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Abstract

k-means++ seeding has become a de facto stan-
dard for hard clustering algorithms. In this pa-
per, our first contribution is a two-way generali-
sation of this seeding, k-variates++, that includes
the sampling of general densities rather than
just a discrete set of Dirac densities anchored at
the point locations, and a generalisation of the
well known Arthur-Vassilvitskii (AV) approxi-
mation guarantee, in the form of a bias+variance
approximation bound of the global optimum.
This approximation exhibits a reduced depen-
dency on the “noise” component with respect
to the optimal potential — actually approaching
the statistical lower bound. We show that k-
variates++ reduces to efficient (biased seeding)
clustering algorithms tailored to specific frame-
works; these include distributed, streaming and
on-line clustering, with direct approximation re-
sults for these algorithms. Finally, we present a
novel application of k-variates++ to differential
privacy. For either the specific frameworks con-
sidered here, or for the differential privacy set-
ting, there is little to no prior results on the direct
application of k-means++ and its approximation
bounds — state of the art contenders appear to be
significantly more complex and / or display less
favorable (approximation) properties. We stress
that our algorithms can still be run in cases where
there is no closed form solution for the popula-
tion minimizer. We demonstrate the applicabil-
ity of our analysis via experimental evaluation on
several domains and settings, displaying compet-
itive performances vs state of the art.
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1. Introduction

Arthur-Vassilvitskii’s (AV) k-means++ algorithm has been
extensively used to address the hard membership clustering
problem, due to its simplicity, experimental performance
and guaranteed approximation of the global optimum; the
goal being the k-partitioning of a dataset so as to minimize
the sum of within-cluster squared distances to the cluster
center (Arthur & Vassilvitskii, 2007), i.e., a centroid or a
population minimizer (Nock et al., 2016b).

The k-means++ non-uniform seeding approach has also
been utilized in more complex settings, including tensor
clustering, distributed, data stream, on-line and parallel
clustering, clustering with non-metric distortions and even
clustering with distortions not allowing population mini-
mizers in closed form (Ailon et al., 2009; Balcan et al.,
2013; Jegelka et al., 2009; Liberty et al., 2014; Nielsen &
Nock, 2014; Nielsen et al., 2014; Nielsen & Nock, 2015;
Nock et al., 2008). However, apart from the non-uniform
seeding, all these algorithms are distinct and (seemingly)
do not share many common properties.

Finally, the application of k-means++ in some scenarios is
still an open research topic, due to the related constraints
—e.g., there is limited prior work in a differentially private
setting (Nissim et al., 2007; Wang et al., 2015).

Our contribution — In a nutshell, we describe a gener-
alisation of the k-means++ seeding process, k-variates++,
which still delivers an efficient approximation of the global
optimum, and can be used to obtain and analyze efficient
algorithms for a wide range of settings, including: dis-
tributed, streamed, on-line clustering, (differentially) pri-
vate clustering, etc. . We proceed in two steps.

First, we describe k-variates++ and analyze its approxi-
mation properties. We leverage two major components of
k-means++: (i) data-dependent probes (specialized to ob-
served data in the k-means++) are used to compute the
weights for selecting centers, and (ii) selection of centers
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Figure 1. Graphical model for the k-means++ seeding process
(black) and our generalisation (black + red, best viewed in color).

is based on an arbitrary family of densities (specialized to
Diracs in the k-means++). Informally, the approximation
properties (when only (ii) is considered), can be shown as:
expected_cost(k-variates++) < (24 logk) - ® , with
® = 6-optimal_noise-free_cost-+2-noise_(bias + variance),
where “noise” refers to the family of densities (note that
constants are explicit in the bound). The dependence on
these densities is arguably smaller than expected (factor 2
for noise vs 6 for global optimum). There is also not much
room for improvement: we show that the guarantee ap-
proaches the Fréchet-Cramér-Rao-Darmois lower bound.

Second, we use this general algorithm in two ways. We use
it directly in a differential privacy setting, addressing a con-
jecture of (Nissim et al., 2007) with weaker assumptions.
We also demonstrate the use of this algorithm for a re-
duction to other biased seeding algorithms for distributed,
streamed or on-line clustering, and obtain the approxima-
tion bounds for these algorithms. This simple reduction
technique allows us to analyze lightweight algorithms that
compare favorably to the state of the art in the related do-
mains (Ailon et al., 2009; Balcan et al., 2013; Liberty et al.,
2014), from the approximation, assumptions and / or com-
plexity aspects. Experiments against state of the art for the
distributed and differentially private settings display that
solid performance improvement can be obtained.

The rest of this paper is organised as follows: Section 2
presents k-variates++. Section 3 presents approximation
properties for distributed, streamed and on-line clustering
that use a reduction from k-variates++. Section 4 presents
direct applications of k-variates++ to differential privacy.
Section 5 presents experimental results. Last Section dis-
cusses extensions (to more distortion measures) and con-
clude. In order not to laden the paper’s body, a Supple-
mentary Information (SI) provides all proofs and extensive
experiments not shown here (Nock et al., 2016a).

2. k-variates++

We consider the hard clustering problem (Banerjee et al.,
2005; Nock et al., 2016b): given set A C R< and integer
k > 0, find centers C C R¢ which minimizes the L2 poten-

tial to the centers (here, c(a) = argmingce ||a — cl|3):

¢(A;€) = Y lla—ca)3 , 2)

acA

Algorithm O describes k-variates++. u,, denotes the uni-
form distribution over A (JA| = m). The parenthood
with k-means++ seeding, which we name “k-means++”
for short! (Arthur & Vassilvitskii, 2007) can be best un-
derstood using Figure 1 (the red parts in Figure 1 are pin-
pointed in Algorithm 0). k-means++ is a random process
that generates cluster centers from observed data A. It
can be modelled using a two-stage generative process for
a mixture of Dirac distributions: the first stage involves
random variable Q; ~ Mult(m, ;) whose parameters
. € A, (the m-dim probability simplex) are computed
from the data and previous centers; sampling (); chooses
the Dirac distribution, which is then “sampled” for one
center (and the process iterates). All the crux of the tech-
nique is the design of 7t;, which, under no assumption of
the data, yield in expectation a k-means potential for the
centers chosen that is within 8(2 + log k) of the global op-
timum (Arthur & Vassilvitskii, 2007).

k-variates++ generalize the process in two ways: first, the
update of 7t; depends on data and previous probes, using a
sequence of probe functions p; : A — R? (p = 1d, the
identity function, V¢, in k-means++). Second, Diracs are
replaced by arbitrary but fixed local distributions (some-
times called noisy) with parameters® (fq,04) depending
on A. Let Copy C R< denote the set of k centers mini-
mizing (2) on A. Let copt(@) = argmincee,, [la — |3
(a € A), and

opt

Popt = Z ||a_C0pt(a)||§ ) 3)
acA

¢bias = Z ||:u'a - Copt(a)”g ) (4)
acA

bvar = Y tr(Za) - (5)
acA

@opt 1s the optimal noise-free potential, ¢, is the bias of
the noise®, and ¢, its variance, with ¥, = Ex~pa [(x —
tao)(T — pg) "] the covariance matrix of p,. Notice that
when o, = a, dnias = Pops. Otherwise, it may hold that
Pbias < Popt, and even Pnias = 0 if expectations coincide

'Both approaches can be completed with the same further lo-
cal monotonous optimization steps like Lloyd or Hartigan itera-
tions; furthermore, it is the biased seeding which holds the ap-
proximation properties of k-means++.

?Because expectations are the major parameter for clustering,
we split the parameters in the form of pq (expectation) and 04
(other parameters, e.g. covariance matrix).

3We term it bias by analogy with supervised classification,
considering that the expectations of the densities could be used
as models for the cluster centers (Kohavi & Wolpert, 1996).
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s ‘ Algorithm 0 k-variates++ ‘

N
Input: data A C R? with |A| = m, k € N,, densities {p(,,., o.). @ € A}, probe functions ©; : A — R? (¢t > 1);
Step 1: Initialise centers € < (;
Step2: fort =1,2,...,k
2.1: randomly sample a ~,, A, with g; = u,, and, fort > 1,
-1
w(a) = Dia) (Z Dt<a’)> , where Di(a) = min |o(a) — |3 ; 1)
a’cA
2.2: randomly sample & ~ p(“a‘gfﬁ
23: C+ CU{x};
Output: C;
" J

with Copt. Let Cope denote the partition of A according
to the centers in C,p¢. We say that probe function gy is
-stretching if, informally, replacing points by their probes
does not distort significantly the observed potential of an
optimal cluster, with respect to its actual optimal potential.
The formal definition follows.

Definition 1 Probe functions @ are said n-stretching on
A, for some n > 0, iff the following holds: for any clus-
ter A € Copy with [A| > 1, any a9 € A such that
d(pe(A); {pi(ao)}) # 0, any set of < k centers C C R?,

pA€) B(pi(A); €)
p(As{ao}) ~ P9t (A); {pt(ao)})

Since ¢(A;Copt) = D4, ca P(A;{ao}) (Arthur & Vas-
silvitskii, 2007) (Lemma 3.2), Definition 1 roughly states
that the potential of an optimal cluster with respect to a set
of cluster centers, relatively to its potential with respect to
the optimal set of centers, does not blow up through probe
function gp;. The identity function is trivially O-stretching,
for any A. Many local transformations would be eligi-
ble for n-stretching probe functions with 1 small, includ-
ing local translations, mappings to core-sets (Har-Peled &
Mazumdar, 2004), mappings to Voronoi diagram cell cen-
ters (Boissonnat et al., 2010), etc. Notice that ineq. (6) has
to hold only for optimal clusters and not any clustering of
A. Let E[¢(A; C)] = [ ¢(A|C)dp(€) denote the expected
potential over the random sampling of € in k-variates++.

Theorem 2 For any dataset A, any sequence of m-
stretching probe functions o, and any density {pa,a € A},
the expected potential of k-variates++ satisfies:

Elp(A;€)] < (2+1logk)- O, @)

with & = (6 + 41'])(,750131; + 2¢bias + 2¢var~

(Proof in SI, Subsection 2.1) Five remarks are in order.
First, we retrieve AV’s bound in their setting (N = ¢yar =
0, $bias = Popt) (Arthur & Vassilvitskii, 2007). Second,

we may beat AV’s bound when ¢pias < @opt, Which is es-
sentially domain or setting dependent. Third, apart from
being n-stretching, there is no constraint on the choice of
probe functions g,: it can be randomized, iteration depen-
dent, etc. Fourth, the algorithm can easily be generalized
to the case where points are weighted. Last, as we show in
the following Lemma, the dependence in noise in ineq. (7)
can hardly be improved in our framework.

Lemma 3 Suppose each point in A is replaced (i.i.d.) by
a point sampled in po with ¥, = Y. Then any clustering
algorithm suffers: E[p(A; C)] = Q(JAltr (X)).

(Proof in SI, Subsection 2.2) We make use of k-
variates++ in two different ways. First, we show that
it can be used to prove approximation properties for al-
gorithms operating in different clustering settings: dis-
tributed, streamed and on-line clustering. The proof in-
volves a reduction (explained in SI, Section 2.4) from k-
variates++ to each of these algorithms. By reduction, we
mean there exists distributions and probe functions (even
non poly-time computable) for which k-variates++ yields
the same result in expectation as the other algorithm, thus
directly yielding an approximability ratio of the global op-
timum for this latter algorithm via Theorem 2. A key is
the choice of the probe functions, which, if not the identity
function, models the approximation of the seeding process
in the whole set by a subset of it, or by an alternative set.
Second, we show how k-variates++ can directly be spe-
cialized for settings for which no efficient application of
k-means++ was known.

3. Reductions from k-variates++

Despite tremendous advantages, k-means++ has a serious
downside: it is difficult to parallelize, distribute or stream it
under relevant communication, space, privacy and/or time
resource constraints (Bahmani et al., 2012). Although ex-
tending k-means clustering to these settings has been a ma-
jor research area in recent years, there has been no obvious
solution to tailoring k-means++ (Ackermann et al., 2010;
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Ref. Property

Them Us

Q) (Balcan et al., 2013) Communication complexity
(IT) (Balcan et al., 2013) Data points shared

(IID) (Balcan et al., 2013) Approximation bound

Q((nkd/e®) + n’k1n(nk))
Q((kd/e*) + nkIn(nk)) k

(2+1logk)(1+¢) - 8popt

O (n’%k)

(2+logk) - (10¢opt + 6¢f)

(1) (Ailon et al., 2009)
(ii) (Ailon et al., 2009)

Time complexity (outer loop)
Approximation bound

(2 + Ing)(l + n) N 32¢opt

— identical —
(2 +logk) - (8 4+ 4n)dopt + 2¢%)

(a) (Liberty et al., 2014)
(b) (Liberty et al., 2014)

Knowledge required
Approximation bound

Lower bound ¢™ < ¢opt None
O(logm - ¢opt)

(2 +logk) - (4+ (32/5%)) dopt

(A) (Nissim et al., 2007)
(B) (Nissim et al., 2007)
(©) (Nissim et al., 2007)

Knowledge required
Noise variance (o)
Approximation bound

O* (popt + MA2kR?/€?)

Adopt) None
O(AKkR/€) O(R/(e + logm))
O(log k(gopt + mR?/(c +logm)?))

Table 1. Comparison with some state of the art approaches for distributed (I-III), streamed (i, ii) and on-line clustering (a, b), and
differential privacy (A-C). We refer to related sections for notations. SI (Nock et al., 2016a) provides a more extensive table.

Algorithm 1 Dk-means++ (// PDk-means++)
Input: Forgy nodes (F;,A;),i € [n],
fort=1,2,....k
Round 1: N* picks i* ~;p [n] and asks F;- for a center;
Round 2 : F;« picks @ ~,,,. A;+ and sends a to F;, Vi;
// PDk-means++: F;« sends @ ~ p(,, a,) to Fi, Vi;
Round 3 : Vi, F; updates D;(A;) and sends it to N*;
Output: C = set of broadcasted as (or xs);

Ailon et al., 2009; Bahmani et al., 2012; Balcan et al., 2013;
Liberty et al., 2014; Shindler et al., 2011) (and others).

Distributed clustering We consider horizontally parti-
tioned data among peers. Distributed clustering performs a
synchronous computation of k-means++, as shown in Al-
gorithm 1. There are two readings of Algorithm 1. Without
more assumption about the distributed setting, node N* de-
notes one of the peers that randomly selects one of the n
peers that is going to sample a centroid with Forgy clus-
tering. We have n such Forgy nodes, (F;, A;),i € [n],
where A; is the dataset held by F;. Our result works re-
gardless of the way N* is elicited: it can be a fixed peer, a
peer that varies through time, or a special node (eventually
not being a peer). The notion of having a ”special” node
in collaborative services is common in a number of dis-
tributed domains, e.g. in hybrid or server assisted peer-to-
peer networks (Yang & Garcia-Molina, 2001). One could
also imagine that Forgy nodes are non-computationally in-
tensive and just able to perform uniform sampling in their
data, so that N* is a different node that performs non-
uniform sampling. This setting complies with privacy con-
straints in which data sharing between nodes is limited. In
particular, we can enforce that N* is not allowed to han-
dle any data (points) from the Forgy nodes. We therefore
split the location of the computational power from the lo-
cation of the data. We can also prevent the Forgy nodes
from exchanging any data between themselves, with the
sole exception of cluster centers. We note that none of the
algorithms of (Ailon et al., 2009; Balcan et al., 2013; Bah-

mani et al., 2012) would be applicable to this setting with-
out non-trivial modifications affecting their properties.

Algorithm 1 includes two variants: a protected version Dk-
means++ where Forgy nodes directly share local centers
and a private version PDk-means++ where the nodes share
noisy centers, such as to ensure a differentially private re-
lease of centers (with relevant noise calibration). Nota-
tions used in Algorithm 1 are as follows. Let D;(A;) =
Saca, Dela) and g2 = Dy(A)-(X,; Di(A,) 7 ift > 1
and qt[i’ = 1/n otherwise. Also, u; is uniform distribution.

Theorem 4 Let ) = 37,112 e a, le(Ai) —al3 be the
total spread of the Forgy nodes (c(A;) = (1/m;) -} 4 a).
At iteration k, the expected potential on the total data A =
U;A; satisfies ineq. (7) with

(b - 10¢0pt + 6¢9F
N 10¢opt + 4¢SF + 2¢var

(Dk-means++)
(PDk-means++

8)
)
Here, ¢opt is the optimal potential on total data A.

(Proof in SI, Subsection 2.4) We note that the optimal po-
tential is defined on the total data. The dependence on qﬁf s
which is just the peer-wise variance of data, is thus rather
intuitive. A positive point is that ¢f" is weighted by a fac-
tor smaller than the factor that weights the optimal poten-
tial. Another positive point is that this parameter can be
computed from data, and among peers, without disclosing
more data. Hence, it may be possible to estimate the loss
against the centralized, k-means++ setting, taking as refer-
ence eq. (8). To gain insight in the leverage that Theorem 4
provides, Table 1 compares Dk-means++ to (Balcan et al.,
2013)’s (e is the coreset approximation parameter), even
though the latter approach would not be applicable to our
restricted framework. To be fair, we assume that the algo-
rithm used to cluster the coreset in (Balcan et al., 2013) is
k-means++. We note that, considering the communication
complexity and the number of data points shared, Algo-
rithm 1 is a clear winner. In fact, Algorithm 1 can also win
from the approximability standpoint. The dependence in €
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Algorithm 2 sk-means++

Algorithm 3 OLk-means++

Input: Stream S
Step 1: 8 = {(sj,m;),7 € [n]} < SYNOPSIS(S,n);
Step2: fort =1,2,..., k

2.1:ift = 1 thenlet s ~,, Selses; ~ s Ss.t.

q
-1

Z mj/Dt(sj/) (9)

i'€ln]

@ (s;) = m;Di(s))

/I Dy(s;) = mincee [|s; — |3
22: G+ CU{s;};
Output: Cluster centers C;

prevents to fix it too small in (Balcan et al., 2013). Com-
paring the bounds in row (IIT) shows that if £ > 1/4, then
we can also be better from the approximability standpoint
if the spread satisfies ¢f" = O(dopt). While this may not
be feasible over arbitrary data, it becomes more realistic
on several real-world scenarii, when Forgy nodes aggregate
“local” data with respect to features, e.g., state-wise insur-
ance data, city-wise financial data, etc. When 7 increases,
this also becomes more realistic.

Streaming clustering We have access to a stream S,
with an assumed finite size: S is a sequence of points
ai,as,...,a,. We authorise the computation / output of
the clustering at the end of the stream, but the memory
n allowed for all operations satisfies n < m, such as
n = m® with a < 1 in (Ailon et al., 2009). We assume
for simplicity that each point can be stored in one storage
memory unit. Algorithm 2 (Sk-means++) presents our ap-
proach. It relies on the standard “trick” of summarizing
massive datasets via compact representations (synopses)
before processing them (Indyk et al., 2014). The approxi-
mation properties of Sk-means++, proven using a reduction
from k-variates++, hold regardless of the way synopses are
built. They show that two key parameters may guide its
choice: the spread of the synopses, analogous to the spread
of Forgy nodes for distributed clustering, and the stretching
properties of the synopses used as centers.

Theorem 5 Let p(a) = argming s ||a — s'||3,Va € S.
Let ¢8 = Y. s llp(a) — al|3 be the spread of o on syn-
opses set . Let 1 > 0 such that o is n-stretching on S.
Then the expected potential of Sk-means++ on stream S
satisfies ineq. (7) with ® = (8 + 41)¢opy + 2¢%. Here,
Gopt is the optimal potential on stream S.

(Proof in SI, Subsection 2.4) It is not surprising to see that
Sk-means++ looks like a generalization of (Ailon et al.,
2009) and almost matches it (up to the number of cen-
ters delivered) when &’ > k synopses are learned from

Input: Minibatch S;, current weighted centers C;
Step 1: if j = 1 then let s ~,,, S; else s ~ 0 S; s.t.

-1

Yo D(s)| 5 a0

s’eS;

a7 (s) = Dy(s)

/I Dy(s) = mincee ||s — |3
Step 2: €+ CU {s};

k’-means. Yet, we rely on a different — and more general
— analysis of its approximation properties. Table 1 com-
pares properties of Sk-means++ to (Ailon et al., 2009) (1
relates to approximation of the k-means objective in their
inner loop).

On-line clustering This setting is probably the farthest
from the original setting of the k-means++ algorithm.
Here, points arrive in a sequence, finite, but of unknown
size and too large to fit in memory (Liberty et al., 2014).
We make no other assumptions — the sequence can be ran-
dom, or chosen by an adversary. Therefore, the expected
analysis we make is only with respect to the internal ran-
domisation of the algorithm, i.e., for the fixed stream se-
quence as it is observed. We do not assume a feedback for
learning (common for supervised learning); so, we do not
assume that the algorithm has to predict a cluster for each
point that arrives, yet it has to be easily modifiable to do so.

Our approach is summarized in Algorithm 3
(OLk-means++), a variation of k-means++ which
consists of splitting the stream S into minibatches S; for
7 = 1,2, ..., each of which is used to sample one center.
uy denotes the uniform distribution with support S;. Let
R = maxg. qrcs [|a — a@'||2(< 00) be the diameter of S.

Theorem 6 Let ¢ > 0 be the largest real such that the
following conditions are met (for any A € Copt,j >
1): for any set of at most k centers C, 3, .calla —
/I3 > < (WNR2 and Yoenns, la—cl@)]3 > « -
> acalla—c(a)||3 (with c(a) defined in eq. (2)). Then
the expected potential of OLk-means++on stream S satis-
fies ineq. (7) with ® = (4 + (32/6%))dopt, Where opy is
the optimal potential on stream S.

(Proof in SI, Subsection 2.4) Notice that loss function
#(S,@) in eq. (2) implies the finiteness of S, and the
existence of ¢ > 0; also, the second condition implies
¢ < 1. In (Liberty et al., 2014), the clustering algo-
rithm is required to have space and time at most polylog
in the length of the stream. Hence, each minibatch can be
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reasonably large with respect to the stream — the larger
they are, the larger ¢. The knowledge of ¢ is not neces-
sary to run OLk-means++; it is just a part of the approxi-
mation bound which quantifies the loss in approximation
due to the fact that centers are computed from the par-
tial knowledge of the stream. Table 1 compares proper-
ties of OLk-means++ to (Liberty et al., 2014) (we picked
the fully on-line, non-heuristic algorithm). To compare the
bounds, suppose that batches have the same size, b, so that
log k = log(m/b). If batches are at least polylog size, up
to what is hidden in the big-Oh notation, our approximation
can be quite competitive when ¢ is large, e.g., if d is large
and optimal clusters are not too small.

4. Direct use of k-variates++

The most direct application domain of k-variates++ is dif-
ferential privacy. Several algorithms have independently
emphasised the idea that powerful mechanisms may be
amended via a carefully designed noise mechanism to
broaden their scope with new capabilities, without overly
challenging their original properties. Examples abound
(Hardt & Price, 2014; Kalai & Vempala, 2005; Chaudhuri
et al., 2011; Chichignoud & Lousteau, 2014), etc. Few ap-
proaches are related to clustering, yet noise injected is big
— the existence of a smaller, sufficient noise, was conjec-
tured in (Nissim et al., 2007) — and approaches rely on
a variety of assumptions or knowledge about the optimum
(See Table 1) (Nissim et al., 2007; Wang et al., 2015). To
apply k-variates++, we consider that p; = Id, V¢, and as-
sume 0 < R < 00 s.t. maxgqcalla —allz < R (a
current assumption in the field (Dwork & Roth, 2014)).

A general likelihood ratio bound for k-variates++ We
show that the likelihood ratio of the same clustering for
two “close” instances is governed by two quantities that
rely on the neighborhood function. Most importantly for
differential privacy, when densities p(,, g,) are carefully
chosen, this ratio always — 1 as a function of m, which is
highly desirable for differential privacy. We let NNy (a) =
arg ming e ||@ — a’||2 denote the nearest neighbour of a
inN, and let ¢(A) = (1/|A]) - > ,c4 @

Definition 7 We say that neighborhood in A is 8,,-spread
Sor some &,, > 0 iff for any N C A with [N| =k — 1, and
any B C Awith |B| = |A| — 1,

R
> lla—n~N(a)lf > = (11)

acB

Definition 8 We say that neighborhood in A is 0s-
monotonic for some b5 > 0O iff the following holds. VN C
A with [IN| € {1,2,....,k — 1}, for any A C A\N which is

Figure 2. Checking that & is small, for N the set of crosses (+).
Any set A of points close to each other, such as the black dots (e),
would be N-packed (pick = ¢(A) in this case), but would fail
to be N-packed if too spread (e.g., red dot (e) plus black dots).
Segments depict the Voronoi diagram of N. Best viewed in color.

N-packed, we have:
> lla — NNn(a)l3
acA

< (1+38)- Z la — NNxugecayy (@)l - (12)
acA

Set A is said N-packed iff there exists x € R? satisfying
T = arg mincenu(z) |l — cl3, Va € A.

It is worthwhile remarking that as long as k < |A| < oo,
both 0 < &, < oo and 0 < &5 < oo always exist. Infor-
mally, &,, brings that the sum of squared distances to any
subset of k£ — 1 centers in A must not be negligible against
the diameter R. 8, yields a statement a bit more technical,
but it roughly reduces to stating that adding one center to
any set of at most £ — 1 points that are already close to
each other should not decrease significantly the overall po-
tential to the set of centers. Figure 2 provides a schematic
view of the property, showing that the modifications of the
potential can be very local, thus yielding small 8, in ineq.
(12). The following Theorem uses the definition of neigh-
bouring samples: samples A and A’ are neighbours, written
A ~ A, iff they differ by one point. We also define P[C|A]
to be the density of output € given input data A.

Theorem 9 Fix o, = Id (Vt) and densities p(,, ¢ ) having
the same support ) in k-variates++. Suppose there exists
o(R) > 0 such that densities p(,, ¢ satisfy the following
pointwise likelihood ratio constraint:

p([.l.a_/ ,Oa/) (w)

< o(R) ,Va,a' € A,Yx € Q .(13)
p(ua,oa)(x)

Then, there exists a function f(.) such that, for any
Sw, 05 > 0 such that A is b,,-spread and b4-monotonic, for
any A’ =~ A, for any k > 0 and any € C Q of size k output
by Algorithm k-variates++ on whichever of A or A', the
likelihood ratio of © given A and A’ is upperbounded as:

P[CA']
P[C[A]

< (14 80) - f (k)Sur(1 + 84) o R)(14)
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(Proof in SI, Subsection 2.5) Notice that Theorem 9 makes
just one assumption (13) about the densities, so it can be
applied in fairly general settings, such as for regular expo-
nential families (Banerjee et al., 2005). These are a key
choice because they extensively cover the domain of dis-
tortions for which the average is the population minimiser.

An (almost) distribution-free 1 + o(1) likelihood ratio
We now show that if A is sampled i.i.d. from any distribu-
tion D which satisfies the mild assumption that it is locally
bounded everywhere (or almost surely) in a ball, then with
high probability the right-hand side of ineq. (14) is 1+0(1)
where the little-oh vanishes with m. The proof, of indepen-
dent interest, involves an explicit bound on &,, and 0.

Theorem 10 Suppose A with |A| = m > 1 sampled
i.i.d. from distribution D whose support contains a Lo
ball B5(0, R) with density inside in between €,, > 0 and
EM > €m. Letpp = €pr/€m (> 1). Forany0 < 8 < 1/2,
if (i) A C (0, R) and (ii) the number of clusters k meets:

62

< —.
4pp

vm (15)

then there is probability 1 — & over the sampling of A
that k-variates++, instantiated as in Theorem 9, satisfies

P[CIA']/P[CJA] < 1+ pk - g(m, k,d, R), VA’ ~ A, with

_ 4 64\" o(2R)
g(mak7d7R) - T 1 +(kfl) : m (16)
(Proof in SI, Subsection 2.6) The key informal statement
of Theorem 10 is that one may obtain with high probability
some “good” datasets A, i.e., for which 6,8, are small,
under very weak assumptions about the domain at hand.
The key point is that if one has access to the sampling, then
one can resample datasets A until a good one comes.

Applications to differential privacy Let .# be any al-
gorithm which takes as input A and k, and returns a set
of k centers C. Let P_4[C|A] denote the probability, over
the internal randomisation of ., that .# returns C given
A and k (k, fixed, is omitted in notations). Following is
the definition of differential privacy (Dwork et al., 2006),
tailored for conciseness to our clustering problem.

Definition 11 .7 is e-differentially private (DP) for k clus-
ters iff for any neighbors A ~ A’, set C of k centers,

P4[ClA/P.#[CIA] < expe. (17)

A relaxed version of e-DP is (¢, d)-DP, in which we require
P#[ClA] < P_4[C|A] - expe + ¢; thus, e-DP = (¢, 0)-
DP (Dwork & Roth, 2014). We show that low noise may be

affordable to satisfy ineq. (17) using Laplace distribution,
Lap(o/+/2). We refer to the Laplace mechanism as a pop-
ular mechanism which adds to the output of an algorithm a
sufficiently large amount of Laplace noise to be e-DP. We
refer to (Dwork et al., 2006) for details, and assume from
now on that data belong to a L; ball %;(0, R).

Theorem 12 Using notations and setting of Theorem 9, let
— (14 8,)%!
¢ o= g (SR -0F )k-—l .38
f(k)éw(1+65)

Then,  k-variates++ with p(, ¢y a product of
Lap(o1/V?2), for o1 = 2vV2R/é both meets ineq.
(17) and its expected potential satisfies ineq. (7) with

mR?
o = <I>1i8-<¢opt+~2> . (19)
€
On the other hand, if we opt for oo = 2\/§kR/e, then k-
variates++ is an instance of the Laplace mechanism and
its expected potential satisfies ineq. (7) with
mk?R? >

¢ = =

(1)2 =8 (¢opt + (20)

(Proof in SI, Subsection 2.7) A question is how do o7 (resp.
®,) and o4 (resp. ®2) compare with each other, and how
do they compare to the state of the art (Nissim et al., 2007;
Wang et al., 2015) (we only consider methods with prov-
able approximation bounds of the global optimum). The
key fact is that, if m is sufficiently large, then it happens
that we can fix 6,, = O(1/m) and 65 = O(1). The proof
of Theorem 10 in SI formalizes this intuition (SI, Subsec-
tion 2.6) and the experiments (SI, Section 3) display that
such regimes are indeed observed. In this case, it is not
hard to show that € = Q(e + logm), granting o1 = 0(02)

since
R
7= (g @D

i.e. the noise guaranteeing ineq. (17) vanishes at 1/ log(m)
rate. Consequently, in this regime, ®; in eq. (19) becomes:

mR?

O\ dopt + ———— | , 22
<¢Pt+<e+10gm>2> )

ignoring all factors other than those noted. Thus, the noise
dependence grows sublinearly in m. Since in this setting,
unless all datapoints are the same, 6, and & for A and any
possible neighbor A’ are within 1+ o(1), it is also possible
to overestimate d,, and &, to still have &, = O(1/m) and
ds = O(1) and grant e-DP for k-variates++. Otherwise, the
setting of Theorem 10 can be used to grant (e, 5)-DP with-
out any tweak. Table 1 compares k-variates++ to (Nissim
et al., 2007) in this large sample regime, which is actually
a prerequisite for (Nissim et al., 2007).

P, =
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Figure 3. Plot of ps(H) = f(k,p) (points below z = 0 —
isocontour shown — correspond to superior performances for
Dk-means++). Left: H{=k-means++; right: F{=k-means| (best
viewed in color).

5. Experiments

Due to the large number of experiments carried out, the
overview we provide appears in extenso in SI (Section 3).

Dk-means++ vs k-means++ and k-means; (Bahmani
etal., 2012) To address algorithms that can be reduced from
k-variates++ (Section 3), we have tested Dk-means++ Vs
state of the art approach k-means; to be fair with Dk-
means++, we use k-means++ seeding as the reclustering
algorithm in k-means). Parameters are in line with (Bah-
mani et al., 2012). To control the spread of Forgy nodes
#f" (Theorem 4), each peer’s initial data consists of points
uniformly sampled in a random hyperrectangle in a space
of d = 50 (expected number of peers points m; = 500, V).
We sample peers until a total of m ~ 20000 point is
sampled. Then, each point moves with p% chances to
a uniformly sampled peer. We checked that ¢ blows
up with p, i.e., >20 times for p = 50% with respect to
p = 0. A remarkable phenomenon was the fact that, even
when the number of peers n is quite large (dozens on av-
erage), Dk-means++ is able to beat both k-means++ and
k-means|, even for large values of p, as computed by ra-
tio py(3) = 100 - (¢(Dk-means++) — ¢(H))/d(IH) for
H € {k-means++, k-means } (Figure 3). Another positive
point is that the amount of data to compute a center for Dk-
means++ is in average ~ n times smaller than k-means.

k-variates++ vs Forgy-DP and GUPT To address al-
gorithms that can be obtained via a direct use of k-
variates++ (Section 4), we have tested it in a differential
privacy framework vs state of the art approach GUPT (Mo-
han et al., 2012). We let € = 1 in our experiments. We also
compare it to Forgy DP (F-DP), which is just Forgy initiali-
sation in the Laplace mechanism, with noise rate (standard
dev.) « kR/e. In comparison, the noise rate for GUPT is
x kR/(Le) at the end of its aggregation process, where £ is
the number of blocks. Table 2 gives results for the average
(over the choices of k) parameters used, k, €, and ratio pT#
where p;,(H) = ¢(H)/p(k-variates++) — values above
1 indicate better results for k-variates++. We use € as the

l Dataset [ m [ d [ k [ (€/€) l p?, (F-DP) o’ (GUPT)
LifeSci 26733 10 3 4.5 163.0 0.7
Image 34112 3 2.5 7.9 188.5 29

EuropeDiff 169 308 2 5 13.0 2857.1 40.4

Table 2. k-variates++ vs F-DP and GUPT (see text).

equivalent e for k-variates++, i.e. the value that guarantees
ineq. (17). From Theorem 12, when € > ¢, this brings a
smaller noise magnitude, desirable for clustering. The ob-
tained results show that k-variates++ becomes more of a
contender with increasing m, but its relative performance
tends to decrease with increasing k. This is in accordance
with the “good” regime of Theorem 12. Results on syn-
thetic domains display the same patterns, along with the
fact that relative performances of k-variates++ improves
with d, making it a relevant choice for ”big” domains.

In fact, extensive experiments on synthetic data (Nock
et al., 2016a) show that intuitions regarding the sublinear
noise regime in eq. (22) are experimentally observed, and
furthermore they may happen for quite small values of m.

6. Discussion and Conclusion

We first show in this paper that the k-means++ analysis
of Arthur and Vassilvitskii can be carried out on a signif-
icantly more general scale, aggregating various clustering
frameworks of interest and for which no trivial adaptation
of k-means++ was previously known. Our contributions
stand at two levels: (i) we provide the “meta” algorithm,
k-variates++, and two key results, one on its approxima-
tion abilities of the global optimum, and one on the likeli-
hood ratio of the centers it delivers. We do expect further
applications of these results, in particular to address sev-
eral other key clustering problems: stability, generalisation
and smoothed analysis (Arthur et al., 2011; von Luxburg,
2010); (ii) we provide two examples of application. The
first is a reduction technique from k-variates++, which
shows a way to obtain straight approximabilty results for
other clustering algorithms, some being efficient proxies
for the generalisation of existing approaches (Ailon et al.,
2009). The second is a direct application of k-variates++ to
differential privacy, exhibiting a noise component signifi-
cantly better than existing approaches (Nissim et al., 2007;
Wang et al., 2015).

Due to the lack of space, we refer to the SI (Nock et al.,
2016a) for the extension of our results to ’extreme cases”
of distortions (other than L32) that do not even admit pop-
ulation minimizers in closed form (Nielsen & Nock, 2015)
— clustering being a huge practical problem, it is indeed
reasonable to tailor the distortion to the application at hand.
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