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1 Optimization Details
We investigated two different optimization algorithms with our asynchronous framework – stochastic gradient
descent and RMSProp. Our implementations of these algorithms do not use any locking in order to maximize
throughput when using a large number of threads.

Momentum SGD: The implementation of SGD in an asynchronous setting is relatively straightforward
and well studied [Recht et al., 2011]. Let θ be the parameter vector that is shared across all threads and let
∆θi be the accumulated gradients of the loss with respect to parameters θ computed by thread number i.
Each thread i independently applies the standard momentum SGD update mi = αmi + (1−α)∆θi followed
by θ ← θ − ηmi with learning rate η, momentum α and without any locks. Note that in this setting, each
thread maintains its own separate gradient and momentum vector.

RMSProp: While RMSProp [Tieleman and Hinton, 2012] has been widely used in the deep learning
literature, it has not been extensively studied in the asynchronous optimization setting. The standard non-
centered RMSProp update is given by

g = αg + (1− α)∆θ2 (S1)

θ ← θ − η ∆θ√
g + ε

, (S2)

where all operations are performed elementwise. In order to apply RMSProp in the asynchronous optimiza-
tion setting one must decide whether the moving average of elementwise squared gradients g is shared or
per-thread. We experimented with two versions of the algorithm. In one version, which we refer to as RM-
SProp, each thread maintains its own g shown in Equation S1. In the other version, which we call Shared
RMSProp, the vector g is shared among threads and is updated asynchronously and without locking. Sharing
statistics among threads also reduces memory requirements by using one fewer copy of the parameter vector
per thread.

We compared these three asynchronous optimization algorithms in terms of their sensitivity to different
learning rates and random network initializations. Figure S1 shows a comparison of the methods for two dif-
ferent reinforcement learning methods (Async n-step Q and Async Advantage Actor-Critic) on four different
games (Breakout, Beamrider, Seaquest and Space Invaders). Each curve shows the scores for 50 experiments
that correspond to 50 different random learning rates and initializations. The x-axis shows the rank of the
model after sorting in descending order by final average score and the y-axis shows the final average score
achieved by the corresponding model. In this representation, the algorithm that performs better would achieve
higher maximum rewards on the y-axis and the algorithm that is most robust would have its slope closest to
horizontal, thus maximizing the area under the curve. RMSProp with shared statistics tends to be more robust
than RMSProp with per-thread statistics, which is in turn more robust than Momentum SGD.
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2 Experimental Setup
The experiments performed on a subset of Atari games (Figures 1, 3, 4 and Table 2) as well as the TORCS
experiments (Figure S2) used the following setup. Each experiment used 16 actor-learner threads running
on a single machine and no GPUs. All methods performed updates after every 5 actions (tmax = 5 and
IUpdate = 5) and shared RMSProp was used for optimization. The three asynchronous value-based methods
used a shared target network that was updated every 40000 frames. The Atari experiments used the same
input preprocessing as Mnih et al. [2015] and an action repeat of 4. The agents used the network architecture
from Mnih et al. [2013]. The network used a convolutional layer with 16 filters of size 8 × 8 with stride
4, followed by a convolutional layer with with 32 filters of size 4 × 4 with stride 2, followed by a fully
connected layer with 256 hidden units. All three hidden layers were followed by a rectifier nonlinearity. The
value-based methods had a single linear output unit for each action representing the action-value. The model
used by actor-critic agents had two set of outputs – a softmax output with one entry per action representing the
probability of selecting the action, and a single linear output representing the value function. All experiments
used a discount of γ = 0.99 and an RMSProp decay factor of α = 0.99.

The value based methods sampled the exploration rate ε from a distribution taking three values ε1, ε2, ε3
with probabilities 0.4, 0.3, 0.3. The values of ε1, ε2, ε3 were annealed from 1 to 0.1, 0.01, 0.5 respectively
over the first four million frames. Advantage actor-critic used entropy regularization with a weight β = 0.01
for all Atari and TORCS experiments. We performed a set of 50 experiments for five Atari games and every
TORCS level, each using a different random initialization and initial learning rate. The initial learning rate
was sampled from a LogUniform(10−4, 10−2) distribution and annealed to 0 over the course of training.
Note that in comparisons to prior work (Tables 1 and S1) we followed standard evaluation protocol and used
fixed hyperparameters.

3 Continuous Action Control Using the MuJoCo Physics Simulator
To apply the asynchronous advantage actor-critic algorithm to the Mujoco tasks the necessary setup is nearly
identical to that used in the discrete action domains, so here we enumerate only the differences required for
the continuous action domains. The essential elements for many of the tasks (i.e. the physics models and
task objectives) are near identical to the tasks examined in [Lillicrap et al., 2015]. However, the rewards and
thus performance are not comparable for most of the tasks due to changes made by the developers of Mujoco
which altered the contact model.

For all the domains we attempted to learn the task using the physical state as input. The physical state
consisted of the joint positions and velocities as well as the target position if the task required a target. In
addition, for three of the tasks (pendulum, pointmass2D, and gripper) we also examined training directly from
RGB pixel inputs. In the low dimensional physical state case, the inputs are mapped to a hidden state using
one hidden layer with 200 ReLU units. In the cases where we used pixels, the input was passed through two
layers of spatial convolutions without any non-linearity or pooling. In either case, the output of the encoder
layers were fed to a single layer of 128 LSTM cells. The most important difference in the architecture is in the
the output layer of the policy network. Unlike the discrete action domain where the action output is a Softmax,
here the two outputs of the policy network are two real number vectors which we treat as the mean vector µ
and scalar variance σ2 of a multidimensional normal distribution with a spherical covariance. To act, the input
is passed through the model to the output layer where we sample from the normal distribution determined by
µ and σ2. In practice, µ is modeled by a linear layer and σ2 by a SoftPlus operation, log(1 + exp(x)), as the
activation computed as a function of the output of a linear layer. In our experiments with continuous control
problems the networks for policy network and value network do not share any parameters, though this detail
is unlikely to be crucial. Finally, since the episodes were typically at most several hundred time steps long,
we did not use any bootstrapping in the policy or value function updates and batched each episode into a
single update.

As in the discrete action case, we included an entropy cost which encouraged exploration. In the continu-
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ous case the we used a cost on the differential entropy of the normal distribution defined by the output of the
actor network, − 1

2 (log(2πσ2) + 1), we used a constant multiplier of 10−4 for this cost across all of the tasks
examined. The asynchronous advantage actor-critic algorithm finds solutions for all the domains. Figure S4
shows learning curves against wall-clock time, and demonstrates that most of the domains from states can be
solved within a few hours. All of the experiments, including those done from pixel based observations, were
run on CPU. Even in the case of solving the domains directly from pixel inputs we found that it was possible
to reliably discover solutions within 24 hours. Figure S3 shows scatter plots of the top scores against the
sampled learning rates. In most of the domains there is large range of learning rates that consistently achieve
good performance on the task.

Algorithm S1 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.
// Assume global shared parameter vector θ.
// Assume global shared target parameter vector θ−.
// Assume global shared counter T = 0.
Initialize thread step counter t← 1
Initialize target network parameters θ− ← θ
Initialize thread-specific parameters θ′ = θ
Initialize network gradients dθ ← 0
repeat

Clear gradients dθ ← 0
Synchronize thread-specific parameters θ′ = θ
tstart = t
Get state st
repeat

Take action at according to the ε-greedy policy based on Q(st, a; θ
′)

Receive reward rt and new state st+1

t← t+ 1
T ← T + 1

until terminal st or t− tstart == tmax

R =

{
0 for terminal st
maxaQ(st, a; θ

−) for non-terminal st
for i ∈ {t− 1, . . . , tstart} do

R← ri + γR

Accumulate gradients wrt θ′: dθ ← dθ +
∂(R−Q(si,ai;θ

′))2

∂θ′

end for
Perform asynchronous update of θ using dθ.
if T mod Itarget == 0 then

θ− ← θ
end if

until T > Tmax
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Algorithm S2 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.
// Assume global shared parameter vectors θ and θv and global shared counter T = 0
// Assume thread-specific parameter vectors θ′ and θ′v
Initialize thread step counter t← 1
repeat

Reset gradients: dθ ← 0 and dθv ← 0.
Synchronize thread-specific parameters θ′ = θ and θ′v = θv
tstart = t
Get state st
repeat

Perform at according to policy π(at|st; θ′)
Receive reward rt and new state st+1

t← t+ 1
T ← T + 1

until terminal st or t− tstart == tmax

R =

{
0 for terminal st
V (st, θ

′
v) for non-terminal st// Bootstrap from last state

for i ∈ {t− 1, . . . , tstart} do
R← ri + γR
Accumulate gradients wrt θ′: dθ ← dθ +∇θ′ log π(ai|si; θ′)(R− V (si; θ

′
v))

Accumulate gradients wrt θ′v: dθv ← dθv + ∂ (R− V (si; θ
′
v))

2
/∂θ′v

end for
Perform asynchronous update of θ using dθ and of θv using dθv .

until T > Tmax
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Figure S1: Comparison of three different optimization methods (Momentum SGD, RMSProp, Shared RM-
SProp) tested using two different algorithms (Async n-step Q and Async Advantage Actor-Critic) on four
different Atari games (Breakout, Beamrider, Seaquest and Space Invaders). Each curve shows the final scores
for 50 experiments sorted in descending order that covers a search over 50 random initializations and learning
rates. The top row shows results using Async n-step Q algorithm and bottom row shows results with Async
Advantage Actor-Critic. Each individual graph shows results for one of the four games and three differ-
ent optimization methods. Shared RMSProp tends to be more robust to different learning rates and random
initializations than Momentum SGD and RMSProp without sharing.
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Figure S2: Comparison of algorithms on the TORCS car racing simulator. Four different configurations
of car speed and opponent presence or absence are shown. In each plot, all four algorithms (one-step Q,
one-step Sarsa, n-step Q and Advantage Actor-Critic) are compared on score vs training time in wall clock
hours. Multi-step algorithms achieve better policies much faster than one-step algorithms on all four lev-
els. The curves show averages over the 5 best runs from 50 experiments with learning rates sampled from
LogUniform(10−4, 10−2) and all other hyperparameters fixed.
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Figure S3: Performance for the Mujoco continuous action domains. Scatter plot of the best score obtained
against learning rates sampled from LogUniform(10−5, 10−1). For nearly all of the tasks there is a wide
range of learning rates that lead to good performance on the task.
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Figure S4: Score per episode vs wall-clock time plots for the Mujoco domains. Each plot shows error bars
for the top 5 experiments.
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Figure S5: Data efficiency comparison of different numbers of actor-learners one-step Sarsa on five Atari
games. The x-axis shows the total number of training epochs where an epoch corresponds to four million
frames (across all threads). The y-axis shows the average score. Each curve shows the average of the three
best performing agents from a search over 50 random learning rates. Sarsa shows increased data efficiency
with increased numbers of parallel workers.
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Figure S6: Training speed comparison of different numbers of actor-learners for all one-step Sarsa on five
Atari games. The x-axis shows training time in hours while the y-axis shows the average score. Each curve
shows the average of the three best performing agents from a search over 50 random learning rates. Sarsa
shows significant speedups from using greater numbers of parallel actor-learners.
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Figure S7: Scatter plots of scores obtained by one-step Q, one-step Sarsa, and n-step Q on five games (Beam-
rider, Breakout, Pong, Q*bert, Space Invaders) for 50 different learning rates and random initializations. All
algorithms exhibit some level of robustness to the choice of learning rate.
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Game DQN Gorila Double Dueling Prioritized A3C FF, 1 day A3C FF A3C LSTM
Alien 570.2 813.5 1033.4 1486.5 900.5 182.1 518.4 945.3
Amidar 133.4 189.2 169.1 172.7 218.4 283.9 263.9 173.0
Assault 3332.3 1195.8 6060.8 3994.8 7748.5 3746.1 5474.9 14497.9
Asterix 124.5 3324.7 16837.0 15840.0 31907.5 6723.0 22140.5 17244.5
Asteroids 697.1 933.6 1193.2 2035.4 1654.0 3009.4 4474.5 5093.1
Atlantis 76108.0 629166.5 319688.0 445360.0 593642.0 772392.0 911091.0 875822.0
Bank Heist 176.3 399.4 886.0 1129.3 816.8 946.0 970.1 932.8
Battle Zone 17560.0 19938.0 24740.0 31320.0 29100.0 11340.0 12950.0 20760.0
Beam Rider 8672.4 3822.1 17417.2 14591.3 26172.7 13235.9 22707.9 24622.2
Berzerk 1011.1 910.6 1165.6 1433.4 817.9 862.2
Bowling 41.2 54.0 69.6 65.7 65.8 36.2 35.1 41.8
Boxing 25.8 74.2 73.5 77.3 68.6 33.7 59.8 37.3
Breakout 303.9 313.0 368.9 411.6 371.6 551.6 681.9 766.8
Centipede 3773.1 6296.9 3853.5 4881.0 3421.9 3306.5 3755.8 1997.0
Chopper Comman 3046.0 3191.8 3495.0 3784.0 6604.0 4669.0 7021.0 10150.0
Crazy Climber 50992.0 65451.0 113782.0 124566.0 131086.0 101624.0 112646.0 138518.0
Defender 27510.0 33996.0 21093.5 36242.5 56533.0 233021.5
Demon Attack 12835.2 14880.1 69803.4 56322.8 73185.8 84997.5 113308.4 115201.9
Double Dunk -21.6 -11.3 -0.3 -0.8 2.7 0.1 -0.1 0.1
Enduro 475.6 71.0 1216.6 2077.4 1884.4 -82.2 -82.5 -82.5
Fishing Derby -2.3 4.6 3.2 -4.1 9.2 13.6 18.8 22.6
Freeway 25.8 10.2 28.8 0.2 27.9 0.1 0.1 0.1
Frostbite 157.4 426.6 1448.1 2332.4 2930.2 180.1 190.5 197.6
Gopher 2731.8 4373.0 15253.0 20051.4 57783.8 8442.8 10022.8 17106.8
Gravitar 216.5 538.4 200.5 297.0 218.0 269.5 303.5 320.0
H.E.R.O. 12952.5 8963.4 14892.5 15207.9 20506.4 28765.8 32464.1 28889.5
Ice Hockey -3.8 -1.7 -2.5 -1.3 -1.0 -4.7 -2.8 -1.7
James Bond 348.5 444.0 573.0 835.5 3511.5 351.5 541.0 613.0
Kangaroo 2696.0 1431.0 11204.0 10334.0 10241.0 106.0 94.0 125.0
Krull 3864.0 6363.1 6796.1 8051.6 7406.5 8066.6 5560.0 5911.4
Kung-Fu Master 11875.0 20620.0 30207.0 24288.0 31244.0 3046.0 28819.0 40835.0
Montezuma’s Revenge 50.0 84.0 42.0 22.0 13.0 53.0 67.0 41.0
Ms. Pacman 763.5 1263.0 1241.3 2250.6 1824.6 594.4 653.7 850.7
Name This Game 5439.9 9238.5 8960.3 11185.1 11836.1 5614.0 10476.1 12093.7
Phoenix 12366.5 20410.5 27430.1 28181.8 52894.1 74786.7
Pit Fall -186.7 -46.9 -14.8 -123.0 -78.5 -135.7
Pong 16.2 16.7 19.1 18.8 18.9 11.4 5.6 10.7
Private Eye 298.2 2598.6 -575.5 292.6 179.0 194.4 206.9 421.1
Q*Bert 4589.8 7089.8 11020.8 14175.8 11277.0 13752.3 15148.8 21307.5
River Raid 4065.3 5310.3 10838.4 16569.4 18184.4 10001.2 12201.8 6591.9
Road Runner 9264.0 43079.8 43156.0 58549.0 56990.0 31769.0 34216.0 73949.0
Robotank 58.5 61.8 59.1 62.0 55.4 2.3 32.8 2.6
Seaquest 2793.9 10145.9 14498.0 37361.6 39096.7 2300.2 2355.4 1326.1
Skiing -11490.4 -11928.0 -10852.8 -13700.0 -10911.1 -14863.8
Solaris 810.0 1768.4 2238.2 1884.8 1956.0 1936.4
Space Invaders 1449.7 1183.3 2628.7 5993.1 9063.0 2214.7 15730.5 23846.0
Star Gunner 34081.0 14919.2 58365.0 90804.0 51959.0 64393.0 138218.0 164766.0
Surround 1.9 4.0 -0.9 -9.6 -9.7 -8.3
Tennis -2.3 -0.7 -7.8 4.4 -2.0 -10.2 -6.3 -6.4
Time Pilot 5640.0 8267.8 6608.0 6601.0 7448.0 5825.0 12679.0 27202.0
Tutankham 32.4 118.5 92.2 48.0 33.6 26.1 156.3 144.2
Up and Down 3311.3 8747.7 19086.9 24759.2 29443.7 54525.4 74705.7 105728.7
Venture 54.0 523.4 21.0 200.0 244.0 19.0 23.0 25.0
Video Pinball 20228.1 112093.4 367823.7 110976.2 374886.9 185852.6 331628.1 470310.5
Wizard of Wor 246.0 10431.0 6201.0 7054.0 7451.0 5278.0 17244.0 18082.0
Yars Revenge 6270.6 25976.5 5965.1 7270.8 7157.5 5615.5
Zaxxon 831.0 6159.4 8593.0 10164.0 9501.0 2659.0 24622.0 23519.0

Table S1: Raw scores for the human start condition (30 minutes emulator time). DQN scores taken from Nair
et al. [2015]. Double DQN scores taken from Van Hasselt et al. [2015], Dueling scores from Wang et al.
[2015] and Prioritized scores taken from Schaul et al. [2015]
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