
k-variates++: more pluses in the k-means++
— Supplementary Information —

Richard Nock
Data61 & The Australian National University
richard.nock@data61.csiro.au

Raphaël Canyasse
Ecole Polytechnique & The Technion

raphael.canyasse@polytechnique.edu
Raphael.can@tx.technion.ac.il

Roksana Boreli
Data61 & The University of New South Wales

r.boreli@unsw.edu.au

Frank Nielsen
Ecole Polytechnique & Sony Computer Science Laboratories, Inc.

Frank.Nielsen@acm.org

May 25, 2016

Abstract

This is the Supplementary Information to Paper ”k-variates++: more pluses in the k-
means++”, appearing in the proceedings of ICML 2016. Notation “main file” indicates ref-
erence to the paper.

1

1 Table of contents
Supplementary material on proofs Pg 3
Proof of Theorem 2 Pg 3
Proof of Lemma 3 Pg 6
Extension and comments on Table 1 Pg 6
Proofs of Theorems 4, 5 and 6 Pg 7
↪→ Proof of Theorem 4 Pg 7
↪→ Proof of Theorem 5 Pg 9
↪→ Proof of Theorem 6 Pg 10
Proof of Theorem 9 Pg 13
Proof of Theorem 10 Pg 19
Proof of Theorem 12 Pg 26
Extension to non-metric spaces Pg 27

Supplementary material on experiments Pg 29
Experiments on Theorem 12 and the sublinear noise regime Pg 29
Experiments with Dk-means++, k-means++ and k-means‖ Pg 32
Experiments with k-variates++ and GUPT Pg 36

2

2 Supplementary Material on Proofs
Several proofs rely on properties of the k-means++ algorithm that are not exploited in the proof of
[1]. We assume here the basic knowledge of the proof technique of [1].

2.1 Proof of Theorem 2
Let A denote a subset of A, and c(A)

.
= (1/|A|) ·∑a∈A a the barycenter of A. It is well known

that c(A) = arg mina′∈Rd

∑
a∈A ‖a− a′‖2

2, so the potential of A,

φ(A)
.

=
∑
a∈A

‖a− c(A)‖2
2 (1)

is just the optimal potential of A if A defines a cluster in the optimal clustering. We also define the
noisy potential of A as:

φN(A)
.

=
∑
a∈A

∫
Ωa

‖x− c(A)‖2
2dpa(x) . (2)

The proof of Theorem 2 follows the same path as the proof of Theorem 3.1 in [1]. Instead of
reproducing the proof, we shall assume basic knowledge of the original proof and will just provide
the side Lemmata that are sufficient for our more general result. The first Lemma is a generalization
of Lemma 3.2 in [1].

Lemma 1 Let Copt denotes the optimal partition of A according to eq. (2). Let A be an arbitrary
cluster in Copt. Let C be a single-cluster clustering whose center is chosen at random by one step
of Algorithm k-variates++ (i.e. for t = 1). Then

E[φ(A)] = φopt(A) + φNopt(A) . (3)

Proof The expected potential of cluster A is

E[φ(A;C = ∅)]

=
1

|A| ·
∑
a0∈A

∫
Ωa0

∑
a∈A

‖a− x‖2
2dpa0(x)

=
1

|A| ·
∑
a0∈A

∫
Ωa0

∑
a∈A

‖a− c(A) + c(A)− x‖2
2dpa0(x)

=
1

|A| ·
∑
a0∈A

(∑
a∈A ‖a− c(A)‖2

2 + |A| ·
∫

Ωa0
‖x− c(A)‖2

2dpa0(x)

+2
∑
a∈A〈a− c(A), c(A)−

∫
Ωa0
xdpa0(x)〉

)

=
1

|A| ·
∑
a0∈A

∑
a∈A ‖a− c(A)‖2

2 + |A| ·
∫

Ωa0
‖x− c(A)‖2

2dpa0(x)

+2〈
∑
a∈A

a− |A|c(A)︸ ︷︷ ︸
=0

, c(A)− a0〉

=

∑
a∈A

‖a− c(A)‖2
2 +

∑
a∈A

∫
Ωa0

‖x− c(A)‖2
2dpa(x)

= φopt(A) + φNopt(A) ,

3

as claimed.

When pa is a Dirac anchored at a, we recover Lemma 3.2 in [1]. The following Lemma generalizes
Lemma 3.3 in [1].

Lemma 2 Suppose that the optimal clustering Copt is η-probe approximable. Let A be an arbi-
trary cluster inCopt, and letC be an arbitrary clustering with centers C. Suppose that the reference
point a chosen according to (1) in Step 2.1 is in A. Then the random point x picked in Step 2.2
brings an expected potential that satisfies

E[φ(A)] ≤ (6 + 4η) · φopt(A) + 2 · φNopt(A) . (4)

Proof Let us denote c?(u)
.

= arg minx∈C ‖u−x‖2
2 (since C 6= Copt in general, c?(u) 6= copt(u)),

and D(a)
.

= ‖a − c?(a)‖2
2 the contribution of a ∈ A to the k-means potential defined by C. We

have, using Lemma 3.3 in [1] and Lemma 1,

Ex[φ(A;C ∪ {x})] =
∑
a0∈A

Dt(a0)∑
a∈ADt(a)

·
∑
a∈A

∫
Ωa0

min{D(a), ‖a− x‖2
2}dpa0(x) . (5)

The triangle inequality gives, for any a ∈ A,√
Dt(a0)

.
= ‖℘t(a0)− c?(℘t(a0))‖2

≤ ‖℘t(a0)− c?(℘t(a))‖2

≤ ‖℘t(a0)− ℘t(a)‖2 + ‖℘t(a)− c?(℘t(a))‖2 ; (6)

since (a+ b)2 ≤ 2a2 + 2b2, then Dt(a0) ≤ 2‖℘t(a0)− ℘t(a)‖2
2 + 2Dt(a), and so, after averaging

over A,

Dt(a0) ≤ 2

|A|
∑
a∈A

‖℘t(a0)− ℘t(a)‖2
2 +

2

|A|
∑
a∈A

Dt(a) , (7)

and eq. (5) can be upperbounded as:

Ex[φ(A;C ∪ {x})] ≤ 2

|A|
∑
a0∈A

∑
a∈A ‖℘t(a0)− ℘t(a)‖2

2∑
a∈ADt(a)

·
∑
a∈A

∫
Ωa0

min{D(a), ‖a− x‖2
2}dpa0(x)

+
2

|A|
∑
a0∈A

∑
a∈ADt(a)∑
a∈ADt(a)

·
∑
a∈A

∫
Ωa0

min{D(a), ‖a− x‖2
2}dpa0(x)

≤ 2

|A|
∑
a0∈A

∑
a∈AD(a)∑
a∈ADt(a)

·
∑
a∈A

‖℘t(a0)− ℘t(a)‖2
2︸ ︷︷ ︸

.
=P1

+
2

|A|
∑
a0∈A

∑
a∈A

∫
Ωa0

‖a− x‖2
2dpa0(x)︸ ︷︷ ︸

.
=P2

. (8)

4

We bound the two potentials P1 and P2 separately, starting with P1. Fix any a0 ∈ A. If
∑
a∈A ‖℘t(a)−

℘t(a0)‖2
2 = 0, then trivially(∑

a∈A

D(a)

)
·
(∑
a∈A

‖℘t(a0)− ℘t(a)‖2
2

)
≤ (1 + η) ·

(∑
a∈A

Dt(a)

)
·
(∑
a∈A

‖a0 − a‖2
2

)
,(9)

since the right-hand side cannot be negative. If
∑
a∈A ‖℘t(a) − ℘t(a0)‖2

2 6= 0, then since ℘t is
η-stretching, we have:∑

a∈A ‖a− c?(a)‖2
2∑

a∈A ‖a− a0‖2
2

≤ (1 + η) ·
∑
a∈A ‖℘t(a)− c?(℘t(a))‖2

2∑
a∈A ‖℘t(a)− ℘t(a0)‖2

2

, (10)

which is exactly ineq. (9) after rearranging the terms. Ineq (9) implies

P1 ≤ 2(1 + η) · 1

|A|
∑
a0∈A

∑
a∈A

‖a0 − a‖2
2

= 4(1 + η) · φopt(A) , (11)

where the equality follows from [1], Lemma 3.2. Also, Lemma 1 brings

P2 = 2 · 1

|A|
∑
a0∈A

∫
Ωa0

∑
a∈A

‖a− x‖2
2dpa0(x)

= 2φopt(A) + 2φNopt(A) . (12)

We therefore get

Ex[φ(A;C ∪ {x})] ≤ (6 + 4η) · φopt(A) + 2 · φNopt(A) , (13)

as claimed.

Again, we recover Lemma 3.3 in [1] when pa is a Dirac and the probe function ℘ = Id. The rest
of the proof of Theorem 2 consists of the same steps as Theorem 3.1 in [1], after having remarked
that φNopt(A) can be simplified:

φNopt(A) =
∑
a∈A

∫
Ωa0

‖x− c(A)‖2
2dpa(x)

=
∑
a∈A

∫
Ωa0

‖x‖2
2dpa(x)− 2〈c(A),µa〉+ ‖c(A)‖2

2

=
∑
a∈A

∫
Ωa0

‖x− µa‖2
2dpa(x) + ‖µa‖2

2 − 2〈c(A),a〉+ ‖c(A)‖2
2

=
∑
a∈A

{
tr (Σa) + ‖µa − c(A)‖2

2

}
= φbias(A) + φvar(A) . (14)

5

2.2 Proof of Lemma 3
The proof is a simple application of the Fréchet-Cramér-Rao-Darmois bound. Consider the simple
case k = 1 and a spherical Gaussian noise for p with a single point in A. Renormalize both sides
of (7) by m .

= |A| so that (1/m)
∑

a∈A tr (Σa) = tr (Σ). One sees that the left hand side of ineq.
(7) is just an estimator of the variance of pa, which, by Fréchet-Darmois-Cramér-Rao bound, has
to be at least the inverse of the Fisher information, that is in this case, the trace of the covariance
matrix, i.e. tr (Σ).

2.3 Extension and comments on Table 1
Before embarking on the proofs, Table 1 below provides a more extensive comparison to the state
of the art in distributed, streamed and on-line clustering than Table 1 in the main file. Notation
O∗ removes all dependencies in their model parameters (assumptions, model parameters, and δ
for the (ε, δ)-DP in [2]), and λ is the separability assumption parameter [3]1. The approximation
bounds in [3] consider Wasserstein distance between (estimated / optimal) centers, and not the
potential involving data points like us. To obtain bounds that can be compared, we have used the
simple trick that the observed potential is, up to a constant, no more than the optimal potential
plus a fonction of the distance between (estimated / optimal) centers. This somewhat degrades the
bound, but not enough for the observed discrepancies with our bound to reverse or even vanish. It
is clear from the bounds that the noise dependence is significantly in our favor, and our bound is
also significantly better at least when k is not too large. To be a bit more specific, [2] are concerned
with approximating subspace clustering, and so they are using a very different potential function,
which is, between two subspaces S and S′, d(S, S′) = ‖UU> − U′U′>‖F , where U (resp. U′) is
an orthonormal basis for S (resp. S′). To obtain an idea of the approximation on the k-means
clustering problem that their technique yields, we compute φ in the projected space, using the fact
that, because of the triangle inequality and the fact that projections are linear and do not increase
norms,

‖projU(a)− projU′(a
′)‖2 = ‖(projU(a)− projU(a′)) + (projU(a′)− projU′(a

′))‖2 (15)
≤ ‖projU(a)− projU(a′)‖2 + ‖projU(a′)− projU′(a

′))‖2(16)
≤ ‖projU(a)− projU(a′)‖2 + 2‖a′‖2 . (17)

To account for the approximation in the inequalities, we then discard the rightmost term, replacing
therefore ‖projU(a)− projU′(a

′)‖2 by ‖projU(a)− projU(a′)‖2, which amounts, in the approx-
imation bounds, to remove the dependence in the dimension. At this price, and using the trick to
transfer the wasserstein distance between centers to L2

2 potential between points to cluster centers,
we obtain the approximation bound in (β) of Table 1. While it has to be used with care, its main
interest is in showing that the price to pay because of the noise component is in fact not decreasing
in m.

1λ is named φ in [3]. We use λ to avoid confusion with clustering potentials.

6

Ref. Property Them Us
(1) [4] Communication complexity O(n2` · log φ1) (expected) O(n2k)
(2) [4] # data to compute one center m ≤ maxi∈[n](m/mi)
(3) [4] Data points shared O(` · log φ1) (expected) k
(4) [4] Approximation bound O((log k) · φopt) (2 + log k) ·

(
10φopt + 6φFs

)
(I) [5] Communication complexity Ω((nkd/ε4) + n2k ln(nk)) O(n2k)
(II) [5] Data points shared Ω((kd/ε4) + nk ln(nk)) k
(III) [5] Approximation bound (2 + log k)(1 + ε) · 8φopt (2 + log k) ·

(
10φopt + 6φFs

)
(i) [6] Time complexity (outer loop) — identical —
(ii) [6] Approximation bound (2 + log k)(1 + η) · 32φopt (2 + log k) · ((8 + 4η)φopt + 2φ℘s)
(a) [7] Knowledge required Lowerbound φ∗ ≤ φopt None
(b) [7] Approximation bound O(logm · φopt) (2 + log k) ·

(
4 + (32/ς2)

)
φopt

(A) [3] Knowledge required λ(φopt) None
(B) [3] Noise variance (σ) O(λkR/ε) O(R/(ε+ logm))
(C) [3] Approximation bound O∗(φopt +mλ2kR2/ε2) O(log k(φopt +mR2/(ε+ logm)2))
(α) [2] Assumptions on φopt Several (separability, size of clusters, etc.) None
(β) [2] Approximation bound O∗(φopt + km log(m)R2/ε2) O(log k(φopt +mR2/(ε+ logm)2))

Table 1: Comparison with state of the art approaches for distributed clustering (1-4, I-III), streamed
clustering (i, ii), on-line clustering (a, b) and differential privacy (A-C, α, β). Notations used for
the ”Them” column are as follows. φ1 is the expected potential of a clustering with a single cluster
over the whole data and ` is in general Ω(k) [4]. ε is the coreset approximation factor in [5]. η is
the approximation factor of the optimum in [6]. λ is the separability factor in Definition 5.1 in [3].

2.4 Proofs of Theorems 4, 5 and 6
The proof of these Theorems uses a reduction from k-variates++ to the corresponding algorithms,
meaning that there exists particular probe functions and densities for which the set of centers
delivered by k-variates++ is the same as the one delivered by the corresponding algorithms.

Definition 3 Let H (parameters omitted) be any hard membership k-clustering algorithm. We way
that k-variates++ reduces to H iff there exists data, densities and probe functions depending on
the instance of H such that, in expectation over the internal randomisation of H, the set of centers
delivered by H are the same as the ones delivered by k-variates++. We note it

k-variates++ � H . (18)

Hence, whenever k-variates++ � H, Theorem 2 in the main file immediately gives a guarantee for
the approximation of the global optimum in expectation for H, but this requires the translation of
the parameters involved in Φ in ineq. (7) in the main file to involve only parameters from H. In all
our examples, this translation poses no problem at all.

Proof of Theorem 4

To have a concrete idea of one setting in which we can run and analyze Dk-means++/PDk-means++,
we consider a privacy setting for the analysis. As already sketched in the main paper, Figure 1
presents the architecture of message passing in the Dk-means++/PDk-means++ framework. We
first focus on the protected scheme, Dk-means++. We reduce k-variates++ to Algorithm 1 using
identity probe functions: ℘t = Id,∀t. The trick in reduction relies on the densities. We let pµa,θa

be uniform over the subset Ai to which a belongs. Thus, the support of densities is discrete,

7

(F1, A1)

(F2, A2) (F3, A3)

(F4, A4) (F5, A5)

N⇤

Figure 1: Message passing between peers / nodes in the Dk-means++/PDk-means++ framework.
Black edges and red arcs denote message passing between peers / nodes. On each black edge
circulates at most k data points; on each red arcs circulates k total potentials.

and C is a subset of A; furthermore, the probability qt(a) that a ∈ Ai is chosen at iteration t in
k-variates++ actually simplifies to a convenient expression:

qt(a) = qDti · ui , (19)

where we recall that

qDti
.

=

{
Dt(Ai) · (

∑
j Dt(Aj))

−1 if t > 1

(1/n) otherwise
. (20)

Hence, picking a can be equivalently done by first picking Ai using qDt , and then, given the i
chosen, sampling uniformly at random a in Ai, which is what Forgy nodes do. We therefore get
the equivalence between Algorithm 1 and k-variates++ as instantiated.

Lemma 4 With data, densities and probes defined as before, k-variates++ � Dk-means++.

8

To get the approximability ratio of Dk-means++, we translate the parameters of Φ in ineq. (7) in
the main file. First, since (a+ b)2 ≤ 2a2 + 2b2,

φbias
.

=
∑
a∈A

‖µa − copt(a)‖2
2

=
∑
i∈[n]

∑
a∈Ai

‖c(Ai)− copt(a)‖2
2 (21)

=
∑
i∈[n]

∑
a∈Ai

‖c(Ai)− a+ a− copt(a)‖2
2

≤ 2
∑
i∈[n]

∑
a∈Ai

‖c(Ai)− a‖2
2 + 2

∑
a∈A

‖a− copt(a)‖2
2

= 2φFs + 2φopt . (22)

Furthermore,

φvar
.

=
∑
a∈A

tr (Σa)

=
∑
a∈A

∫
Ωa

‖x− µa‖2
2dpa(x)

=
∑
i∈[n]

∑
a∈Ai

∑
a′∈Ai

1

mi

· ‖a′ − c(Ai)‖2
2

=
∑
i∈[n]

∑
a∈Ai

‖a− c(Ai)‖2
2 = φFs . (23)

There remains to plug ineq. (22) and eq. (23) in Theorem 2, along with η = 0 (since ℘ = Id), to
get E[φ(A;C)] ≤ (2 + log k) · (10φopt + 6φs), as in Theorem 4.

The private version, PDk-means++, follows immediately by leaving φvar in Φ instead of carry-
ing eq. (23). This ends the proof of Theorem 4.

Proof of Theorem 5

The proof proceeds in the same way as for Theorem 4. The probe function (the same for every
iteration, ℘t = ℘,∀t) is already defined in the statement of Theorem 5, from the definition of
synopses. The distributions pµa,θa are Diracs anchored at the probe (synopses) locations. The
centers chosen in k-variates++ are thus synopses, and it is not hard to check that the probability to
pick a synopsis sj at iteration t factors in the same way as in the definition of qSt in eq. (9) (main
file). We therefore get the equivalence between Algorithm 2 and k-variates++ as instantiated.

Lemma 5 With data, densities and probes defined as before, k-variates++ � Sk-means++.

9

℘ =

s2

s3s1

Figure 2: Computation of the probe function ℘ for the reduction from k-variates++ to Sk-means++.
Segments display parts of the Voronoi diagram of S.

The proof of the approximation property of Sk-means++ then follows from the fact that φvar = 0
(Diracs) and

φbias
.

=
∑
a∈A

‖µa − copt(a)‖2
2

=
∑
a∈A

‖℘(a)− copt(a)‖2
2

=
∑
a∈A

‖℘(a)− a+ a− copt(a)‖2
2

≤ 2
∑
a∈A

‖℘(a)− a‖2
2 + 2

∑
a∈A

‖a− copt(a)‖2
2

= 2
∑
a∈S

‖℘(a)− a‖2
2 + 2

∑
a∈S

‖a− copt(a)‖2
2 = 2φ℘s + 2φopt (24)

(using again (a+ b)2 ≤ 2a2 + 2b2). Using Theorem 2, this brings the statement of the Theorem.
Figure 2 shows that the ”quality” of the probe function (spread φ℘s , stretching factor η) stem

from the quality of the Voronoi diagram induced by the synopses in S.

Proof of Theorem 6

The proof proceeds in the same way as for Theorem 4. The the reduction from k-variates++ to
OLk-means++ relies on two things: first, the uniform choice of the first center in k-means++ can be
replaced by picking the center uniformly in any subset of the data: it does not change the expected
approximation properties of the algorithm (this comes from Lemma 3.4 in [1]); therefore, the
choice q1

.
= um in k-variates++ can be replaced with q1

.
= u1 (uniform with support A1). Second,

10

Setting Algorithm Probe functions ℘t Densities p(µ.,θ.)

Batch k-means++ [1] Identity Diracs
Distributed Dk-means++ Identity Uniform on data subsets
Distributed PDk-means++ Identity Non uniform, compact support
Streaming Sk-means++ synopses Diracs

On-line OLk-means++ point (batch not hit) Diracs
/ closest center (batch hit)

Table 2: Synthesis of the parameters for the reductions from k-variates++. We indicate k-means++
as the batch clustering solution [1].

a particular probe function needs to be devised, sketched in Figure 3. Basically, all probe functions
of a minibatch are the same: each point in the minibatch is probed to itself, while points occurring
outside the minibatch are probed to their closest center. The reduction proceeds in the following
steps: we first let A be the complete set of points in the stream S. Then, we let Aj denote the set of
points of minibatch Sj . Remark that minibatch Aj occurs in the stream before Aj′ for j < j′, and
minibatches induce a partition of A. Let j(t) denote the batch related to iteration t in k-variates++.
We define the following probe function ℘t(a) in k-variates++, letting Aj the minibatch to which a
belongs (we do not necessarily have j = j(t)):

• if j = j(t), then ℘t(a)
.

= a;

• else ℘t(a)
.

= arg minc∈C ‖a− c‖2
2 (remark that |C| ≥ 1 in this case).

Finally, densities p(µ.,θ.) are Diracs anchored at selected points, like in k-means++. We get the
equivalence between Algorithm 3 and k-variates++ as instantiated.

Lemma 6 With data, densities and probes defined as before, k-variates++ � OLk-means++.

The proof is immediate, since each minibatch is hit by a center exactly once in OLk-means++, and
when one subset Aj is hit by a center, then the probe function makes that no other center can be
sampled again from Aj (all contributions to the density qt are then zero in Aj). We now finish
the proof of Theorem 6 by showing the same approximability ratio for k-variates++ as reduced.
Because optimal clusters are ς-wide with respect to stream S, we have

1

|A| ·
∑
a,a′∈A

‖a− a′‖2
2 ≥ ς ·R .

11

closest center point closest center

Minibatch Sj

aj,t

probe function ℘j

Figure 3: Computation of the probe function ℘t for the reduction from OLk-means++ to k-
variates++, depending on each minibatch stream Sj .

Recall that c(A)
.

= (1/|A|) ·∑a∈A a. For any a0 ∈ A, it holds that:

1

|A| − 1
·
∑
a∈A

‖a− a0‖2
2 ≥

1

|A| − 1
·
∑
a∈A

‖a− c(A)‖2
2 (25)

=
1

|A| − 1
·
(

1

2|A| ·
∑
a,a′∈A

‖a− a′‖2
2

)
(26)

=
1

4
· 2

|A|(|A| − 1)
·
∑
a,a′∈A

‖a− a′‖2
2

≥ ς

4
·R . (27)

Ineq. (25) holds because c(A) is the population minimizer for optimal cluster A (see e.g., [1],
Lemma 2.1). Since probes are points of A,

φ(℘j(A); {℘j(a0)}) ≤ |A| ·R

≤ 4|A|
ς(|A| − 1)

·
∑
a∈A

‖a− a0‖2
2 . (28)

On the other hand, we have:

φ(℘t(A);C) =
∑

a∈A∩Sj

‖a− c(a)‖2
2 , (29)

but since minibatches are ς accurate,
∑
a∈A∩Sj ‖a− c(a)‖2

2 ≥ ς ·∑a∈A ‖a− c(a)‖2
2. Therefore,

for any a0 ∈ A,

φ(℘t(A);C)

φ(℘t(A); {℘t(a0)}) ≥
(
ς2(|A| − 1)

4|A|

)
·
∑
a∈A ‖a− c(a)‖2

2∑
a∈A ‖a− a0‖2

2

=

(
ς2(|A| − 1)

4|A|

)
· φ(A;C)

φ(A; {a0})
. (30)

In other words, probe functions are η-stretching, for any η satisfying:

η ≥ 4|A|
ς2(|A| − 1)

− 1 , (31)

12

and they are therefore η-stretching for η = 8/ς2 − 1. There remains to check that, because of the
densities chosen,

φbias = φopt , (32)
φvar = 0 . (33)

This ends the proof of Theorem 6.

2.5 Proof of Theorem 9
To simplify notations in the proof, we let pa(x) denote the value of density p(µa,θa) on some x ∈ Ω.
Let us denote Seq(n : k) the number of sequences of integers in set {1, 2, ..., n} having exactly k
elements, whose cardinal is |Seq(n : k)| = n!/(n− k)!. For any sequence I ∈ Seq(n : k), we let
Ii denote its ith element. For any set C .

= {c1, c2, ..., ck} returned by Algorithm k-variates++with
input instance set A .

= {a1,a2, ...,an} ⊂ Ω, the density of C given A is:

P[C|A] =
∑
σ∈Sk

∑
I∈Seq(n:k)

p(σ, I,C|A) , (34)

where Sk denotes the symmetric group on k elements, and the following shorthand is used:

p(σ, I,C|A)
.

=
k∏
i=1

qi(aIi)paIi
(cσ(i)) , (35)

where qi is computed using eq. (1) (main file) and taking into account the modification due to the
choice of each Ij for j < i in the sequence I .

In the following, we let A and A′ denote two sets of points that differ from one a (they have
the same size), say an ∈ A and a′n ∈ A′, an 6= a′n. We analyze:

P[C|A′]
P[C|A]

=

∑
σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A′)∑

σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)

. (36)

Using the definition of q(.), we refine p(σ, I,C|A) as

p(σ, I,C|A) =
N(I)∏k

i=1 M(I i|A)
·

k∏
i=1

paIi
(cσ(i)) , (37)

where

N(I)
.

=

j∏
i=2

‖aIi − NNIi(aIi)‖2
2 , (38)

M(I i|A)
.

=

{
n if i = 1∑n

j=1 ‖aj − NNIi(aj)‖2
2 otherwise , (39)

and I i is the prefix sequence I1, I2, ..., Ii−1, and NNIi(a)
.

= arg minj≤i−1 ‖a− aIj‖2 is the nearest
neighbor of a in the prefix sequence. Notice that there is a factor 1/m for q(.) at the first iteration
that we omit in N(I) since it disappears in the ratio in eq. (36).

13

We analyze separately each element in (37), starting with N(I). We define the swapping
operation s`(I) that returns the sequence in which aI` and aI`+1

are permuted, for 1 ≤ ` ≤ k − 1.
This incurs non-trivial modifications in N(s`(I)) compared to N(I), since the nearest neighbors
of aI` and aI`+1

may change in the permutation:

N(s`(I)) =
`−1∏
i=2

‖aIi − NNIi(aIi)‖2
2

· ‖aI`+1
− NNI`(aI`+1

)‖2
2 · ‖aI` − NNI`∪{I`+1}(aI`)‖2

2︸ ︷︷ ︸
6=‖aI`

−NN
I`

(aI`
)‖22·‖aI`+1

−NN
I`+1 (aI`+1

)‖22

·
k∏

i=`+2

‖aIi − NNIi(aIi)‖2
2 (40)

(I ∪ {j} indicates that element j is put at the end of the sequence). We want to quantify the
maximal increase in N(s`(I)) compared to N(I). The following Lemma shows that the maximal
increase ratio is actually a constant, and thus does not depend on the data.

Lemma 7 The following holds true:

N(s1(I)) = N(I) , (41)
N(s`(I)) ≤ (1 + η)2N(I) ,∀2 ≤ ` ≤ k − 1 . (42)

Here, 0 ≤ η ≤ 3 is a constant.

The proof stems directly from the following Lemma.

Lemma 8 For any non-empty N ⊆ A and x ∈ Ω, let NNN(x) denote the nearest neighbor of x
in N. There exists a constant 0 ≤ η ≤ 3 such that for any ai,aj ∈ A and any nonempty subset
N ⊆ A\{ai,aj},

‖ai − NNN(ai)‖2

‖ai − NNN∪{aj}(ai)‖2

≤ (1 + η) · ‖aj − NNN(aj)‖2

‖aj − NNN∪{ai}(aj)‖2

. (43)

Proof Since ‖aj − NNN∪{ai}(aj)‖2 ≤ ‖aj − NNN(aj)‖2, the proof is true for η = 0 when
NNN(ai) = NNN∪{aj}(ai). So suppose that NNN(ai) 6= NNN∪{aj}(ai), implying NNN∪{aj}(ai) =
aj . We distinguish two cases.
Case 1/2, if NNN∪{ai}(aj) = ai, then we are reduced to showing that ‖ai − NNN(ai)‖2 ≤ (1 +
η)‖aj−NNN(aj)‖2 under the conditions (C) that N∩B(ai, ‖ai−aj‖2) = ∅ and N∩B(aj, ‖ai−
aj‖2) = ∅. Here, B(a, r) denotes the open ball of center a and radius R. The triangle inequality
and conditions (C) bring

‖ai − NNN(ai)‖2 ≤ ‖ai − aj‖2 + ‖aj − NNN(ai)‖2

≤ ‖aj − NNN(aj)‖2 + ‖aj − NNN(ai)‖2 . (44)

If NNN(ai) = NNN(aj) then the inequality holds for η = 1. Otherwise, suppose that ‖aj −
NNN(ai)‖2 > 3‖aj − NNN(aj)‖2. The triangle inequality yields again ‖aj − NNN(ai)‖2 ≤ ‖aj −
ai‖2 + ‖ai − NNN(ai)‖2, and so we have the inequality:

3‖aj − NNN(aj)‖2 < ‖aj − ai‖2 + ‖ai − NNN(ai)‖2 , (45)

14

and since (C) holds, ‖aj − NNN(aj)‖2 ≥ ‖aj − ai‖2 which implies

‖aj − NNN(aj)‖2 <
1

2
· ‖ai − NNN(ai)‖2 . (46)

On the other hand, the triangle inequality brings again

‖ai − NNN(aj)‖2 ≤ ‖ai − aj‖2 + ‖aj − NNN(aj)‖2

≤ 2 · ‖aj − NNN(aj)‖2 (47)

< 2 · 1

2
· ‖ai − NNN(ai)‖2 = ‖ai − NNN(ai)‖2 , (48)

a contradiction since ‖ai − NNN(ai)‖2 ≤ ‖ai − al‖2, ∀al ∈ N by definition. Ineq. (47) uses (C)
and ineq. (48) uses ineq. (46). Hence, if NNN(ai) 6= NNN(aj) then since ‖aj − NNN(ai)‖2 ≤
3‖aj − NNN(aj)‖2, ineq. (44) brings ‖ai− NNN(ai)‖2 ≤ 4 · ‖aj − NNN(aj)‖2, and the inequality
holds for η = 3.
Case 2/2, if NNN∪{ai}(aj) 6= ai, then it implies NNN∪{ai}(aj) = NNN(aj) and so

∃a∗ ∈ N : ‖aj − a∗‖2 ≤ ‖aj − ai‖2 . (49)

Ineq. (43) reduces to proving

‖ai − NNN(ai)‖2 ≤ (1 + η) · ‖ai − aj‖2 , (50)

but ‖ai−a∗‖2 ≤ ‖ai−aj‖2 +‖aj−a∗‖2 ≤ 2‖ai−aj‖2, and since a∗ ∈ N, ‖ai−NNN(ai)‖2 ≤
‖ai − a∗‖2 ≤ 2‖ai − aj‖2, and (50) is proved for η = 1. This achieves the proof of Lemma 8.

Let I be any sequence not containing the index of a′n, and let I(i) denote the sequence in which
we replace aIi by the index of a′n. The sequence of swaps

I(k) = (sk−1 ◦ ... ◦ si+1 ◦ si)(I(i)) (51)

produces a sequence I(k) in which all elements different from a′n are in the same relative order as
they are in I with respect to each other, and a′n is pushed to the end of the sequence in kth rank.
We also have

N(I(i)) ≤ (1 + η)2(k−i)N(I(k)) . (52)

All the properties we need on N(.) are now established. We turn to the analysis of M(I i|A).

Lemma 9 For any δs > 0 such that A is δs-monotonic, the following holds. For any N ⊆ A with
|N| ∈ {1, 2, ..., k − 1}, ∀x,x′ ∈ Ω, we have:∑

a∈A

‖a− NNN∪{x}(a)‖2
2 ≤ (1 + δs) ·

∑
a∈A

‖a− NNN∪{x′}(a)‖2
2 . (53)

Proof Since adding a point to N cannot increase the potential
∑
a∈A ‖a−NNN∪{x}(a)‖2

2, it comes∑
a∈A

‖a− NNN∪{x}(a)‖2
2 ≤

∑
a∈A

‖a− NNN(a)‖2
2 ,∀x ∈ Ω . (54)

15

Consider any x′ ∈ Ω such that
∑
a∈A ‖a−NNN∪{x′}(a)‖2

2 =
∑
a∈A ‖a−NNN(a)‖2

2, i.e., all points
of A are closer to a point in N than they are from x′. In this case, we obtain from ineq. (54),∑

a∈A

‖a− NNN∪{x}(a)‖2
2 ≤

∑
a∈A

‖a− NNN∪{x′}(a)‖2
2 , (55)

and since δs > 0, the statement of the Lemma holds.
More interesting is the case wherex′ ∈ Ω is such that

∑
a∈A ‖a−NNN∪{x′}(a)‖2

2 <
∑
a∈A ‖a−

NNN(a)‖2
2, implying x′ 6∈ N. In this case, let A .

= {a ∈ A : NNN∪{x′}(a) = x′}, which is then
non-empty. Let us denote for short c(A)

.
= (1/|A|) ·∑a∈A a. Since x′ 6∈ N, A∩N = ∅, and since

A is δs-monotonic, then it comes from ineq. (54)∑
a∈A

‖a− NNN∪{x}(a)‖2
2 ≤ (1 + δs) ·

∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 . (56)

We have:∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 =

∑
a∈A\A

‖a− NNN∪{c(A)}(a)‖2
2 +

∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2

≤
∑
a∈A\A

‖a− NNN∪{c(A)}(a)‖2
2 +

∑
a∈A

‖a− c(A)‖2
2

≤
∑
a∈A\A

‖a− NNN∪{c(A)}(a)‖2
2 +

∑
a∈A

‖a− x′‖2
2 . (57)

Eq. (57) holds because the arithmetic average is the population minimizer of L2
2. Because of the

definition of A, ∑
a∈A\A

‖a− NNN∪{c(A)}(a)‖2
2 ≤

∑
a∈A\A

‖a− NNN(a)‖2
2

=
∑
a∈A\A

‖a− NNN∪{x′}(a)‖2
2 , (58)

and, still because of the definition of A,∑
a∈A

‖a− x′‖2
2 =

∑
a∈A

‖a− NNN∪{x′}(a)‖2
2 , (59)

so we get from (58) and (59)
∑
a∈A\A ‖a − NNN∪{c(A)}(a)‖2

2 +
∑
a∈A ‖a − x′‖2

2 ≤
∑
a∈A ‖a −

NNN∪{x′}(a)‖2
2, and finally from ineq. (57),∑

a∈A

‖a− NNN∪{c(A)}(a)‖2
2 ≤

∑
a∈A

‖a− NNN∪{x′}(a)‖2
2 , (60)

which, using ineq. (56), completes the proof of Lemma 9.

16

Lemma 10 The following holds true, for any i > 1, any A′ ≈ A, any δw, δs > 0:

A is δw-spread ⇒ (n 6∈ I i ⇒M(I i|A) ≤ (1 + δw) ·M(I i|A′)) , (61)
A is δs-monotonic ⇒ (n ∈ I i ⇒M(I i|A) ≤ (1 + δs) ·M(I i|A′)) . (62)

Proof Suppose first that n 6∈ I i. In this case, since A is δw-spread,

M(I i|A) =
n∑
j=1

‖aj − NNIi(aj)‖2
2

=
n−1∑
j=1

‖aj − NNIi(aj)‖2
2 + ‖an − NNIi(aj)‖2

2

≤
n−1∑
j=1

‖aj − NNIi(aj)‖2
2 +R2

≤ (1 + δw) ·
n−1∑
j=1

‖aj − NNIi(aj)‖2
2 (63)

≤ (1 + δw) ·
(
n−1∑
j=1

‖aj − NNIi(aj)‖2
2 + ‖a′n − NNIi(a

′
n)‖2

2

)
= (1 + δw) ·M(I i|A′) , (64)

as indeed computing the nearest neighbors do not involve the nth element of the sets, i.e. an or a′n.
We have used in ineq. (63) the fact that A is δw-spread.

When n ∈ I i, eq. (62) is an immediate consequence of Lemma 9 in which the distinct elements
of A and A′ play the role of x and x′.

Lemma 11 For any δw > 0, if A is δw-spread, then for any N ⊆ A with |N| = k − 1, ∀x ∈ Ω, it
holds that ‖x− NNN(x)‖2

2 ≤ δw
∑
a∈A ‖a− NNN(a)‖2

2.

Proof Follows directly from the fact that ‖x− NNN(x)‖2
2 ≤ R2 by assumption.

Letting I(k) denote a sequence containing element n pushed to the end of the sequence, we get:∑
σ∈Sk

∑
I∈Seq+(n:k)

p(σ, I,C|A′)

=
∑
σ∈Sk

∑
I∈Seq+(n:k)

N(I)∏k
i=1M(I i|A′)

· pa′n(cσ(i)) ·
k∏

i=1:Ii 6=n

paIi
(cσ(i))

≤ (1 + η)2(k−2)

·
∑
σ∈Sk

∑
I∈Seq+(n:k)

N(I(k))∏k
i=1M(I i|A′)

· pa′n(cσ(i)) ·
k∏

i=1:Ii 6=n

paIi
(cσ(i)) . (65)

17

Now, take any element I ∈ Seq+(n : k) with a′n in position k, and change a′n by some a ∈ A.
Any of these changes generates a different element I ′ ∈ Seq−(n : k), and so using Lemma 11 and
the following two facts:

• the fact that

pa′n(cσ(i)) ≤ %(R) · pa(cσ(i)) , (66)

for any a ∈ A,

• the fact that, if A is δs-monotonic,

M(I ia|A) ≤ (1 + δs) ·M(I i|A) , (67)

for any a ∈ A not already in the sequence, where Ia denotes the sequence I in which a′n has
been replaced by a,

we get from ineq. (65),∑
σ∈Sk

∑
I∈Seq+(n:k)

p(σ, I,C|A′)

≤ (1 + η)2(k−2) · (1 + δs)
k−1 · δw

·%(R) ·
∑
σ∈Sk

∑
I∈Seq−(n:k)

N(I)∏k
i=1 M(I i|A)

·
k∏
i=1

paIi
(cσ(i)) . (68)

Lemma 12 For any δw, δs > 0 such that A is δw-spread and δs-monotonic, for any A′ ≈ A, we
have:

P[C|A′]
P[C|A]

≤ (1 + δw)k−1 ·
(

1 + δw ·
(

1 + δs
1 + δw

)k−1

· (1 + η)2(k−2) · %(R)

)
. (69)

Proof We get from the fact that A is δw-spread,∑
σ∈Sk

∑
I∈Seq−(n:k)

p(σ, I,C|A′) ≤ (1 + δw)k−1 ·
∑
σ∈Sk

∑
I∈Seq−(n:k)

p(σ, I,C|A) , (70)

18

and furthermore ineq. (68) yields:

P[C|A′]
P[C|A]

=

∑
σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A′)∑

σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)

≤

 (1 + δw)k−1 ·∑σ∈Sk

∑
I∈Seq−(n:k) p(σ, I,C|A)

+∑
σ∈Sk

∑
I∈Seq+(n:k) p(σ, I,C|A′)

∑
σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)

≤ (1 + δw)k−1

·

∑
σ∈Sk

∑
I∈Seq−(n:k) p(σ, I,C|A)

+

δw ·
(

1+δs
1+δw

)k−1

· (1 + η)2(k−2) · %(R) ·∑σ∈Sk

∑
I∈Seq−(n:k) p(σ, I,C|A′)

∑
σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)

= (1 + δw)k−1 ·
(

1 + δw ·
(

1 + δs
1 + δw

)k−1

· (1 + η)2(k−2) · %(R)

)

·
∑
σ∈Sk

∑
I∈Seq−(n:k) p(σ, I,C|A)∑

σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)︸ ︷︷ ︸

≤1

.

This ends the proof of Lemma 12.

Since

(1 + δw)k−1 ·
(

1 + δw ·
(

1 + δs
1 + δw

)k−1

· (1 + η)2(k−2) · %(R)

)
= (1 + δw)k−1 + (1 + η)2(k−2) · δw · (1 + δs)

k−1 · %(R) ,

and η ≤ 3 from Lemma 7, we get Theorem 9 with

f(k)
.

= 42k−4 . (71)

2.6 Proof of Theorem 10
Assume that density D contains a L2 ball B2(0, R) of radiusR, centered without loss of generality
in 0. Fix 0 < κ < m − 1. For any α ∈ (0, 1) and N ⊆ A with |N| ∈ {1, 2, ...,κ} .

= [κ]∗, let
N ⊕ α .

= ∪x∈NB2(x,α · R) be the union of all small balls centered around each element of N,
each of radius α ·R. An important quantity is

q∗
.

= min
N⊆A,|N|∈[κ]∗

µ(B2(0, R)\N ⊕ α)

µ(B2(0, R))
(72)

the minimal mass of B2(0, R)\N ⊕ α relatively to B2(0, R) as measured using D. As depicted
in Figure 4, q∗ is a minimal value of the probability to escape the neighborhoods of N ⊕ α when

19

α · R

B2(0, R)\N ⊕ α

B2(0, R)

Figure 4: q∗ in eq. (72) measures the probability the a point drawn in B2(0, R) escapes the
neighborhoods of N ⊕ α. In this example, two points in black escape the neighborhoods (defined
by three points in red), while two in green do not.

sampling points according to D in ball B2(0, R). If, for some α that shall depend upon the
dimension d and κ, q∗ is large enough, then the spread of points drawn shall guarantee ”small”
values for δw and δs.

This is formalized in the following Theorem, which assumes εm = εM = 1, i.e. the ball has
uniform density. Theorem 10 is a direct consequence of this Theorem.

Theorem 13 Suppose A ⊂ B2(0, R). For any δ ∈ (0, 1), if

m ≥ 3

(
κ

q∗δ2

)2

, (73)

then there is probability ≥ 1 − δ over its sampling that A is δw-spread and δs-monotonic for the
following values of δw, δs:

δw =
1

q∗(1− δ)(m− κ− 1)α2
, (74)

δs =
m

m− κ ·
(

2

min
{

1
4
, q∗(1− δ)

}
· α

)2

− 1 . (75)

Proof We first prove the following Lemma.

20

Lemma 14 Suppose A ⊂ B2(0, R). Let q∗ be defined as in eq. (72). Then for any δ ∈ (0, 1), if
m meets ineq. (73), then there is probability ≥ 1− δ that

|(B2(0, R)\N ⊕ α) ∩ (A\N)| ≥ q∗(1− δ)(m− κ) ,∀N ⊆ A, |N| ∈ [κ]∗ . (76)

Proof Since we assume A ⊂ B2(0, R), Chernoff bounds imply that for any fixed N ⊆ A with
|N| ∈ [κ]∗,

PD

[|(B2(0, R)\N ⊕ α) ∩ (A\N)|
|A\N| ≤ q∗(1− δ)

]
≤ exp

(
−δ2q∗ |A\N| /2

)
. (77)

Now, remark that
κ∑
j=1

(
m

j

)
≤ mκ ,∀m,κ ≥ 1 . (78)

This can be proven by induction, m being fixed: it trivially holds for κ = 1 and κ = 2, and
furthermore

κ∑
j=1

(
m

j

)
=

κ−1∑
j=1

(
m

j

)
+

(
m

κ

)
≤ mκ−1 +

m!

(m− κ)!κ!
, (79)

by induction at rank κ − 1. To prove that the right-hand side of (79) is no more than mκ, we just
have to remark that

m!

(m− κ)!κ!mκ−1
<

m

κ!

≤ m− 1 , (80)

as long as κ > 1 and m > 1. So, the property at rank κ − 1 for κ > 1 implies property at rank κ,
which concludes the induction.

So, we have at most mκ choices for N, so relaxing the choice of N, we get

PD

[
∃N ⊆ A, |N| = κ :

|(B2(0, R)\N ⊕ α) ∩AN|
|AN|

≤ q∗(1− δ)
]

≤ mκ exp

(
−δ

2q∗(m− κ)

2

)
. (81)

We want to compute the minimal m such that the right-hand side is no more than δ, this being
equivalent to

δ2q∗m ≥ 2 log

(
mκ

δ

)
+ κδ2q∗ ,

which, since δ ∈ (0, 1), is ensured if

δ2q∗m ≥ 2κ log
(m
δ

)
+ κδ2q∗ . (82)

21

Suppose

m = 3

(
κ

q∗δ2

)2

.

Since we trivially have κ2/(q∗δ
2)2 ≥ κδ2q∗ (κ ≥ 1, q∗ ∈ (0, 1), δ ∈ (0, 1)), it is sufficient to prove:

2κ

q∗δ2
≥ 2 log 3 + 2 log

(
κ2

q2
∗δ

5

)
, (83)

which, again observing that δ ∈ (0, 1), holds if we can prove

κ

q∗δ2
≥ log 2 +

3

2
· log

(
κ

q∗δ2

)
, (84)

which is equivalent to showing x ≥ (3/2) log x + log 2 for x ≥ 1, which indeed holds (end of the
proof of Lemma 14).

The consequence of Lemma 14 is the following: if A ⊂ B2(0, R) and m satisfies (73), then for
any N ⊆ A with |N| = k − 1, and any B ⊆ A with |B| = |A| − 1,∑

a∈B

‖a− NNN(a)‖2
2 ≥ q∗(1− δ)(m− κ− 1)α2 ·R2 , (85)

and so from Definition 7 (main file) A is δs-spread for:

δw =
1

q∗(1− δ)(m− κ− 1)α2
. (86)

Now, suppose we add a single point x∗ in N. If, for some fixed α∗ ∈ (0,α/2],

x∗ 6∈ a⊕ α∗ ,∀a ∈ A , (87)

then because of (85),∑
a∈A

‖a− NNN∪{x∗}(a)‖2
2 ≥ (m− κ) ·min

{
α2
∗, q∗(1− δ)α2

}
·R2 . (88)

Otherwise, consider one a∗ for which x∗ ∈ a∗ ⊕ α∗. If we replace a∗ by x∗ in all N in which a∗
belongs to in Lemma 14, then because x∗ ⊕ α∗ ⊂ a∗ ⊕ α, it comes from Lemma 14:∑

a∈A

‖a− NNN∪{x∗}(a)‖2
2 ≥

1

4
· (m− κ) · q∗(1− δ)α2 ·R2 . (89)

We thus get in all cases∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 ≥ min

{
α2

4
,α2
∗, q∗(1− δ)α2

}
(m− κ) · q∗(1− δ) ·R2 , (90)

22

where c(A) is the arithmetic average computed according to the definition of δs-monotonicity, of
any A ⊆ A\N. Since N ⊆ A ⊂ B2(0, R), we have

∑
a∈A ‖a− NNN(a)‖2

2 ≤ 4mR2, and so∑
a∈A

‖a− NNN(a)‖2
2 ≤

4m

min
{
α2

4
,α2
∗, q∗(1− δ)α2

}
(m− κ) · q∗(1− δ)

·
∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 ,(91)

implying from Definition 8 (main file) that δs-monotonicity holds with:

δs =
m

m− κ ·
4

min
{
α2

4
,α2
∗, q∗(1− δ)α2

}
· q∗(1− δ)

− 1 . (92)

The statement of the Theorem follows with α∗ = α/2 (end of the proof of Theorem 13).

We finish the proof of Theorem 10. We have

q∗ ≥ 1− καd , (93)

where the lowerbound corresponds to the case where all neighborhoods in N ⊕ α are distinct and
included in B2(0, R). So we have, for any fixed choice of α ∈ (0, 1),

δw ≤ 1

α2 · (1− καd)(1− δ)(m− κ− 1)
. (94)

To minimize this upperbound, we pick α to maximize α2 · (1 − καd) with α ∈ (0, 1), which is
easily achieved picking

α =

(
1

κ(d+ 1)

) 1
d

, (95)

and yields

δw ≤
(

1 +
1

d

)
· 1

(κ(d+ 1))
2
d (1− δ)(m− κ− 1)

≤
(

1 +
1

d

)
· 1

κ
2
d (1− δ)(m− κ− 1)

. (96)

But we have for this choice, 1− καd = d/(d+ 1) ≥ 1/2, so as long as

δ < 1/2 , (97)

we shall have q∗(1− δ) > 1/4 and so we shall have

δs + 1 = 64 · m

m− κ ·
1

α2

≤ 64 · m

m− κ ·
1

κ
2
d

. (98)

We now go back to ineq. (14) (main file), which reads:

P[C|A′]
P[C|A]

≤ %1 + %2 , (99)

23

with

%1
.

= (1 + δw)k−1 , (100)
%2

.
= f(k) · δw · (1 + δs)

k−1 · %(R) . (101)

We upperbound separately both terms.

Lemma 15 Suppose ineqs (97) and (15) (main file) are met. Then

%1 ≤ 1 +
4

m
1
4

+ 1
d+1

. (102)

Proof Since d ≥ 1 and δ < 1/2, we get from ineq. (96) (using κ = k)

(1 + δw)k−1 ≤
(

1 +

(
1 +

1

d

)
· 1

k
2
d (1− δ)(m− k − 1)

)k−1

≤
(

1 +
2

k
2
d (1− δ)(m− k − 1)

)k−1

≤
(

1 +
4

k
2
d (m− k − 1)

)k−1

. (103)

Let h(k) be the right-hand side of ineq. (103). h(1) trivially meets ineq. (102). When k ≥ 2, h
decreases until k = 2(m− 1)/(d + 2) and then increases. We thus just need to check ineq. (102)
for k = 2 and k =

√
m from ineq. (15) (main file). We get h(2) = 1 + 4/(41/d(m − 3)). For

ineq. (102) to be satisfied, we need to have 41/d(m− 3) ≥ m
1
4

+ 1
d+1 , which holds if m ≥ 3 +m3/4

(d ≥ 1), that is, m ≥ 8. But since ineqs (97) and (15) (main file) are satisfied, we have m ≥
16k2/δ2 ≥ 64k2 ≥ 64, and so h(2) satisfies ineq. (102).

There remains to check ineq. (102) for k =
√
m. We have

h(
√
m) =

(
1 +

4

m
1
d (m−√m− 1)

)√m−1

≤
(

1 +
4

m
1
d (m−√m)

)√m

≤
(

1 +
2

√
m ·m 1

4
+ 1

d

)√m
, (104)

since any m ≥ 64, we have m−√m ≥ 2m3/4. To conclude, ineq (104) yields

h(
√
m) ≤

(
1 +

2
√
m ·m 1

4
+ 1

d

)√m
≤ exp

(
2

m
1
4

+ 1
d

)
≤ 1 +

4

m
1
4

+ 1
d

. (105)

24

The penultimate ineq. comes from 1 + x ≤ expx, and the last one comes from the fact that
exp(2x) ≤ 1 + 4x for x ≤ 1. Since m

1
4

+ 1
d ≥ m

1
4

+ 1
d+1 , we obtain the statement of the Lemma for

h(
√
m). This concludes the proof of Lemma 15.

Lemma 16 Suppose ineqs (97) and (15) (main file) are met. Then

%2 ≤
(

64

k
2
d

)k
· %(2R)

m
. (106)

Proof We fix κ = k, use f(k) = 42k−4 (eq. 71), so we get

%2 = 42k−2 ·
(

1 +
1

d

)
· 1

k
2
d (1− δ)(m− k − 1)

·
(

64 · m

m− k ·
1

k
2
d

)k−1

· %(2R)

≤ 2 · 64k−1 ·
(

1 +
1

d

)
· 1

k
2k
d (m− k − 1)

·
(

1 +
k

m− k

)k−1

· %(2R) (107)

≤ 4 · 1

(m− k − 1)
·
(

1 +
k

m− k

)k−1

︸ ︷︷ ︸
.
=%3

·64k−1 · 1

k
2k
d

· %(2R) , (108)

using the fact that δ < 1/2 and d ≥ 1. Now, we also have(
1 +

k

m− k

)k−1

≤ exp

(
k2

m− k

)
(109)

≤ e , (110)

as long as k ≤ (1/16) · √m, and furthermore, since m ≥ 64 (see the proof of Lemma 15), we also
have 1/(m− k − 1) ≤ 5/m. We thus obtain

%3 ≤
20e

m

≤ 64

m
, (111)

which yields

%2 ≤
(

64

k
2
d

)k
· %(2R)

m
, (112)

as claimed.

Putting altogether Lemmata 15 and 16, we get:

P[C|A′]
P[C|A]

≤ 1 +
4

m
1
4

+ 1
d+1

+

(
64

k
2
d

)k
· %(2R)

m
, (113)

25

as claimed. There remains to check that, with our choice of α, the constraint on m in (73) is
satisfied if

m ≥ 12k2

δ4
(114)

since q∗ ≥ d/(d+ 1). We obtain the sufficient constraint on k:

k ≤ δ2

4
· √m , (115)

which proves Theorem 10 when εm = εM = 1.

When the density do not satisfy εm = εM = 1 we just have to remark that the lowerbound on
q∗ is now

q∗ ≤
εm
εM
· (1− καd) . (116)

Ineq. (96) becomes

δw ≤ εM
εm
·
(

1 +
1

d

)
· 1

κ
2
d (1− δ)(m− κ− 1)

, (117)

ineq. (98) becomes

δs + 1 ≤ εM
εm
· 64 · m

m− κ ·
1

κ
2
d

. (118)

So, the only difference with the εm = εM = 1 is the ratio εM/εm (≥ 1) which multiplies all
quantities of interest, and yields, in lieu of ineq. (113),

P[C|A′]
P[C|A]

≤ 1 +

(
εM
εm

)k
·
(

4

m
1
4

+ 1
d+1

+

(
64

k
2
d

)k
· %(2R)

m

)
, (119)

which is the statement of Theorem 10.

2.7 Proof of Theorem 12
When p(µa,θa) is a product of Laplace distributions Lap(b) (b being the scale parameter of the
distribution [8]), condition in ineq. (13) (main file) becomes:

p(µa′ ,θa′)
(x)

p(µa,θa)(x)
≤ exp

(‖a− a′‖1

b

)
= exp

(√
2‖a− a′‖1

σ1

)

≤ exp

(
2
√

2R

σ1

)
, ∀a,a′ ∈ A, ∀x ∈ Ω , (120)

26

assuming A ⊂ B1(0, R). Let us fix %(R)
.

= exp
(
2
√

2R/σ1

)
. Since B1(0, R) ⊂ B2(0, R) (the

L2 ball), we now want (1+δw)k−1 +f(k) ·δw · (1 + δs)
k−1 ·%(R) = exp(ε). Solving for σ1 yields:

σ1 =
2
√

2R

log
(

exp(ε)−(1+δw)k−1

f(k)·δw·(1+δs)k−1

) , (121)

as claimed. The proof that k-variates++ meets ineq. (7) with

Φ = Φ1
.

= 8 ·
(
φopt +

mR2

ε̃2

)
(122)

comes from a direct application of Theorem 2 (main file), with

η = 0 ,

φbias = φopt ,

φvar = m ·
(

2
√

2R

ε̃

)2

.

The statements for σ2 and Φ2 are direct applications of the Laplace mechanism properties [8, 9].

2.8 Extension to non-metric spaces
Since its inception, the k-means++ seeding technique has been successfully adapted to various
distortion measures D(·‖·) to handle non-Euclidean features [10, 11, 12]. Similarly, our extended
seeding technique can be adapted to these scenarii: this boils down to putting the distortion as a free
parameter of the algorithm, replacing Dt(a) (eq. (1)) byDt(a)

.
= mina′∈PD(a‖a′). For example,

by noticing that the squared Euclidean distance is merely an example of Bregman divergences (the
well-known canonical divergences in information geometry of dually flat spaces), k-variates++ can
be been extended to that family of dissimilarities [11]. But more interesting examples now appear,
that build on constraints that distortions have to satisfy for certain problems, like the invariance
to rotations of the coordinate space. This is all the more challenging in practice for clustering
since sometimes no-closed form solution are available for some of these divergences. Because it
bypasses the construction of the population minimisers, k-variates++ offers an elegant solution to
the problem. Such hard distortions include the skew Jeffreys α-centroids [12]. This also include the
recent class of total Bregman/Jensen divergences that are examples of conformal divergences [13,
12]. We give an example of the extension of k-variates++to the total Jensen divergence, to show
that k-variates++ can approximate the optimal clustering even without closed form solutions for
the population minimisers [13]. For any convex function ϕ : Rd → R and α ∈ (0, 1), the skew
Jensen divergence is

Jα(a,a′)
.

= αϕ(a) + (1− α)ϕ(a′)− ϕ(αa+ (1− α)a′) , (123)

and the total Jensen divergence is

tJα(a,a′)
.

=
1√

1 + U2
· Jα(a,a′) , (124)

where U .
= (ϕ(a) − ϕ(a′))/‖a − a′‖2. There is no closed form solution for the population

minimiser of tJα, yet we can prove the following Theorem, which builds upon Theorem 3 in [13].

27

Theorem 17 In k-variates++, replace Dt(a) (eq. (1)) by Dt(a)
.

= mina′∈P tJα(a,a′) ans sup-
pose for simplicity that probe functions are identity: ℘t = Id, ∀t. Denote φopt the optimal noise-
free potential of the clustering problem using tJα as distortion measure. Then there exists a
constant ω > 0 such that for any choice of densities pµ.,θ. , the expected tJα-potential φ of k-
variates++ satisfies:

E[φ(A;C)] ≤ ω · log k · (6φopt + 2φbias + 2φvar) , (125)

where φvar is defined in Theorem 2 and φbias is defined in eq. (4).

28

Figure 5: Final dataset for the experiments in Table 3 (plot of the two first coordinates (d = 10)).

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 5000 10000 15000 20000

m

ε
~

ε

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000

m

ε
~

ε

 9

 10

 11

 12

 13

 14

 15

 16

 0 5000 10000 15000 20000

m

ε
~

ε

ε = 0.1 ε = 1 ε = 10

Table 3: Case d = 10, k = 3 — Plot of ε̃ as in Theorem 12 (main file, see also eq. (126) below)
and best fit for model ε̃ = a+ b logm. Figure 5 displays the final dataset obtained (see text).

3 Supplementary Material on Experiments

3.1 Experiments on Theorem 12 and the sublinear noise regime
↪→ comments on ε̃ An important parameter of Theorem 12 is ε̃, which replaces ε in the compu-
tation of the noise standard deviation in σ1: the larger it is compared to ε, the less noise we can put
while still ensuring P[C|A′]/P[C|A] ≤ exp ε in Definition 11 (main file). Recall its formula:

ε̃
.

= log

(
exp(ε)− (1 + δw)k−1

f(k) · δw · (1 + δs)
k−1

)
. (126)

The experimental setting is the following one: we repeatedly sample clusters that are uniform in
a subset of the domain (with limited, random size), taken to be a d-dimensional hyperrectangle of
randomly chosen edge lengths. Each cluster contains a randomly picked number of points between

29

-1

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000

m

ε
~

ε

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

m

ε
~

ε

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 0 5000 10000 15000 20000

m

ε
~

ε

ε = 0.1 ε = 1 ε = 10

Table 4: Case d = 50, k = 3 — Plot of ε̃ as in Theorem 12 (main file, see also eq. (126) below)
and best fit for model ε̃ = a+ b logm. All other parameters are the same as for Table 3.

-8

-6

-4

-2

 0

 2

 4

 0 5000 10000 15000 20000

m

ε
~

ε

-6

-4

-2

 0

 2

 4

 6

 0 5000 10000 15000 20000

m

ε
~

ε

 9

 10

 11

 12

 13

 14

 15

 16

 0 5000 10000 15000 20000

m

ε
~

ε

ε = 0.1 ε = 1 ε = 10

Table 5: Case d = 50, k = 4 — Plot of ε̃ as in Theorem 12 (main file, see also eq. (126) below)
and best fit for model ε̃ = a+ b logm. All other parameters are the same as for Table 3.

1 and 1000. After each cluster is picked, we updated an estimation of δw and δs:

• we compute δw by randomly picking B and N for a total number of nest iterations, with
nest = 5000;

• we compute δs by randomly picking N for a total number of nest iterations. Instead of
computing A then x, we opt for the fast proxy which consists in replacing c(A) by a random
data point, thus without making the N-packed test. This should reasonably overestimate δs
and thus slightly loosen our approximation bounds.

Figure 5 shows the dataset obtained for d = 10 at the end of the process. Predictably, the distribu-
tion on the whole space looks like a highly non-uniform cover by locally uniform clusters. Tables
3, 4 and 5 display results obtained for three different values of ε and three different values for the
couple (d, k). To test the large sample regime intuition and the fact that the the noise dependence
grows sublinearly in m, we have regressed in each plot ε̃ as a function of m for

ε̃(m) = a+ b logm . (127)

The plots obtained confirm a good approximation of this intuition, but they also display some more
good news. The smaller ε, the larger can be ε̃ relatively to ε, by order of magnitudes if ε is small.

30

(d, k) = (10, 3) (d, k) = (50, 3) (d, k) = (50, 4)

δw

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 5000 10000 15000 20000

m

δ
w

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 5000 10000 15000 20000

m

δ
w

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 5000 10000 15000 20000

m

δ
w

δs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5000 10000 15000 20000

m

δ
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5000 10000 15000 20000

m

δ
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5000 10000 15000 20000

m

δ
s

Table 6: Estimations of δw (top row) and δs (bottom row) as a function of m, for three values of
(d, k). We also indicate the best fit for δw(m) = a/m (top row) and δs(m) = b (for m ≥ 4000,
bottom row).

Hence, despite the fact that we evetually overestimate δs, we still get large ε̃. Furthermore, if k is
small, this ”large sample” regime in which ε̃ > ε actually happens for quite small values of m.

Also, one may remark that the curves all look like an approximate translation of the same curve.
This is not surprising, since we can reformulate

ε̃ = ε+ log

(
1− U

ε

)
+ g(m) , (128)

whene U .
= (1 + δw)k−1 and g do not depend on ε. It happens that δw quickly decreases to very

small values (bringing also a separate empirical validation of its behavior as computed in ineq.
(117) in the proof of Theorem 10). Hence, we rapidly get for small m some ε̃ that looks like

ε̃ ≈ ε+ log

(
1− 1 + o(1)

ε

)
+ g(m)

≈ h(ε) + g(m) , (129)

which may explain what is observed experimentally.
We can sumarise the global picture for ε̃ vs ε by saying that it becomes more and more in

favor of ε̃ as data size (d or m) increase, but become less in favor of ε̃ as the number of clusters k
increases (predictably).

↪→ comments on δw and δs Table 6 presents the estimated values of δw and δs for the settings of
Tables 3, 4 and 5. We wanted to test the intuition as to whether, for m sufficiently large, it would
hold that δw = O(1/m) while δs = O(1). The essential part is on δw, since such a behaviour would

31

 4
 5

 6
 7

 8
 9

 10
k 0

 10
 20

 30
 40

 50

p

-4
-2
 0
 2
 4
 6
 8

ρφ

Figure 6: Simulated data — Plot of ρφ(k-means++) as a function of k and p. Points below surface
z = 0 correspond to superior performances of k-Dk-means++.

be sufficient for the sublinear growth of the noise dependence. One can check that such behaviours
are indeed observed, and more: δw converges very rapidly to zero, at least for all settings in which
we have tested data generation. Another quite good news, is that δs seems indeed to be θ(1), but for
an actual value which is also not large, so the denominator of eq. (126) is actually driven by f(k),
even when, as we already said, we may have a tendency to overestimate δs with our randomized
procedure.

3.2 Experiments with Dk-means++, k-means++ and k-means‖
? Experiments on synthetic data We have generated a set of m ≈20 000 points using the same
kind of clusters as in the experiments related to Theorem 12: we add ”true” clusters until the
total number of points exceeds 20 000. To simulate the spread of data among peers (Forgy nodes)
and evaluate the influence of the spread of Forgy nodes (φFs) for Dk-means++, we have devised
the following protocol: let us name ”true” clusters the hyperrectangle clusters used to build the
dataset. Each true cluster corresponds to the data held by a peer. Then, for some p ∈ [0, 100] (%),
each point in each true cluster moves into another cluster, with probability p. The choice of the
target cluster is made uniformly at random. Thus, as p increases, we get a clustering problem in
which the data held by peers is more and more spread, and for which the spread of Forgy nodes φFs

32

 4
 5

 6
 7

 8
 9

 10
k 0

 10
 20

 30
 40

 50

p

-4
-2
 0
 2
 4
 6
 8

Figure 7: Simulated data — Plot of ρφ(k-means‖) as a function of k and p. Points below surface
z = 0 correspond to superior performances of k-Dk-means++.

increases. Figure 8 presents a typical example of the spread for p = 50%. Notice that in this case
many Forgy nodes have data spreading through a much larger domain than the initial, true clusters.
Figure 9 displays that this happens indeed, as φFs is multiplied by a factor exceeding 20 (compared
to φFs at p = 0) for the largest values of p.

We have compared Dk-means++ to k-means++ and k-means‖ [4]. In the case of that latter
algorithm, we follow the paper’s statements and pick the number of outer iterations to be dlog φ1e,
where φ1 is the potential for one Forgy-chosen center. We also pick ` = 2k, considering that it is a
value which gives some of the best experimental results in [4]. Finally, we recluster the points at the
end of the algorithm using k-means++. For each algorithm H ∈ {k-means++, k-means‖}, we run
it on the complete dataset and its results are averaged over 10 runs. We run Dk-means++ for each
p ∈ {0%, 1%, ..., 50%}. More precisely, for each p, we average the results of Dk-means++ over 10
runs. We use as metric the relative increase in the potential of Dk-means++ compared to H:

ρφ(H)
.

=
φ(Dk-means++)− φ(H)

φ(H)
· 100 . (130)

that we plot as a function of φFs , or surface plot as a function of (k, p). The intuition for the former
plot is that the larger φFs , the larger should be this ratio, since the data held by peers spreads across
the domain and each peer is constrained to pick its centers with uniform seeding.

33

Figure 8: Example dataset obtained for p = 50% (d = 50). Each color represents the points held
by a peer (Forgy node) after the process of moving each point from a true cluster to another cluster
with probability p = 0.5. Big black dots are the datapoints that are the closet to the true cluster
centers.

↪→ Dk-means++ vs k-means++ Figure 7 presents results for ρφ(k-means++) = f(φFs) obtained
for various k. First, the intuition is indeed confirmed for k = 8, 9, 10, but an interesting phe-
nomenon appears for k = 5: Dk-means++ almost consistently beats k-means++. The decrease in
the average potential ranges up to 3%. Furthermore, this happens even for large values of φFs . Fi-
nally, for all but one value of k, there exists spread values for which Dk-means++ beats k-means++.
The surface plot in Figure 6 displays that superior performances of Dk-means++ are probably not
random. One possible explanation to this phenomenon relies on the expression of φbias given in
the proof of Theorem 4 (eq. (21)), recalled here:

φbias
.

=
∑
a∈A

‖µa − copt(a)‖2
2

=
∑
i∈[n]

∑
a∈Ai

‖c(Ai)− copt(a)‖2
2 .

(131)

34

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-3

-2

-1

 0

 1

 2

 3

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-2

-1

 0

 1

 2

 3

 4

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-3

-2

-1

 0

 1

 2

 3

 4

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 0 1e+06 2e+06 3e+06 4e+06 5e+06

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Table 7: Simulated data — Plot of ratio ρφ(k-means++) in eq. (130) as a function of φFs . Points
below the green line correspond to (average) runs in which Dk-means++ beats k-means++.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-2

-1

 0

 1

 2

 3

 4

 5

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-3

-2

-1

 0

 1

 2

 3

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-4

-3

-2

-1

 0

 1

 2

 3

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1e+06 2e+06 3e+06 4e+06 5e+06

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Table 8: Simulated data — Plot of ratio ρφ(k-means‖) in eq. (130) as a function of φFs . Points
below the green line correspond to (average) runs in which Dk-means++ beats k-means‖.

Recall that φbias can be < φopt, and it can even be zero, in which case Theorem 2 says that the
approximation bound may actually be better than that of k-means++ in [1] (furthermore, η = 0 for
Dk-means++). Hence, what happens is pobably that in several cases, there exists a union of peers
data (the number of peers is larger than k) that gives a at least reasonably good approximation of
the global optimum. In all our experiments indeed, we obtained a number of peers larger than 30.

↪→ Dk-means++ vs k-means‖ Figure 7 appear to display performances for Dk-means++ that
are even more in favor of Dk-means++, compared to k-variates++. Figure 8 presents results for
ρφ(k-means‖) = f(φFs) obtained for various k. The fact that each of them is a vertical translation
of a picture in Figure 7 comes from the fact that the results of k-means‖ and k-means++ do not
depend on the spread of the neighbors φFs .

? Experiments on real world data We consider the EuropeDiff dataset2 (Dataset characteris-
tics provided in Table 9). Figures 10 and 11 give the results for the equivalent settings of the
experimental data. To simulate N peers with real data, reasonably spread geographically, we have
sampled N points (”peer centers”) with k-means++ seeding in data and then aggregated for each
peer the subset of data in the corresponding Voronoi 1-NN cell. We then simulate the spread for
parameter p as in the simulated data. Figures 10 and 11 globally display (and confirm) the same
trends as for the simulated data. They, however, clearly emphasize this time that the spread of
Forgy nodes φFs is one key parameter that drives the performances of Dk-means++. Notice also
that Dk-means++ remains on this dataset competitive up to p ≥ 30%, which means that it remains
competitive when a significant proportion of peers’ data is scattered without any constraint.

To further address the way the spread of Forgy nodes affects results, we have used another real

2http://cs.joensuu.fi/sipu/datasets/

35

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

Figure 9: Simulated data — Relative increase of spread, φFs (p)/φFs (0), through the runs, as a
function of p.

world data with highly non-uniform distribution, Mopsi-Finland locations3 (m = 13467, d = 2).
We have sampled peers using two different schemes for the peer centers: k-means++ and Forgy. In
this latter initialisation, we just pick peer centers at random. In the former k-means++ initialisation,
the initial peer centers are much more evenly geographically spread before we complete the peers
data with the closest points. They remain more spread after the p% uniform displacement of data
between peers, as shown on the top plots of Figure 12. What is interesting about this data is that
it displays that if peers’ data are indeed geographically located, then Dk-means++ is competitive
up to quite reasonable values of p ≤ 20% (depending on k). That, is Dk-means++ works well
when each peer aggregates 80 % data which is reasonably ”localized in the domain” and 20 % data
which can be located everywhere in the domain.

3.3 Experiments with k-variates++ and GUPT
Among the state-of-the-art approaches against which we could compare k-variates++, there are two
major contenders, PINQ [14] and GUPT [15]. Even when PINQ is a broad system, we switched
our preferences to GUPT for the following reasons. The performance of k-means based on PINQ
relies on two principal factors: the initialisation (like in the non differentially private version) and
the number of iterations. To compete against heavily tuned specific applications, like k-variates++,
this scheme requires substantial work for its optimisation. For example, if one allocates part of the
privacy budget to release a differential private initialisation, the noise has to be proportional to the
domain width, which would release poor centers. Also, generating points uniformly at random
from the domain, to obtain data-independent initial centers, yields to a poor initialisation. Finally,
the number of iterations has to be tuned very carefully: if too small, the algorithm keeps poor
solutions; if too large, the number of iteration increase the added noise for privacy and harms
PINQ’s final accuracy. We thus chose GUPT. k-means implemented in the GUPT proceeds the
following way: the dataset is cut in a certain number of blocks ` (following [15], we fix ` = m0.4

in our experiments), the usual k-means algorithm is performed on each block. Before releasing
the final centroids, results are aggregated and a noise is applied. Finally, we also compare against

3http://cs.joensuu.fi/sipu/datasets/

36

 4
 5

 6
 7

 8
 9

 10
k 0

 10
 20

 30
 40

 50

p

-20
-10
 0
 10
 20
 30
 40
 50
 60

ρφ

 4
 5

 6
 7

 8
 9

 10
k 0

 10
 20

 30
 40

 50

p

-20
-10
 0
 10
 20
 30
 40
 50
 60

ρφ(k-means++) ρφ(k-means‖)

-10

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000 35000

-10

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000

-10

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000 35000

-20

-10

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000 35000

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000 35000

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000 35000

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

-20

-10

 0

 10

 20

 30

 40

 0 5000 10000 15000 20000 25000 30000 35000

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000 35000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000 35000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000 35000

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Figure 10: Experiments on real world data ”EuropeDiff” with N = 30 simulated peers. Top
plot: Plots corresponding to Figures 6 (left) and 7 (right). Middle and bottom plot ranges: plots
corresponding respectively to Figures 7 and 8.

the vanilla approach of Forgy Initialisation using the Laplace mechanism. The noise rate (i.e.,
standard deviation) is then proportional to ∝ kR/ε (we do not run k-means afterwards, hence the
privacy budget remains “small”). In comparison, GUPT adds noise ∝ kR/(`ε) at the end of this
aggregation process. Note that we disregard the fact that our data are multidimensional, which
should require a finer-grained tuning of `, and choose to rely on the ` = m0.4 suggestion from [15].

↪→ Comparison on real world domains Our domains consist of 3 real-world datasets4. Lifesci
contains the value of the top 10 principal components for a chemistry or biology experiment. Image
is a 3D dataset with RGB vectors, and finally EuropeDiff is the differential coordinates of Europe
map.

Table 9 presents the extensinve results obtained, that are averaged in the main file. We have
fixed ε = 1 in the differentially privacy parameters. The column ε̃ (eq. (18) in the main file)
provides the differential privacy parameter which is equivalent from the protection standpoint, but
exploits the computation of δw, δs (which we compute exactly, and not in a randomized way like in

4http://cs.joensuu.fi/sipu/datasets/

37

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

Figure 11: Experiments on real world data ”EuropeDiff” with N = 40 simulated peers. Plot
corresponding to Figure 9.

the experiments on Theorem 12 above) and ineq. (58). Therefore, each time ε̃ > ε (=1 in our appli-
cations), it means that our analysis brings a sizeable advantage over “raw protection” by Laplace
mechanism (in our application we chose for pµa,θa a Laplace distribution). R is computed from the
data by an upperbound of the smallest enclosing ball radius. The results display several interesting
patterns. First, the largest the domain, the better we compare with respect to the other algorithms.
On EuropeDiff for example, we often have the ratio of the potentials φ(GUPT)/φ(k-variates++)
of the order of dozens. Also, the performances of k-variates++ degrade if k increases, which is
again consistent with the “good” regime of Theorem 10.

↪→ Comparison on synthetic domains The synthetic datasets contain points uniformly sampled
on a unit d-ball, in low dimension d = 2 and higher dimension d = 15 , we generated datasets with
size in {105, 106}.

38

Dataset m d k ε̃ ρ′φ(F-DP) ρ′φ(GUPT)

LifeSci 26733 10
2 8.5 311 1.6
3 4.4 172 0.4
4 0.6 6 0.02

Image 34112 3
2 12.6 300 4.8
3 3.2 77 0.9

EuropeDiff 169308 2

2 19.0 1200 46.1
3 21.0 3120 66.5
4 18.0 3750 55.0
5 14.0 4000 51.0
6 10.4 5000 36.0
7 6.6 2600 26.0
8 1.8 350 2.0

Table 9: Comparison of k-variates++, Forgy Initialisation differentially private (F-DP) and GUPT
on the real world domains (results averaged in the main file)). On each domain, we compute ratio
ρ′φ of the clustering potential of the contender to that of k-variates++, a value > 1 indicating that
k-variates++ is better. The potential of each algorithm has been averaged over 30 runs. ε̃ is given
in eq. (18) (main file).

39

Forgy initial peer centers k-means++ initial peer centers

 3 4 5 6 7 8 9 10
k 0

 10
 20

 30
 40

 50

p

-50
 0

 50
 100
 150
 200
 250

ρφ

 3 4 5 6 7 8 9 10
k 0

 10
 20

 30
 40

 50

p

-50
 0

 50
 100
 150
 200
 250
 300

ρφ

 3 4 5 6 7 8 9 10
k 0

 10
 20

 30
 40

 50

p

-50

 0

 50

 100

 150

 200

 3 4 5 6 7 8 9 10
k 0

 10
 20

 30
 40

 50

p

-50
 0

 50
 100
 150
 200
 250
 300

Figure 12: Mopsi-Finland locations data — Top: peer centers (big black dots) after p = 50% mov-
ing probability changes in data. Remark from the right plot (k-means++ initial peer centers) that
peer data are less ”attracted” towards the highest density regions. Center: plots of ρφ(k-means++).
Bottom: plots of ρφ(k-means‖).

40

vs
F,
d

=
2

vs
F,
d

=
15

vs
G

U
PT

,d
=

2
vs

G
U

PT
,d

=
15

Fi
gu

re
13

:
k

-v
ar

ia
te

s+
+

vs
Fo

rg
y

in
iti

al
is

at
io

n
di

ff
er

en
tia

lly
pr

iv
at

e
an

d
G

U
PT

.W
e

us
e

ra
tio
ρ
′ φ

be
tw

ee
n

th
e

po
te

nt
ia

lo
f

th
e

co
nt

en
de

r
in

(F
-D

P,
G

U
PT

)
ov

er
th

e
po

te
nt

ia
lo

f
k

-v
ar

ia
te

s+
+

(p
ot

en
tia

ls
ar

e
av

er
ag

ed
30

tim
es

).
T

he
m

or
e

re
d,

th
e

be
tte

r
is
k

-v
ar

ia
te

s+
+

w
ith

re
sp

ec
tt

o
th

e
co

nt
en

de
r.

G
re

y
va

lu
es

in
di

ca
te

le
ss

po
si

tiv
e

ou
tc

om
es

fo
rk

-v
ar

ia
te

s+
+;

w
hi

te
va

lu
es

in
di

ca
te

th
at
k

-v
ar

ia
te

s+
+

do
es

no
t

m
an

ag
e

to
fin

d
an
ε′

la
rg

er
th

an
ε,

an
d

th
us

do
es

no
tm

an
ag

e
to

pu
ts

m
al

le
rn

oi
se

ra
te

th
an

in
th

e
L

ap
la

ce
m

ec
ha

ni
sm

.

41

References
[1] D. Arthur and S. Vassilvitskii. k-means++ : the advantages of careful seeding. In 19th SODA,

pages 1027 – 1035, 2007.

[2] Y. Wang, Y.-X. Wang, and A. Singh. Differentially private subspace clustering. In NIPS*28,
2015.

[3] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data
analysis. In 40th ACM STOC, pages 75–84, 2007.

[4] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable k-means++. In
38th VLDB, pages 622–633, 2012.

[5] M.-F. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering on
general communication topologies. In NIPS*26, pages 1995–2003, 2013.

[6] N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approximation. In NIPS*22,
pages 10–18, 2009.

[7] E. Liberty, R. Sriharsha, and M. Sviridenko. An algorithm for online k-means clustering.
CoRR, abs/1412.5721, 2014.

[8] C. Dwork and A. Roth. The algorithmic foudations of differential privacy. Found. & Trends
in TCS, 9:211–407, 2014.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In 3rd TCC, pages 265–284, 2006.

[10] S. Jegelka, S. Sra, and A. Banerjee. Approximation algorithms for tensor clustering. In 20th

ALT, pages 368–383, 2009.

[11] R. Nock, P. Luosto, and J. Kivinen. Mixed Bregman clustering with approximation guaran-
tees. In 19th ECML, pages 154–169, 2008.

[12] R. Nock, F. Nielsen, and S.-I. Amari. On conformal divergences and their population mini-
mizers. IEEE Trans. IT, 62:1–12, 2016.

[13] F. Nielsen and R. Nock. Total Jensen divergences: definition, properties and clustering. In
40th IEEE ICASSP, pages 2016–2020, 2015.

[14] F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. Communications of the ACM, 53(9):89–97, 2010.

[15] P. Mohan, A. Thakurta, E. Shi, D. Song, and D.-E. Culler. GUPT: privacy preserving data
analysis made easy. In 38th ACM SIGMOD, pages 349–360, 2012.

42

	Table of contents
	Supplementary Material on Proofs
	Proof of Theorem 2
	Proof of Lemma 3
	Extension and comments on Table 1
	Proofs of Theorems 4, 5 and 6
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 12
	Extension to non-metric spaces

	Supplementary Material on Experiments
	Experiments on Theorem 12 and the sublinear noise regime
	Experiments with dk-means++, k-means++ and k-means"026B30D
	Experiments with k-variates++ and GUPT

