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Algorithm for computing VIMCO gradients

Algorithm 1 provides an outline of our implementation of
VIMCO gradient computation for a single training case.
This version uses the geometric mean to estimate f(x, h?)
from the other K — 1 terms. The computations are per-
formed in the log domain for better numerical stability.

Algorithm 1 Compute gradient estimates for the model and
proposal distribution parameters for a single observation
Require: =z, K > 2
fori=1to K do
W o~ Qhlz)
1[i] = log f(x,h")
end for
{ Compute the multi-sample stochastic bound}
L= LogSumExp(l) — log K
{Precompute the sum of log f}
s = Sum(l)
{Compute the baseline for each sample}
for i = 1to K do
{Save the current log f for future use and replace it}
{with the average of the other K-1 log f terms}
temp = l[i]
1i) = (s — 1[i)) /(K — 1)
L~ = LogSumExp(l) — log K
l[i] = temp {Restore the saved value}
end for
w = SoftMax(l) {Compute the importance weights}
V6 =0,Vy =0
{Sum the gradient contributions from the K samples}
for i =1to K do
{Proposal distribution gradient contributions}
VO =V + (L — L7")Vylog Q(h'|x)
VO = V0 + w[i]Vylog f(x, k')
{Model gradient contribution }
Vi = Vo + wli]Vy log f(z, hi)
end for
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Details of the experimental protocol

All models were trained using the Adam optimizer
(Kingma & Ba, 2015) with minibatches of size 24. The
input to the proposal distribution/inference network was
centered by subtracting the mean. For each training
method/number of samples combination we trained the
model several times using different learning rates, saving
the model with the best validation score achieved during
each training run. The plots and the scores shown in the
paper were obtained from the saved model with the highest
validation score. For generative training, we considered the
learning rates of {3 x 107*,1 x 1073,3 x 10~3}. For the
structured output prediction experiments, the learning rates
were {3x107%,1x1073,3 x 1073} for VIMCO and RWS
and {1 x 107%,3 x 104,11 x 1073} for NVIL.

Our NVIL implementation used both constant and input-
dependent baselines as well as variance normalization. The
input-dependent baseline for NVIL was a neural network
with one hidden layer of 100 tanh units. VIMCO used the
geometric mean for computing the per-sample learning sig-
nals.

Effect of variance reduction on the learning
signal

As explained in Sections 2.4 and 2.5, the magnitude of the
learning signal used for learning the proposal distribution
parameters is closely related to the variance of the resulting
gradient estimator. Both VIMCO and NVIL aim to reduce
the estimator variance by subtracting a baseline from the
original learning signal [A/(hliK ) in order to reduce its mag-
nitude, while keeping the estimator unbiased. We exam-
ined the effectiveness of these two approaches by plotting a
smoothed estimate of the magnitude of the resulting learn-
ing signal (L(h?|h~7) for VIMCO and L(h*5) —b(z) — b
for NVIL) as a function of the number of parameter up-
dates when training the SBN on MNIST in Section 5.1.
The magnitude of the learning signal was estimated by tak-
ing the square root of the mean of the squared signal values
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Figure 1. Structured output prediction: Conditional completions generated by sampling from a three-layer SBN trained using VIMCO
with the 20-sample objective. The top row shows the original full digit images. The remaining rows combine the top half from the

original image with the bottom half generated from the model.

for each minibatch. The results for different numbers of
samples shown in Figure 2 suggest that while VIMCO and
NVIL are equally effective at reducing variance when using
a 2-sample objective, VIMCO becomes much more effec-
tive than NVIL when using more than 2 samples. For 10
samples, the average magnitude of the learning signal for
VIMCO is about 3 times lower than for NVIL, which sug-
gests almost an order of magnitude lower variance of the
gradient estimates.

Structured output prediction: digit
completions

Figure 1 shows multiple completions for the same set of
top digit image halves generated using a three-layer (200-
200-200) SBN trained using VIMCO with the 20-sample
objective. The completions were obtained by computing
observation probabilities based on a single sample from the
prior. The variability of the completions shows how the
model captured the multimodality of the data distribution.
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Figure 2. The magnitude (root mean square) of the learning signal
for VIMCO and NVIL as a function of the number of samples
used in the objective and the number of parameter updates.



Variational Inference for Monte Carlo Objectives

Gradient derivation for the multi-sample
objective

In this section we will derive the gradient for the multi-
sample objective
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We start by using the product rule:
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Using the identity Vgg(z) = g(2)Vylog g(x), we can ex-
press the gradient of Q(h' ¥ |x) as
VoQUH K [2) QW )V log Q(h ¥ |2)
K
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We use the chain rule along with the same identity to com-
pute the gradient of L(h'):

VoL(h'E) =V, log (z,h7)
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where w7 = = K ) Substituting Eq. 3 and Eq. 4 into

Eq. 2 we obtain

K
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