Nonparametric Canonical Correlation Analysis Supplementary Material

Tomer Michaeli

Technion-Israel Institute of Technology, Haifa, Israel

Weiran Wang

TTI-Chicago, Chicago, IL 60637, USA

Karen Livescu

TTI-Chicago, Chicago, IL 60637, USA

1. Proof of Lemma 3.1

Proof. Let the eigen-decomposition of the second-order moment of $\mathbb{E}[\mathbf{f}(X)|Y]$ be $\mathbb{E}[\mathbb{E}[\mathbf{f}(X)|Y]\mathbb{E}[\mathbf{f}(X)|Y]^{\top}] =$ $\mathbf{A}\mathbf{D}\mathbf{A}^{\top}$ and define $U = \mathbf{A}^{\top}\mathbb{E}[\mathbf{f}(X)|Y]$ and $\tilde{\mathbf{g}}(Y) =$ $\mathbf{A}^{\top}\mathbf{g}(Y)$. Then the objective in (3) can be written as $\mathbb{E}[\mathbf{f}(X)^{\top}\mathbf{g}(Y)] = \mathbb{E}[\mathbb{E}[\mathbf{f}(X)|Y]^{\top}\mathbf{g}(Y)] =$ $\mathbb{E}[(\mathbf{A}^{\top}\mathbb{E}[\mathbf{f}(X)|Y])^{\top}(\mathbf{A}^{\top}\mathbf{g}(Y))] = \mathbb{E}[U^{\top}\tilde{\mathbf{g}}(Y)]$. Similarly, the constraint $\mathbf{I} = \mathbb{E}[\mathbf{g}(Y)\mathbf{g}(Y)^{\top}]$ can be expressed as $\mathbf{I} = \mathbf{A}^{\top}\mathbf{A} = \mathbb{E}[(\mathbf{A}^{\top}\mathbf{g}(Y))(\mathbf{A}^{\top}\mathbf{g}(Y))^{\top}] =$ $\mathbb{E}[\tilde{\mathbf{g}}(Y)\tilde{\mathbf{g}}(Y)^{\top}]$. Therefore, the optimization problem (3) can be written in terms of $\tilde{\mathbf{g}}$ as

$$\max_{\tilde{\mathbf{g}}} \mathbb{E} \left[U^{\top} \tilde{\mathbf{g}}(Y) \right] \quad \text{s.t.} \quad \mathbb{E} \left[\tilde{\mathbf{g}}(Y) \tilde{\mathbf{g}}(Y)^{\top} \right] = \mathbf{I}.$$
(1)

Our objective is the sum of correlations in all L dimensions. Let us consider the correlation in the *j*th dimension. From the Cauchy-Schwartz inequality, we have

$$\mathbb{E}[U_j \tilde{g}_j(Y)] \le \sqrt{\mathbb{E}\left[U_j^2\right] \mathbb{E}[\tilde{g}_j(Y)^2]} = \sqrt{\mathbb{E}\left[U_j^2\right]}$$

with equality if and only if $\tilde{g}_j(Y) = c_j U_j$ for some scalar c_j with probability 1. Note that choosing each $\tilde{g}_j(Y)$ to be proportional to U_j is valid, since the dimensions of U are uncorrelated (as $\mathbb{E}[UU^{\top}] =$ $\mathbf{A}^{\top} \mathbb{E}[\mathbb{E}[\mathbf{f}(X)|Y]\mathbb{F}[\mathbf{f}(X)|Y]^T] \mathbf{A} = \mathbf{D}$). In order for each $\tilde{g}_j(Y)$ to have unit second order moment, we must have $c_j = 1/\sqrt{\mathbb{E}[U_j^2]} = 1/\sqrt{\mathbf{D}_{jj}}$. Therefore, $\tilde{\mathbf{g}}(Y) = \mathbf{D}^{-1/2}U$ so that $\mathbf{g}(Y) = \mathbf{A}\mathbf{D}^{-\frac{1}{2}}\mathbf{A}^{\top}U =$ $(\mathbb{E}[\mathbb{E}[\mathbf{f}(X)|Y]\mathbb{E}[\mathbf{f}(X)|Y]^{\top}])^{-1/2}\mathbb{E}[\mathbf{f}(X)|Y]$, proving the lemma. TOMER.M@EE.TECHNION.AC.IL

WEIRANWANG@TTIC.EDU

KLIVESCU@TTIC.EDU