Supplementary Material:
Optimality of Belief Propagation for Crowdsourced Classification

A. Proof of Lemma 1

We start with the conditional probability of error given A in the following:

Pr[s, # 5,(A) | A] = min{Pr[s, = +1| A],Pr[s, = —1| A]}.
This directly implies that
[ ~ Pifs, # &5(4) | 4]

[[Pr +1|A]—Pr[sp:—1|A]|} (18)

l\D\»—* ﬁ

Then, by simple algebra, it follows that

A(5,(4)

1
= 5ZPr[A] | Prfs, = +1 | A] — Pr[s, = —1 | A]|
A
= %Z |Pr[A,s, = +1] — Pr[4,s, = —1]|
A

1 1
— 3 > 5 IPrlA s, =+~ PalA |5, = 1]
A
where for the last equality we use Pr[s, = +1] = Pr[s, = —1] = 1/2.
Let (;5:; denote the distribution of A given s, = +1, and let qbp_ be the distribution of A given s, = —1,i.e.,
¢ (A) = Pr[A | s; = +1] and ¢; (A) = Pr[A | s; = —1]
Then we have a simple expression of A(87(A)) as follows:

A(55(A)) = duy(6), 6,) (19)

where we let dry denotes the total variation distance, i.e., for distributions ¢ and 1) on the same space {2, we define

dry(6,7)) - Z|<z>

UEQ

Next we note that since 9V, o5 blocks every path from the outside of G, 21 to p, the information on the outside of G, 21,
A\ A, 2k, is independent of s, given spy, ,,, i.e.,

Pr[sl) | Al),2kv San,zk] = PI‘[Sp ‘ A, San,zk]' (20)

Hence if we set z/JZQ . to be the distribution of A and spv, ,, given s, = +1 and similarly for ¢, , we have

A(2; (Ap,2k)) = dTV(w;2ka 1%_,21@)-
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Noting that gb;“ and ¢, can be obtained by marginalizing out sgv, ,, in 1/1;'2  and 1/1;2 «» it follows that

dr(67, ¢, )
= 3 165 (4) — 6, (4)
A

= %Z Z (w;r(A’ Savp,%) - 1/}; (A> sﬁVp,zk))
A

80V, o

% Z Z ‘wj(A’ Savp,%) -y (A> San,zk)‘

A sav, g

= dTV(wZQkaw;Qk) (21)

which implies A(2* (A, 21)) > A(5%(A)).

We now study A(2*(A, 1)) with different k. Observe that 9V, ox. blocks every path from 0V, o 42 to p, i.e., sav, ,, ., is

independent of s, given spy, ,, . Thus from (20) it follows that

Pr[sp ‘ Av San,zk] = Pr[sp | A, 58Vp,2k788Vp,2k+2]'

Therefore, w;% 4o and ¥, o can be obtained from w;% and 1), 5, by marginalizing out sgv, ,,,. Similarly to (21),
we have

dry(VF oy 0 Vranya) < A op ¥ 1)

which completes the proof of Lemma 1.

B. Proof of Lemma 2

The proof of Lemma 2 is analog to that of Lemma 1. Let @j be the distribution of A’ given s, = +1 and ¢, be the
distribution of A’ given s, = —1, i.e.,

A(3,(A) = drv(ey 0, )-

Since @If and ¢ can be obtained by marginalizing out A \ A’ from cb[f and ¢, in (19), using the same logic for (21), we
have

drv(ef, ;) < dw(e),9,)

which completes the proof of Lemma 2.

C. Proof of Lemma 3

We start with several notations which we study for the proof. For i € V, o, let T; = (V;, W;, E;) be the subtree rooted
from ¢ including all the offsprings of ¢ in tree G, 2. We let OV; denote the leaves in T; and A; := {A;, : (j,u) € E;}.
Define

Xi = PI‘[Sl =+1 | Az] - PI‘[SZ' =-1 ‘ Az]

Here X;; is often called the magnetization of s; given A;. Let OV; denote the leaves in T; and A; := {A;, : (j,u) € E;}.
Similarly, given A; and sgv,, we define the biased magnetization Y;:

Y; :=Prs; = +1 ]| A, sov,] — Prls; = =1 | 4;, sov,].
Using the alternative expression of A in (18), one can check that

0 < A(Z(4i) — A5 (A))

K2
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1
= 5 B [[Yil - 1X:]]
< E[lY; — Xil]

where the expectation is taken with respect to A; and sgv,.

Next, for 0 < ¢t < k, we define i(t) € OV, 21,—2¢ to be a random node chosen uniformly at random so that i(0) is a leaf node
in G o, i.e.. X;(0) = 0 thus | X;(0) — Yj()| < 1, and i(k) is the root p, i.e., A(25(A4,)) —A(85(4,)) = 5 E[|Y,] —[X,]].
Therefore it is enough to show that for each 0 < ¢ < k

1
E [\/|Xz'<t+1> - Yz‘(t+1>\] <;E [ | Xie) — Yz‘(t)@ (22)

since this implies [E { |Yp — Xp‘ <27% je,E HYP — XPH — 0as k — oco. Here E [ | Xit) — Yi(t)” quantifies the
correlation from the information at the leaves OV to s;;). We study the correlation after taking the square root. The
square root magnifies the correlation especially when it is small and the magnification provides an analytical consistency
even after the correlation becomes small. In particular, we will show that the correlation exponentially decays with respect
to 0 < ¢ < k in what follows.

To do so we study certain recursions describing relations among X and Y. Let 0i be the set of all the second offsprings
of 7 and let u(ij) denote the worker to whom assigned tasks ¢ and j € Ji because r = 2. Then, using Bayes’ rule with

Pris; | 4;] = #, we have the following recurrence for X:
X = hi(Xai)
Do 8505 Ty 95(%) .
Hjeai g;;(Xj) + Hjeﬁi gi;(Xj)

where for 7 and j € 04, the functions g;; and g;; are the marginal probability of s; = +1 and s; = —1 given A;y (i), Aju(ij)
and X, respectively, i.e.,

95(X;) o< Pr [si = +1 | Agugigy Ajuiiy)s X5
= fugp (s = +1,57) (H;JXJ>
S
9i7(X5) o< Pr [si = =1 | Ajuiigys Ajugig), Xi)
= fup(si=—1,55) (H;JXJ>

In particular, for notational convenience, we use g;'; and gl_J in what follows:

(1+M)(1+51'j) ifO'ij = ++
14 p)(1 = dx; ifo;; = +—
g;ij-(x]) = ( )( /J) ) J B
(1 =p) (A =0d'z;) ifoy; =—+
(I—p)(+08z;) ifo; =——
(1—p)(1- 5/l‘j) ifo;; = ++
- (I =p)(A+0'z;) ifoy =+-
9i5(x5) = 4 e
14+ p)(1+ox;) ifoy;=—+F
(I+p)(A—=dz;) ifoy; =——

where for 7 and j € 0i, we let o;; denote the ordered pair of signs of A;,(;;) and Aj,(;;), and using

w:=E[2p,—1] and 0:= Varlp]
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we define
§:=1—(1-0)(1—p) and & :=1—(1-0)(1+ p).
From the same reasoning for (23), we have the same recurrence when every instance of X is replaced by Y, i.e.,
Yi = hi(Yai)- (24)

From the above initialization of X; oy and Yj(q), the recurrence in (23) and (24) generates X;(;) and Y;4) forall 1 <t <k,
where the recurrence is the function of A, o, since the functions gjj and g;; depend on 0.

Assuming the true label s; = +1 forall i € G, o, for each i and j € 04, 045 is ai.i.d. random variable with the following
distribution:

2
| e B - p) = - 0) (1 25
Tii T 4 w.p. E[(1 = pu)pu] = (1 —0) % >
(1= pu)?] = (54) (Hy)

We note that for any 4, the true label s; is uniformly distributed and it is clear that |0i| > [ — 1. In addition, the choice of
i(t) in (22) is uniform. Therefore, without loss of generality, we focus on a non-leaf node i € V, o, \ OV, 21, and show that

B [VIXi Y] < 2(11_1)%1? {\/Xj Yj@ : (26)

where we let ET denote the conditional expectation given s; = +1 forall j.
To this end, we will use the mean value theorem. We first obtain a bound on gradient of h;(z) for z € [—1,1]%%. Define
9 (@) = [1,c0: 9i5(x;) and g () := ], o, 9i;(25). Then, by basic calculus, we have

Ohi 9 g —g;

Ox; 0w gf +g;

-9 _ + 99
9i " Bz; Y9 " Ba;

- (9 +9; )2
L
(9?—':—?;)2 (1+5z]§1(91_5/%,) ifo;; = ++
_) (gﬁzr!;i._)? (lfézj;l(01+5zmj) ifo;; =+—
B (g?}qgigw (1+5mg§l(91_5/mj) if oy = —+
(g?ﬁr?;)z (175%;1(91%/%) ifo;; =——.

Since z € [—1,1]%%, both g;" and g; are positive. Thus we have

’ 9 9
(97 +97)?

We note here that one can replace the RHS with gf /g; . However, in our analysis, we focus on the case of s; = +1 and
(27) because plugging Xp; or Y; into x, h;(x), which is the magnetization X; or Y;, will be large thus g; / gj will be
a tighter upper bound than gj' /g; - Our analysis covers all the general cases because the same analysis with gj' /g; will
work with s; = —1 conversely.

g,_
<%
9;

27

From (27), it follows that for z € [—1, 1]%%
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where we define

46 1—p

roa? \17p ) o =++
40 (1l-p o — 4
() = § (70w \Tn ifoy; =+
9\ Pl =Y 40 (14n ifo,, = —+
2,2 \T-p ij =
46 I4u

aroay (1= ) foig=——.

By simple algebra with ;¢ > 0, one can check that for given 0;; and z; € [-1,1], each of g;;(z;) and g;; (xJ)/gj;(a:J) is
strictly positive and monotonically decreasing or increasing. Thus, for z,y € [—1,1]% and A € [0, 1], we have

oh; 95 (i) 9550 (i)
(/\fv+(1—/\)y)‘ < max {g;;(z;),9i;(y;)} | | max{ =% ;= :
‘ Oz R JI;IJ g3 (i) g5 (ys)
Then, plugging Xy; and Yy, into x and y and using the mean value theorem, it follows that

|hi(Xai) — hi(Ya:)]

oh;
< Z X5 =Y ‘ax_(/\XOi + (1= A)Ya;)
J

jEBI

< Z | X — Y[ - max {g;j(Xj)agz/'j(}/j)} X H max{ (28)

jedi 3%

90 (X31) 95 (Y1)
935 (X3)" 935, (Vi)

Note that in the RHS, the first two terms depend on each other. To remove the dependence, we use a constant bound 7 of
max {ggj (X5), 91 (Y;)} in what follows:

— s
ni=, max g (;)

_ 460 14 46 1+
= max {m (ﬁ) ) (T+67)2 (ﬁ)}

where the last equality is straightforward from simple algebra with the fact that 1 € [0,1] and 6 € [0, 1]. Then, by taking

square root of (28) with 7, it follows that
g;j/(Xj/) Q;I(YJ’)
max {\/ggmx,-,)’ \/g;/m/) '

E* VX Y]]
We obtain a bound of the last term in the following lemma whose proof is presented in Appendix D.

<Y E [m} < i [ EY

jedi J'#i

The square root is taken to .

Lemma 4. For given i := E[2p,, — 1] > 0, there exists a constant C,, such that for any | > C,,
9.5 (¥5) /1w

max{ gf;(Yj)}l svi=7%

Then we can find a constant C, > C, such thatif | — 1 > C,

<.

C,/2
U(l_“;)M < 1 <1

which implies (26) and completes the proof of Lemma 3.
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D. Proof of Lemma 4
9:;(X;)

.
9ij (X5)
Using the conditional distribution of ¢;; given s; = s; = +1 in (25), it follows that for -1 <z <1

et |, [9®
I(z) :=E [ 9;(9”)1

For notational convenience, we let I' () denote the conditional expectation of given s; = s; = +1 with X; = 2.

V1—p? 1—06x 1+ 1+ 0x 1—6x
=+ ((1+¢ 1-96 1-¢ 1446
4 [( +9) 1+5m+( ) 1—(5x+( ) 1—6’m+(+ ) 146«
By simple algebra, it is not hard to check that for —1 < x <1, %gf) <0, i.e., ['(x) is non-increasing. Hence we have

+ 9:;(X5)
E lmax{\/g:rj(xj),

where it is straightforward to check that

;QQH <D(=1)Pr¥[X; €0,Y; <0 + T(0) (1 - Pr*[X; <0,Y; <0])
J

—1) (Prt[X; <0]+Prt[Y; <0]) + T(0) (29)

Then we will show that
. _ 1 2
Prfjy; <0] < Pri[X;<0] < exp <M) . (30)

Combining (29) and (30) it follows that

- - . 2
+ 9:;(X5) 9:;(Y5) < 1. _(|6.7| — l)u 2
lmax{ )\ o <T(-1)-2exp e + V1—p
where we can find constantly large C}, such that for all |0j| > Cj, the first term in RHS is arbitrarily small, i.e., less than

V1= 12/2 — /1 — 2 because I'(—1) is constant but 2 exp (—W) with g > 0 exponentially decreases with
respect to |9

To prove (30), we first note that the MAP estimator 87 (A;) of s; given A; is identical to estimating s; = +1 if X is
positive and s; = —1 otherwise. Here the MAP estimator 37(A;) outperforms MV with {A;, ;) : j' € dj}. Using
Hoeffding’s bound the error probability of MV is bounded as follows:

dj| — Dp?
Pr+[Xj <0] < Pr+[sj #+ §EAV] < exp (—W)
where Lemma 2 implies the first inequality. In addition, Z7 (A;) of s; given A; and 9V is identical to estimating s; = +1
if Y is positive and s; = —1 otherwise. Hence, from Lemma 1, it directly follows the first inequality in (30). This
completes the proof of Lemma 4.



