that
since Z = I, ® X, then using the row-wise separability
assumption in (5) we can split the overall probability state-
ment into p parts, which are easier to work with. Thus, our
objective would be to establish

1
P| sup — <XTE:7j,uj> <oy > m, (18)
R(uj)<r;

forj=1,...,p, where }20_ oj = avand 330_ 1y = L.

The overall strategy is to first show that the ran-

dom variable + (XTFE. ;,u;) has sub-exponential tails.

N
Based on the generic chaining argument, we then

use Theorem 1.2.7 in (Talagrand, 2006) and bound

E| sup % <XTE:J-, uj> . Finally, using Theo-
R(uj)<r;
rem 1.2.9 in (Talagrand, 2006) we establish the high proba-

bility bound on concentration of  sup % <X TE:7 i uj>
R(uj)<r;
around its mean, i.e., derive the bound in (18).
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We note that the main difficulty of working with the
term <X TE:,j,uj> is the complicated dependency be-
tween X and E. ;, which is due to the VAR generation
process in (3). However, if we write (XTFE. j,u;) =
Ziil E;;, (Xi.u;) = qu\;1 m;, where m; =
E,; ;(X; . u;) and we can interpret this as a summation over
martingale difference sequence (Lutkepohl, 2007). This
can be easily proven by showing E(m;|my,...,m;_1) =
0. The latter is true since in m; = E; ;(X; .u;) the terms
E; ; and X; .u; are independent since €4, is independent
fromxg_py; for0 <i <T —dand 1 < k < d (see (2)).

To show that ZZ\LI E; ;, (X, u;) has sub-exponential tails,
recall that since ¢; in (2) is Gaussian, E;; and X;.u;
are independent Gaussian random variables, whose prod-
uct has sub-exponential tails. Moreover, the sum over sub-
exponential martingale difference sequence can be shown
to be itself sub-exponential using (Shamir, 2011), based on
Bernstein-type inequality (Vershynin, 2010).

3.4.2. RESTRICTED EIGENVALUE CONDITION

To show W > 0 for all A € cone(Qg), sim-

ilarly as before, we split the problem into p parts by us-
ing row-wise separability assumption of the norm in (5).

In particular, denote A = [AT .. AE]T, where A; is
dp x 1, then we can represent the original set Qg as a
Cartesian product of subsets QE]., ie, Qp = Qp, X

-+ x Qp,, implying that cone(Q2g) = cone(Qg, ) x --- X
cone(§2g, ). Therefore, our objective would be to establish

]P’[ inf || Xu;lls > I/j‘| > mj, for j = 1,...,p, where
u; €O,

A

© = cone(Qg,) N S~" and we defined u; = i,

J
since it will be easier to operate with unit-norm vectors (we
drop index j, to reduce clutter).

The overall strategy is to first show that || Xul2 —
E(||Xu|l2) is sub-Gaussian. Then, using generic chain-
ing argument in (Talagrand, 2006), specifically Theo-

rem 2.1.5, we bound E (in(fa|Xu||2>. Finally, based on
ue

Lemma 2.1.3 in (Talagrand, 2006) we establish the concen-
tration inequality on ing || Xu||2 around its mean.
ue

4. Experimental Results

In this Section we present the experiments on simulated and
real data to demonstrate the obtained theoretical results. In
particular, for L; and Group L;, we investigate how error
norm ||Al|2 and regularization parameter Ay scale as the
problem size p and N change. Moreover, using real flight
data we also compare the performance of Sparse Group L,
OWL and ridge regularizers. Additional simulation and ex-
perimental results are included in the supplement.

4.1. Synthetic Data

To evaluate the estimation problem with L; norm, we sim-
ulated a first-order VAR process for different values of
p € [10,600], s € [4,260], and N € [10,5000]. Regular-
ization parameter was varied in the range Ay € (0, Amax)»
where A,y is the largest parameter, for which estimation
problem (4) produces a zero solution. All the results are
shown after averaging across 50 runs.

The results for Lasso are shown in the top row of Fig. 1.
In particular, in Fig. 1.a we show ||Al|s for different p and
N for fixed A\jy. When N is small, the estimation error is
large and the results cannot be trusted. However, once N >
O(w?(©)), the RE condition in Lemma 3.2 is satisfied and
we see a fast decrease of errors for all p’s. In Fig. 1.0 we
plot ||A||2 against rescaled sample size W]\Epd)' The errors
are now closely aligned, confirming results of Sec. 3.3.1,

Al <0 («/(slog(pd))/N).

Finally, in Figs. 1.c and 1.d we show the dependence of
optimal A (for fixed NV and p, we picked A achieving the
smallest estimation error) on N and p. It can be seen that
as p increases, Ay grows (for fixed V) at the rate similar
to v/log p. On the other hand, as IV increases, the selected
An decreases (for fixed p) at the rate similar to 1/ VN .

i€,

For Group Lasso the sparsity in rows of A; was gener-
ated in groups, whose number varied as K € [2,60]. We
set the largest number of non-zero groups in any row as
sG € [2,22]. Results are shown in the bottom row of Fig. 1,
which have similar flavor as in Lasso case. The difference
can be seen in Fig. 1.f, where a close alignment of errors
occurs when NN is now scaled as Wj\lgg(l())' Moreover,
the selected regularization parameter A increases with the
number of groups K and decreases with V.

4.2. Real Data

We have also performed evaluation tests on real data to
compare the accuracy of the VAR estimation using vari-
ous penalized formulations based on five norms: L1, OWL,
Group, Sparse Group and Ridge (square of Ls). Although
|13 is not a norm, we included its results for reference pur-
poses as it is frequently used in practice. In terms of data,
we used the NASA flight dataset from (nas), consisting of
over 100,000 flights, each having a record of about 250 pa-
rameters, sampled at 1 Hz. For our test, we selected 300
flights and picked 31 parameters most suitable for the pre-
diction task and focused on the landing part of the trajec-
tory (duration approximately 15 minutes). For each flight
we separately fitted a first-order VAR model using five ap-
proaches and performed 5-fold cross validation to select A,
achieving smallest prediction error. For Sparse Group we
set a = 0.5, while for OWL the weights c1,...,c, were
set as a monotonically decreasing sequence. Table 1 shows
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Figure 1. Results for estimating parameters of a stable first order sparse VAR (top row) and group sparse VAR (bottom row). Problem

dimensions: p € [10,600], N € [10, 5000], 5>

N/[s(m + log K)]

(£)

/\N

(h)

€ [0,1], K € [2,60] and d = 1. Figures (a) and (e) show dependency of errors on

sample size for different p; in Figure (b) the N'is scaled by (slog p) and plotted against ||A||2 to show that errors scale as (s logp)/N;
in (f) the graph is similar to (b) but for group sparse VAR; in (c) and (g) we show dependency of Ax on p (or number of groups K in
(9)) for fixed sample size N finally, Figures (d) and (h) display the dependency of An on IV for fixed p.

Lasso OWL Group Lasso Sparse Group Lasso Ridge
32.3(6.5) 32.2(6.6) 32.7(6.5) 32.2(6.4) 33.5(6.1)
32.7(7.9) 44.5(15.6) 75.3(8.4) 38.4(9.6) 99.9(0.2)
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Table 1. Mean squared error (row 2) of the five methods used in fitting VAR model, evaluated on aviation dataset (MSE is computed
using one-step-ahead prediction errors). Row 3 shows the average number of non-zeros (as a percentage of total number of elements) in
the VAR matrix. The last row shows a typical sparsity pattern in A; for each method (darker dots - stronger dependencies, lighter dots -
weaker dependencies). The values in parenthesis denote one standard deviation after averaging the results over 300 flights.

the results after averaging across 300 flights.

From the table we can see that the considered problem ex-
hibits a sparse structure since all the methods detected sim-
ilar patterns in matrix A;. In particular, the analysis of
such patterns revealed a meaningful relationship among the
flight parameters (darker dots), e.g., normal acceleration
had high dependency on vertical speed and angle-of-attack,
the altitude had mainly dependency with fuel quantity, ver-
tical speed with aircraft nose pitch angle, etc. The results
also showed that the sparse regularization helps in recov-
ering more accurate and parsimonious models as is evi-
dent by comparing performance of Ridge regression with
other methods. Moreover, while all the four Lasso-based
approaches performed similar to each other, their sparsity
levels were different, with Lasso producing the sparsest so-
lutions. As was also expected, Group Lasso had larger
number of non-zeros since it did not enforce sparsity within
the groups, as compared to the sparse version of this norm.

5. Conclusions

In this work we present a set of results for characterizing
non-asymptotic estimation error in estimating structured
vector autoregressive models. The analysis holds for any
norms, separable along the rows of parameter matrices.
Our analysis is general as it is expressed in terms of Gaus-
sian widths, a geometric measure of size of suitable sets,
and includes as special cases many of the existing results
focused on structured sparsity in VAR models.
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