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Abstract

Performing exact posterior inference in complex
generative models is often difficult or impossi-
ble due to an expensive to evaluate or intractable
likelihood function. Approximate Bayesian com-
putation (ABC) is an inference framework that
constructs an approximation to the true likeli-
hood based on the similarity between the ob-
served and simulated data as measured by a
predefined set of summary statistics. Although
the choice of informative problem-specific sum-
mary statistics crucially influences the quality of
the likelihood approximation and hence also the
quality of the posterior sample in ABC, there are
only few principled general-purpose approaches
to the selection or construction of such sum-
mary statistics. In this paper, we develop a novel
framework for solving this problem. We model
the functional relationship between the data and
the optimal choice (with respect to a loss func-
tion) of summary statistics using kernel-based
distribution regression. Furthermore, we extend
our approach to incorporate kernel-based regres-
sion from conditional distributions, thus appro-
priately taking into account the specific struc-
ture of the posited generative model. We show
that our approach can be implemented in a com-
putationally and statistically efficient way us-
ing the random Fourier features framework for
large-scale kernel learning. In addition to that,
our framework outperforms related methods by a
large margin on toy and real-world data, includ-
ing hierarchical and time series models.
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1. Introduction
Complex generative models arise in many application do-
mains, e.g. when we are interested in modeling population
dynamics in ecology (Wood, 2010; Lopes & Boessenkool,
2010), performing phylogenetic inference and disease dy-
namics modeling in epidemiology (?Tanaka et al., 2006)
or modeling galaxy demographics in cosmology (Weyant
et al., 2013; Cameron & Pettitt, 2012). In these models,
it is often difficult or impossible to perform exact poste-
rior inference due to an expensive to evaluate or intractable
likelihood function. Approximate Bayesian computation
(ABC) (Beaumont et al., 2002) is an inference framework
that approximates the true likelihood based on the similar-
ity between the observed and simulated data as measured
by a predefined set of summary statistics. Unless the cho-
sen summary statistics are sufficient, there is an informa-
tion loss associated with the projection of the data onto
the lower-dimensional subspace of the summary statistics.
This results in an approximation bias in the likelihood and
subsequently in the posterior sample that is difficult to es-
timate. More precisely, this information loss implies that
ABC performs inference on the partial posterior of the
model parameters given the summary statistics of the ob-
served data p(θ|s(y∗)) in lieu of doing it on the full pos-
terior p(θ|y∗). Thus, the choice of informative problem-
specific summary statistics is of crucial importance for the
quality of posterior inference in ABC.

Several methods exist in the literature for the selection or
construction of summary statistics. A number of these
methods can be assembled around the idea of constructing
summary statistics by linear or non-linear regression from
the full dataset or a set of candidate statistics. In addition
to considerations about the sufficiency of the derived sum-
mary statistics, all of these methods require either expert
knowledge for the selection of the set of candidate statis-
tics, e.g. Nakagome et al. (2013), or perform complex and
high-dimensional regression by using the full dataset, e.g.
Fearnhead & Prangle (2012).



DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression

In this paper, we develop a novel framework for the con-
struction of informative problem-specific summary statis-
tics. Following the approach of Fearnhead & Prangle
(2012), we want to derive summary statistics that will al-
low inference about certain parameters of interest to be as
accurate as possible. Thus, we study loss functions and rea-
son about the optimality of summary statistics in terms of
minimizing specific instances of these functions. In partic-
ular, we model the functional relationship between the data
and the optimal choice of summary statistics using kernel-
based distribution regression (Szabó et al., 2015). In order
to properly account for the nature of the data, we take a
two-step approach to distribution regression. Furthermore,
we extend our method to incorporate kernel-based regres-
sion from conditional distributions. This allows us to ef-
ficiently encode the structure of the generative model as
part of our method. Thus, we are able to derive more in-
formative optimal summary statistics for problems exhibit-
ing non-trivial dependence structure, e.g. hierarchical or
spatio-temporal dependence. In summary, we are able to
automatically take into account the diverse structural prop-
erties of real-world data without requiring domain-specific
knowledge.

In the first variant of our framework, we assume that all
aspects of the data are important for estimating the param-
eters of interest in ABC, i.e. we model the full marginal
distribution of the data and regress from it into the space
of optimal summary statistics. First, we embed the empir-
ical distributions of newly simulated datasets via the mean
embedding (Smola et al., 2007) into a reproducing kernel
Hilbert space (RKHS) (Aronszajn, 1950). For this em-
bedding, we choose a characteristic kernel (Sriperumbudur
et al., 2011) to ensure that no information from the data is
lost. We then regress from these embeddings to the opti-
mal choice of summary statistics with kernel ridge regres-
sion (Friedman et al., 2001). The space of candidate re-
gressors is thus another RKHS of functions whose domain
is the space of mean-embedded data distributions. For the
construction of this RKHS, one can use a simple linear ker-
nel or more flexible kernels defined on distributions such
as those described in Christmann & Steinwart (2010). The
learned regression function can then be used as the sum-
mary statistics within ABC.

For the second variant of our framework, we assume that
only certain aspects of the data have a direct influence on
the parameter of interest in ABC and thus we restrict our
attention to modeling the functional relationship between
these aspects of the data and the optimal summary statis-
tics. In particular, we assume that the observed data can
be decomposed into important and auxiliary components
such that the parameter of interest depends on the auxiliary
components of the data only through the family of induced
conditional distributions of the important data components

given the auxiliary ones. In order to model the functional
relationship between conditional distributions and the opti-
mal summary statistics, we embed these distributions with
a conditional embedding operator (Song et al., 2013) into
an RKHS and use kernel ridge regression to regress from
the space of conditional embedding operators into the space
of optimal summary statistics. The space of candidate re-
gressors is thus another RKHS defined on the space of
bounded linear operators between RKHS defined on the
auxiliary and important data components, respectively. For
the construction of this RKHS, one can use any positive
definite kernel defined on the space of Hilbert-Schmidt op-
erators, e.g. a simple linear kernel or any kernel given in
terms of the Hilbert-Schmidt operator norm. As before, the
learned regression function can be used as the summary
statistics within ABC.

In this paper, we specifically study the choice of summary
statistics and use a simple rejection sampling mechanism.
While more complex sampling mechanisms are possible,
we take this particular approach in order to decouple the
influence of these two important components of ABC on
the quality of posterior inference. The rest of the paper is
organized as follows. Section 2 gives an overview of re-
lated work, while section 3 introduces and discusses our
framework. Experimental results on toy and real-world
problems, and a comparison with related methods are given
in section 4. Section 5 concludes.

2. Related Work
Most existing methods for the selection or construction of
informative summary statistics can be grouped into three
categories. A first category assembles methods that first
perform best subset selection in a set of candidate statistics
according to various information-theoretic criteria and then
use this subset as the summary statistics within ABC. In
particular, optimal subsets are selected according to, e.g. a
measure of sufficiency (Joyce & Marjoram, 2008), entropy
(Nunes & Balding, 2010) and AIC/BIC (Blum et al., 2013).

A second category consists of methods that construct sum-
mary statistics from auxiliary models. An example of this
approach is indirect score ABC (Gleim & Pigorsch, 2013).
Here, a score vector that is calculated based on the partial
derivatives of the auxiliary likelihood plays the role of the
summary statistics. Motivated by the fact that the score of
the observed data is zero when the auxiliary model parame-
ters are set by maximum-likelihood estimation (MLE), the
method searches the parameter space for values whose sim-
ulated data produce a score close to zero under the same
auxiliary model parameters. Thus, the discrepancy mea-
sure between the observed and simulated data is defined in
terms of the score of the simulated data at the parameter
values estimated with MLE from the observed data. A de-
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tailed review of this class of approaches can be found in
Drovandi et al. (2015).

A third, and last, category is comprised of methods that
construct summary statistics using regression from either
the full dataset or a set of candidate statistics. Examples of
this approach include Blum & François (2010), Boulesteix
& Strimmer (2007) and Wegmann et al. (2009) with
Aeschbacher et al. (2012) providing a general overview of
such methods. Here, we discuss semi-automatic ABC (SA-
ABC) (Fearnhead & Prangle, 2012) in more detail. SA-
ABC focuses on the construction of summary statistics that
will allow inference about certain parameters of interest to
be as accurate as possible with respect to specific loss func-
tions. They show that the true posterior mean of the model
parameters is the optimal choice of summary statistics un-
der the quadratic loss function. As this quantity cannot be
analytically calculated, they estimate it by fitting a regres-
sion model from simulated data. In particular, given sim-
ulated data {(θi, yi)}i, a linear model θ = βg(y) + ε is
fitted; here, g(·) is taken to be either the identity function
or a power function. The resulting estimates s(y) = β̂g(y)
are used as the summary statistics in ABC.

In the literature, there are a few other methods that are
not strictly aligned with the above categorization. Here,
we review three such methods – synthetic likelihood ABC
(Wood, 2010), K-ABC (Nakagome et al., 2013) and K2-
ABC (Park et al., 2015). Synthetic likelihood ABC (Wood,
2010) assumes that the summary statistics follow a multi-
variate normal distribution and uses plug-in estimates for
the mean and covariance parameters. In order to gener-
ate posterior samples, the method utilizes MCMC with a
synthetic likelihood that is derived by convolving the fit-
ted distribution of the summary statistics with a Gaussian
kernel that measures the similarity between the observed
and simulated data via the fitted summary statistics. On the
other hand, K-ABC (Nakagome et al., 2013) and K2-ABC
(Park et al., 2015) use the RKHS framework in connection
with ABC, albeit in a different fashion than our method.
K-ABC regresses from already chosen summary statistics
s(y) to posterior expectations of interest, i.e. it estimates a
conditional mean embedding operator mapping from s(y)
to the corresponding model parameters θ. While the use of
a kernel on the summary statistics increases their represen-
tative power, the method does not mitigate the challenge
of selecting summary statistics. A potential solution to this
shortcoming could be to choose the whole dataset to regress
with, i.e. use s(y) = y. This differs from our approach in
two ways. First, the choice of an appropriate kernel that can
be defined directly on the data is not straightforward. Our
approach does not suffer from this shortcoming since we
treat datasets as bags of samples. Second, instead of per-
forming regression to estimate posterior expectations, we
utilize it to calculate summary statistics that can be used

within ABC. This decouples the regression model from the
actual ABC method and thus, does not limit the number
of samples that can be used within ABC, i.e. it allows
for an arbitrary large number of samples to be drawn af-
ter performing the regression step. The K-ABC method
has recently been used in HIV epidemiology (?). On the
other hand, K2-ABC embeds the empirical data distribu-
tions into an RKHS via the mean embedding and uses a
dissimilarity measure on the space of these embeddings to
assess the similarity between the observed and simulated
data. In particular, the maximum mean discrepancy (Gret-
ton et al., 2012) is used as the dissimilarity measure on the
space of the mean-embedded data distributions, and an ex-
ponential smoothing kernel is utilized to compute the ABC
posterior sample weights. In contrast to the methods dis-
cussed above, there is no explicit construction or selection
of summary statistics, but rather the summary statistics are
given implicitly as the mean embeddings of the empiri-
cal data distributions into an possibly infinite-dimensional
RKHS. Our framework is different from this method in
that it performs an additional step and regresses from the
mean embeddings to the space of summary statistics that
are optimal with respect to a user-specified loss function.

3. DR-ABC Method
In this section, we introduce and discuss the novel frame-
work of ABC with kernel-based distribution regression
(DR-ABC) and review some of its important building
blocks.

MMD. Given a probability distribution FA defined on a
non-empty set A, the mean embedding of FA, µFA =
EA∼FAk(·, A), is an element of the RKHS Hk defined by
the kernel k : A × A → R. For two probability distribu-
tions FA and FB , the maximum mean discrepancy (MMD)
between FA and FB is defined as

MMD2(FA, FB) = ||µFA − µFB ||2Hk
= EAEA′k(A,A′) + EBEB′k(B,B′)

− 2EAEBk(A,B)

with A,A′ i.i.d.∼ FA and B,B′ i.i.d.∼ FB . Given samples
{ai}nAi=1

i.i.d.∼ FA and {bj}nBj=1
i.i.d.∼ FB , an unbiased esti-

mate of the MMD can be computed as

M̂MD
2
(FA, FB) =

1

nA(nA − 1)

nA∑
i=1

∑
i′ 6=i

k(ai, ai′)+

1

nB(nB − 1)

nB∑
j=1

∑
j′ 6=j

k(bj , bj′)−
2

nAnB

nA∑
i=1

nB∑
j=1

k(ai, bj).

Distribution Regression. The goal of distribution regres-
sion is to establish a functional relationship between prob-
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ability distributions over a given set and real-valued (possi-
bly multidimensional) responses. In particular, given data
{(θl, Pl)}Ll=1 drawn i.i.d. from an unknown meta distri-
bution M defined on the product space of responses and
probability distributions over the space of observations, we
are interested in capturing this data-generating mechanism
with a regression model and predicting new responses θL+1

given new distributions PL+1.

In this setting, one major challenge arises due to the
fact that the probability distributions {Pl}Ll=1 are not ob-
served directly, but are available only in terms of their
i.i.d. samples. In particular, the data is given as
{(θl, {y(n)l }

Nl
n=1)}Ll=1 with y(1)l , . . . , y

(Nl)
l

i.i.d.∼ Pl and Y
the underlying sample space. Thus, one is interested in
predicting new responses θL+1 given a new bag of sam-
ples {y(n)L+1}

NL+1

n=1
i.i.d.∼ PL+1. This particularity makes

regressing directly from the space of probability distribu-
tions M+

1 (Y) to the response space Θ ⊂ RD difficult as
one has to capture the two-stage sampled nature of the data
in one functional relationship. If we take the kernel ridge
regression approach, then the functional relationship be-
tween P and θ is modeled as an element g from the RKHS
G = G(kG) of functions mapping fromM+

1 (Y) to Θ with
the kernel kG defined onM+

1 (Y). In order to properly ac-
count for the two-stage sampled nature of the data, we take
a two-stage approach to distribution regression. First, a dis-
tribution P ∈ M+

1 (Y) is mapped via the mean embedding
µ into the RKHSHk defined by the kernel k : Y×Y → R.
Second, this result is composed with an element h from
the RKHS HK defined by the kernel K : Y × Y → R,
where Y is the image ofM+

1 (Y) under the mean embed-
ding. This yields kG(P, P ′) = K(µP , µP ′) and g = h ◦ µ
with h : Y → RD such that h(·) = (h1(·), . . . , hD(·)) and
hd ∈ HK for every d ∈ {1, . . . , D}, i.e. we treat every
dimension of θ separately. Taking the classical regulariza-
tion approach, the solution of kernel ridge regression can
be calculated as

hλd = arg min
hd∈HK

1

L

L∑
l=1

∣∣∣hd (µP̂l)− θld∣∣∣2 + λ||hd||2HK

with P̂l = 1
Nl

∑Nl
n=1 δy(n)

l

, θl = (θl1, . . . , θlD), λ the regu-

larization parameter and hλ = (hλ1 , . . . , h
λ
D). Given a new

PL+1 ∈ M+
1 (Y) in terms of samples {y(n)L+1}

NL+1

n=1
i.i.d.∼

PL+1, a prediction for θL+1 can be calculated in the fol-
lowing way

θ̂L+1 = Θ(K + LλId)−1k, (1)

where Kll′ = K(µP̂l , µP̂l′
), kl = K(µP̂l , µP̂L+1

),
Θ = (θ1, . . . , θL) and l, l′ ∈ {1, . . . , L}.

Conditional Distribution Regression. Often only cer-
tain aspects of the data are assumed to have a direct in-
fluence on the response, e.g. in hierarchical or spatio-
temporal settings, and thus one might be interested in mod-
eling only the functional relationship between these aspects
of the data and the response. This motivates a decom-
position of the data as y(n)l = (z

(n)
l , x

(n)
l ) with x(n)l en-

coding the important data aspects (for the inference task
at hand) and z

(n)
l describing the rest of the information

that we are not interested in modeling explicitly (e.g. this
could correspond to locations on a grid on which the ob-
servations are recorded).1 In other words, we assume that
θl depends on Pl only through the induced conditionals
{Pl(·|z(n)l )}Nln=1. Thus, the problem of distribution re-
gression reduces to the question of modeling the func-
tional relationship between the induced family of condi-
tional distributions {P (·|z)}z∈Z ⊂ M+

1 (X ) and the re-
sponse θ, i.e. learning a map from the set of functions
T = {t : Z → M+

1 (X ), t(z) = P (·|z)} into the re-
sponse space Θ. In order to ensure that all the necessary
mathematical objects exist and are well-defined, we make
the following assumptions:

1. (X ,B(X )) is a Polish space with B(X ) the associated
Borel σ-algebra,

2. (Z,Z ) is a measurable space with Z the associated
σ-algebra,

3. kernel k is bounded and can be factorized as
k((z, x), (z′, x′)) = kZ(z, z′)kX (x, x′), and

4. EX|z [g(X)|z] ∈ HkX for all g ∈ HkX , z ∈ Z .

In contrast to distribution regression from joint distribu-
tions, here we are interested in simultaneously embedding
whole families of conditional distributions into an RKHS.
To achieve this, we model this embedding as a function

µX|· : Z → HkX with µX|Z=z = EX|Z=zkX (·, X),

i.e. for every z ∈ Z , the embedding of the conditional
distribution of X given Z = z is a function in the RKHS
HkX . Following the approach of Song et al. (2013), we
encode the embedding of {P (·|z)}z∈Z with the conditional
embedding operator CX|Z , where

µX|Z=z = CX|ZkZ(·, z)

and

CX|Z = CXZC
−1
ZZ ∈ L(HkZ ,HkX ).

1In particular,
{(

z
(n)
l , x

(n)
l

)}Nl

n=1

i.i.d.∼ Pl, Y = Z × X and

x
(n)
l ∼ Pl(·|z(n)

l ).
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Thus, the embedding of a family of conditional distribu-
tions is modeled as an operator between RKHS defined on
Z and X , respectively. Next, we regress from the space
of conditional embedding operators, i.e. from the space
of bounded linear operators L(HkZ ,HkX ), into Θ using
kernel ridge regression. For this purpose, we define a ker-
nel K : L(HkZ ,HkX ) × L(HkZ ,HkX ) → R to measure
the similarity between different conditional embedding op-
erators. Typical choices for this kernel include the linear
kernel K(C,C ′) = Tr(CC ′) or any other positive defi-
nite kernel given in terms of the Hilbert-Schmidt operator
norm. Finally, putting all the building blocks together, the
solution of kernel ridge regression can be computed as

hλd = arg min
hd∈HK

1

L

L∑
l=1

∣∣∣hd(Ĉ(l)
X|Z

)
− θld

∣∣∣2 + λ2||hd||2HK ,

with Ĉ
(l)
X|Z = k

(l)
X

(
k
(l)
ZZ + λ1Id

)−1
k
(l)
Z , k

(l)
X =[

kX (·, x(1)l ), . . . , kX (·, x(Nl)l )
]
,
[
k
(l)
ZZ

]
ij

= kZ(z
(i)
l , z

(j)
l ),

k
(l)
Z =

[
kZ(·, z(1)l ), . . . , kZ(·, z(Nl)l )

]T
, λ = (λ1, λ2) the

regularization parameter and θl = (θl1, . . . , θlD). Given
a new distribution PL+1 ∈ M+

1 (Z × X ) in terms of

samples {z(n)L+1, x
(n)
L+1}

NL+1

n=1
i.i.d.∼ PL+1 with x

(n)
L+1 ∼

PL+1(·|z(n)L+1), a prediction for θL+1 can be calculated as

θ̂L+1 = Θ(K + Lλ2Id)−1k, (2)

where Kll′ = K(Ĉ
(l)
X|Z , Ĉ

(l′)
X|Z), kl = K(Ĉ

(l)
X|Z , Ĉ

(L+1)
X|Z ),

Θ = (θ1, . . . , θL) and l, l′ ∈ {1, . . . , L}.

DR-ABC.

Our framework, ABC with kernel-based distribution re-
gression, provides a novel approach to the construction
of informative problem-specific summary statistics. Moti-
vated by Fearnhead & Prangle (2012), we study loss func-
tions and use simulated data to construct approximations
to summary statistics that are optimal with respect to these
loss functions. While any loss function can be used within
our framework,2 we focus on the quadratic loss function
L(θ, θ∗) = (θ∗ − θ)2 with θ∗ the true value of the parame-
ter of interest. Given simulated data {(θl, {y(n)l }

Nl
n=1)}Ll=1,

we regress into the space of optimal summary statistics,
i.e. into the parameter space in the case of quadratic loss,
with kernel-based distribution regression. As discussed in
the previous section, we study two different variants of our
framework – full and conditional DR-ABC – to account for
the diverse structural properties present in real-world data.

2For loss functions not admitting closed-form solutions for the
argument of their minimum, numerical optimization techniques
might need to be used.

Full DR-ABC: In this variant of the DR-ABC framework,
we assume that all aspects of the data are important for es-
timating the parameter of interest, i.e. we model the com-
plete marginal distribution of the data and regress from it
into the parameter space. In particular, we first embed
the empirical distributions of the simulated data via the
mean embedding into the RKHS Hk defined by the ker-
nel k : Y × Y → R. Next, we define a second RKHS HK
via the kernel K : Y × Y → R,

K(µP̂l , µP̂l′
) = exp

(
−M̂MD

2
(Pl, Pl′)

2σ2
K

)
with σK the kernel bandwidth. This kernel provides a
dissimilarity measure on the space of mean embeddings.
Third, we perform kernel ridge regression from Y into the
parameter space withHK as the space of candidate regres-
sors. Finally, for a particular PL+1 ∈ M+

1 (Y) given in

terms of a sample {y(n)L+1}
NL+1

n=1
i.i.d.∼ PL+1, the approxi-

mated optimal summary statistics is equal to Equation 1,
i.e. the value of the fitted distribution regression function
evaluated at the empirical distribution of that sample.

Conditional DR-ABC: Unlike full DR-ABC, here we as-
sume that only certain aspects of the data have a direct in-
fluence on the parameter of interest. Thus, we restrict our
attention to modeling the functional relationship between
these aspects of the data and the parameter of interest.
First, we identify the important and auxiliary data compo-
nents, i.e. we decompose the simulated data as {y(n)l }n,l =

{(z(n)l , x
(n)
l )}n,l. Second, for every l, we encode the

embedding of the induced family of conditional distribu-
tions {Pl(·|z(n)l )}n with the conditional embedding opera-
tor C(l)

X|Z : HkZ → HkX , where HkZ and HkX are RKHS
defined on Z and X , respectively, and kZ and kX are the
corresponding kernels. Third, we define a new RKHS HK
via the kernel K : L(HkZ ,HkX )× L(HkZ ,HkX )→ R,

K(C,C ′) = Tr(CC ′).

This kernel defines a dissimilarity measure on the space of
conditional embedding operators. Next, we perform kernel
ridge regression from this space into the parameter space
and use the newly constructed RKHS HK as the space of
candidate regressors. Finally, the fitted distribution regres-
sion function can be used as a summary statistics within
ABC; the approximated optimal summary statistics of a
new dataset is given by Equation 2.

Application to ABC: Having constructed the optimal sum-
mary statistics, we can now perform ABC. First, we sample
M points from the prior and generate the corresponding
datasets {(θm, {y(j)m }Jmj=1)}Mm=1. Depending on the infer-
ence task at hand and the structural properties of the data,
a splitting of the data might be suitable, i.e. {y(j)m }m,j =
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{(z(j)m , x
(j)
m )}m,j . In order to assess the similarity between

the observed and simulated data, we estimate the optimal
summary statistics for each dataset and compare these ap-
proximations via a smoothing kernel that defines a dissim-
ilarity measure on the parameter space. In particular, we
calculate one of the following

κ(P̂m, P̂
∗) = exp

−
∣∣∣∣∣∣hλ ◦ µP̂m − hλ ◦ µP̂∗ ∣∣∣∣∣∣22

ε


κ(P̂m, P̂

∗) = exp

−
∣∣∣∣∣∣hλ ◦ Ĉ(m)

X|Z − h
λ ◦ Ĉ∗X|Z

∣∣∣∣∣∣2
2

ε


depending on whether we are in the setting of full or condi-
tional DR-ABC, respectively. Here, P̂ ∗ and P̂m, and Ĉ∗X|Z
and Ĉ(m)

X|Z are the empirical data distributions and condi-
tional embedding operators of the observed and newly sim-
ulated data, respectively.

Putting together kernel-based distribution regression and
ABC as discussed above, the following algorithms summa-
rize the two different variants of the DR-ABC framework.

Algorithm 1 Distribution Regression
Input: prior π and data-generating process P
Output: fitted regression function hλ ◦ µ
for l = 1, . . . , L do

Sample θl ∼ π
Sample dataset {y(n)l }n ∼ P (·|θl)

end for
Fit distribution regression with {(θl, {y(n)l }n)}l

Algorithm 2 Conditional Distribution Regression
Input: prior π and data-generating process P
Output: fitted regression function hλ ◦ CX|Z
for l = 1, . . . , L do

Sample θl ∼ π
Sample dataset {y(n)l }n ∼ P (·|θl)
Split dataset {y(n)l }n = {(z(n)l , x

(n)
l )}n

end for
Fit distribution regression from conditionals with
{(θl, {(z(n)l , x

(n)
l )}n)}l

Computational complexity. Assuming that both the ob-
served and simulated datasets are of size N , the cost of
computing M̂MD

2
between two bags of samples or com-

puting K(Ĉ
(l)
X|Z , Ĉ

(l′)
X|Z) for any l, l′ is O(N2). Taking L

and M as the number of simulated datasets for (condi-
tional) distribution regression and ABC, respectively, the
total computational cost of fitting the regression and run-

Algorithm 3 DR-ABC Algorithm
Input: prior π, data-generating process P , observed

data {y∗i }i, soft threshold ε
Output: weighted posterior sample

∑
m wmδθm

Step 1: Perform Distribution Regression or
Conditional Distribution Regression
depending on the nature of the data

Step 2: ABC
for m = 1, . . . ,M do

Sample θm ∼ π
Sample dataset {y(j)m }j ∼ P (·|θm)

Compute w̃m = exp

(
−||

hλ◦µP̂m−h
λ◦µP̂∗ ||22

ε

)
or

w̃m = exp

(
−

∣∣∣∣∣∣hλ◦Ĉ(m)

X|Z−h
λ◦Ĉ∗X|Z

∣∣∣∣∣∣2
2

ε

)
depending on the nature of the data

end for
wm = w̃m/

∑M
k=1 w̃k for m = 1, . . . ,M

ning ABC is O(N2(ML+L2) +L3) in both full and con-
ditional DR-ABC. In order to mitigate this large computa-
tional cost, we apply the popular large-scale kernel learn-
ing framework of random Fourier features (RFF) (Rahimi
& Recht, 2007). This framework has successfully been ap-
plied in several contexts (Chitta et al., 2012; Huang et al.,
2013), extended (Le et al., 2013; Yang et al., 2014) and
thoroughly analyzed (Bach, 2015; Sutherland & Schnei-
der, 2015; Sriperumbudur & Szabo, 2015). The context
most similar to ours is that of Jitkrittum et al. (2015) where
two layers of random Fourier features are applied in con-
nection with distribution regression, albeit in the context
of emulating Expectation Propagation messages. Using
random Fourier features, we approximate the potentially
infinite-dimensional feature maps that figure in the compu-
tation of kernel functions with finite-dimensional vectors.
This implies that kernel evaluations can be approximated
by inner products of these finite-dimensional features. Us-
ing f random Fourier features in each layer of approxi-
mation, we get a significantly reduced computational cost
of O(Nf(ML + L2) + f3) for full DR-ABC. For con-
ditional DR-ABC, the computational cost can be reduced
to O(f2(ML + L2) + f3). In our experiments, we use
f = 100 and the following RFF expansion

φ(x) ∈ Rf , φ(x)i:(i+1) =

√
2

f
[cos(wTi x), sin(wTi x)].

Due to a result from Bach (2015), a comparatively small
number of random Fourier features can be used even for
large datasets since the number of random Fourier features
needed for good approximations of kernel ridge regression
solutions often scales sublinearly with the number of obser-
vations. Nevertheless, the dependence of the required num-
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ber of random Fourier features on the number of datasets
and the number of observations within each dataset, partic-
ularly in settings such as ours where there are two layers of
random Fourier features, is not yet fully understood.

4. Experimental Results
Toy example. The first problem we study is the following
Gaussian hierarchical model3

θ ∼ N (2, 1), z ∼ N (0, 2), x|z, θ ∼ N (θz2, 1).

This simple example serves as a proof of concept for our
framework. In this model, the parameter of interest is θ,
and our goal is to estimate E[θ|y∗] with y∗ the observed
dataset. In our experiments, we compare full and condi-
tional DR-ABC against SA-ABC and K2-ABC. We specif-
ically compare our framework against these methods as
they are examples illustrating the regression and RKHS ap-
proach to the construction of summary statistics. For the
performance metric, we calculate the mean square error
(MSE) of the parameter of interest on synthetic data. In
particular, we set θ∗ = 2 and generate 200 observations
given this parameter value as y∗; for every newly simu-
lated dataset, we also draw 200 datapoints. For full DR-
ABC, we take the kernels k and K as Gaussian kernels,
while for conditional DR-ABC, k is a Gaussian kernel and
K is a linear kernel. The hyperparameters in the two DR-
ABC methods are set via five-fold cross-validation on ap-
propriately defined grids. For the grids of the different ker-
nel bandwidth parameters, we multiply the respective me-
dian heuristics (Reddi et al., 2014) with a set of ten equally
spaced points between 10−4 and 1000. For λ and ε, we
choose the grids by exponentiating 10 to the powers given
by ten equally spaced points between−4 and 1. In order to
account for the randomness in the generative process, we
run each of the methods 20 times and display the mean of
MSE across the different runs. Figure 1 describes the per-
formance of our chosen methods across different numbers
of particles used in the (conditional) distribution regression
phase (for full and conditional DR-ABC) and in the ABC
phase (for all four methods). In order to achieve compa-
rable results, we use the same number of particles in the
regression phase as in the ABC phase for SA-ABC. K2-
ABC exhibits a fairly stable reconstruction error for differ-
ent numbers of ABC particles and outperforms SA-ABC
only when relatively small numbers of ABC particles are
used. Across the wide spectrum of the number of ABC
particles used, we see both conditional and full DR-ABC
outperforming K2-ABC by a large margin. While full DR-
ABC usually also outperforms SA-ABC, conditional DR-
ABC does this consistently by a large margin.

3The code for all presented experiments is available at
https://github.com/jovana-mitrovic/dr-abc.

Figure 1. MSE of the parameter of interest for full and conditional
DR-ABC, SA-ABC and K2-ABC averaged across 20 runs. The
number of ABC particles is between 1000 – 10000. We use either
100 or 200 particles in (conditional) distribution regression.

Ecological Dynamical Systems. Many ecological prob-
lems have an intractable likelihood due to a dynamic gen-
erative process and thus rely on ABC for posterior infer-
ence. Deriving informative summary statistics in this set-
ting is quite challenging as the dependence structure within
the data needs to be appropriately taken into account. As an
example of an ecological system with a dynamic generative
process, we examine the problem of inferring the dynam-
ics of the adult blowfly population as introduced in Wood
(2010). In particular, the population dynamics are modeled
by the following discretised differential equation

Nt+1 = PNt−τ exp

(
−Nt−τ

N0

)
et +Nt exp(−δεt)

with Nt+1 denoting the observation at time t + 1 which
is determined by the time-lagged observations Nt and
Nt−τ , and the Gamma distributed noise variables et ∼
Gam( 1

σ2
p
, σ2
p) and εt ∼ Gam( 1

σ2
d
, σ2
d). The parameters of

interest in this model are θ = {P,N0, σd, σp, τ, δ}. As
before, we compare our framework with SA-ABC and K2-
ABC and use the same performance metric, kernels and
hyperparameter selection procedure as in the previous ex-
ample. For conditional DR-ABC, we take x(n) = Nn and
z(n) = (Nn−1, Nn−1−τ ). From Figure 2, we see that our
methods outperform SA-ABC by a large margin across the
whole spectrum of test situations. Full DR-ABC displays
competitive performance to K2-ABC, even outperforming
it in certain instances by a large margin. On the other hand,
conditional DR-ABC outperforms K2-ABC in all test situ-
ations; in some of these situations, the performance of our
method is massively superior.

Lotka-Volterra Model. Another popular ecological model
in which posterior inference is difficult is the Lotka-
Volterra model (Lotka, 1925; Volterra, 1927). This model
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Figure 2. MSE of the parameter of interest for full and conditional
DR-ABC, SA-ABC and K2-ABC averaged across 20 runs. The
number of ABC particles is between 1000 - 5000. We use either
100 or 200 particles in (conditional) distribution regression.

describes the dynamics of biological systems in which two
species interact in a predator-prey relationship. The popu-
lation dynamics are described by the following pair of first-
order non-linear differential equations

dx

dt
= αx− βxy, dy

dt
= γxy − δy, (3)

where x, y are the number of prey and predators, respec-
tively, α, β, γ, δ are positive real parameters describing the
interaction of the two species, t denotes time and dx

dt ,dydt
are the respective growth rates. In addition to the dynam-
ical nature of the generative process, the interaction be-
tween the two species makes deriving informative sum-
mary statistics even more challenging. The parameters of
interest in this model are θ = {α, β, γ, δ}. For conditional
DR-ABC, we condition on the previous states of the model
according to 3. As in the previous two experiments, we
compare our framework with SA-ABC and K2-ABC and
use the same performance metric, kernels and hyperparam-
eter selection procedure.

From Figure 3, we see that our framework outperforms
competing methods by a large margin. While for small
numbers of ABC particles, full DR-ABC seems to per-
form better, for large numbers of ABC particles, condi-
tional DR-ABC slightly outperforms full DR-ABC with a
clear downward trend in the error for higher numbers of
ABC particles. As for SA-ABC, the method cannot directly
be applied to this problem due to the high correlation in the
observations which leads to a regression problem that is
ill-conditioned. Even after performing PCA and using the
first 10 principal components for approximation, SA-ABC
yielded 1–2 orders of magnitude larger errors than those
displayed in the figure and thus, they are excluded from it
for clarity.

Figure 3. MSE of the parameter of interest for full and conditional
DR-ABC and K2-ABC averaged across 20 runs. The number of
ABC particles is between 1000 - 4000. We use either 100 or 200
particles in (conditional) distribution regression.

5. Conclusion
In this paper, we developed a novel framework for the con-
struction of informative problem-specific summary statis-
tics using the flexible and expressive setting of reproduc-
ing kernel Hilbert spaces. We introduced two different ap-
proaches based on embeddings of probability distributions
and kernel-based distribution regression. Our proposed
framework has several advantages over previous general-
purpose and semi-automatic summary statistics construc-
tion methods. First, by using the flexible RKHS frame-
work, we are able to regulate the kind and amount of in-
formation that is extracted from the data and thus construct
more informative problem-specific summary statistics, as
opposed to mandating an ad hoc selection of a limited set of
candidate statistics or postulating heuristic summary statis-
tics which inevitably leads to a hard to evaluate approxima-
tion bias in the likelihood and subsequently in the poste-
rior sample. Moreover, our framework compactly encodes
the extracted information. Second, due to the modeling
flexibility of our framework, we are able to appropriately
account for different structural properties present in real-
world data. Third, our methods can be implemented in
a computationally and statistically efficient way using the
random Fourier features framework for large-scale kernel
learning. Fourth, our framework can be easily extended
to any object class on which the embedding kernel(s) can
be defined. Examples of such object classes include ge-
netic data (Wu et al., 2010), phylogenetic trees (?), strings,
graphs and other structured data (Gärtner, 2003). Fifth, al-
though there are multiple sets of hyperparameters in each
of our methods, their selection can be performed in a prin-
cipled way via cross-validation. From experiments on toy
and real-world problems, we see that our framework sub-
stantially reduces the bias in the posterior sample achieving
superior performance when compared to related methods
used for the construction of summary statistics in ABC.
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