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1. Proof of Theorem 1
In this section, we prove our main theorem, Theorem 1,
which is repeated here for convenience.

Theorem 1. Consider a two-layer rectifier network with n
hidden units represented in its general form (Eq. (3)). Then,
for any input x, the following conditions are equivalent:

1. The network classifies the example x as positive.

2. There exists a subset S1 of P such that, for ev-
ery subset S2 of N , we have w0 +

∑
k∈S1 ak(x) −∑

k∈S2 ak(x) ≥ 0.

3. For every subset S2 of N , there exists a subset S1 of
P such that w0 +

∑
k∈S1 ak(x)−

∑
k∈S2 ak(x) ≥ 0.

Step 1: Equivalence of conditions 1 and 2

Let us prove that condition 1 implies condition 2 first. We
can construct a subset S∗1 of P

S∗1 = {k : k ∈ P and ak(x) ≥ 0},

such that ∑
k∈P

R(ak(x)) =
∑
k∈S∗1

ak(x).

The example x is classified as positive implies that

w0 +
∑
k∈S∗1

ak(x) ≥
∑
k∈N

R(ak(x)).

For any subset S2 of N , we have∑
k∈N

R(ak(x)) ≥
∑
k∈S2

R(ak(x)) ≥
∑
k∈S2

ak(x).

Therefore, for any subset S2 of N ,

w0 +
∑
k∈S∗1

ak(x) ≥
∑
k∈S2

ak(x).

Now, we need to show that condition 2 implies condition 1.
Assume there is a subset S1 ofP such that for any subset S2

of N , w0 +
∑
k∈S1 ak(x) ≥

∑
k∈S2 ak(x). Let us define

a specific subset S∗2 of N ,

S∗2 = {k : k ∈ N and ak(x) ≥ 0},

such that ∑
k∈N

R(ak(x)) =
∑
k∈S∗2

ak(x).

We know that∑
k∈P

R(ak(x)) ≥
∑
k∈S1

R(ak(x)) ≥
∑
k∈S1

ak(x)

and
w0 +

∑
k∈S1

ak(x) ≥
∑
k∈S∗2

ak(x).

Therefore,

w0 +
∑
k∈P

R(ak(x)) ≥
∑
k∈N

R(ak(x))

which means that the decision function y in Eq. (3) is pos-
itive.

Step 2: Equivalence of conditions 1 and 3

That condition 1 implies condition 3 holds by virtue of the
first part of the previous step. We only need to prove that
condition 3 implies 1 here. Assume for all subset S2 of N
there is a subset S1 of P such that w0 +

∑
k∈S1 ak(x) −∑

k∈S2 ak(x) ≥ 0. Use the same S∗2 defined in previous
step

w0 +
∑
k∈P

R(ak(x)) ≥ w0 +
∑
k∈S1

R(ak(x))

≥ w0 +
∑
k∈S1

ak(x)

≥
∑
k∈S∗2

ak(x)

=
∑
k∈N

R(ak(x))

Therefore, the decision function y in Eq. (3) is positive.
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2. Proof of Theorem 2
The first part of this theorem says that every rectifier net-
work with n hidden units that are all positive or negative
can be represented by a threshold network with 2n− 1 hid-
den units. This is a direct consequence of the main theo-
rem.

The second part of the theorem says that for any n, there are
families of rectifier networks whose equivalent threshold
network will need an exponential number of hidden thresh-
old units. We prove this assertion constructively by pro-
viding one such rectifier network. Consider the decision
function of a two-layer rectifier network

y = sgn[−1 +R(x1) +R(x2) + · · ·+R(xn)]

where xi is the ith component of the input vector (recall
that the dimensionality of the input d ≥ n). From Theo-
rem 1 the decision boundary of this network can be deter-
mined by 2n−1 hyperplanes of the form−1 +

∑
i∈S xi =

0, each of which corresponds a non-empty subset S ∈ [n].
The output y is positive if any of these hyperplanes classify
the example as positive.

To prove that we need at least 2n − 1 threshold units to
represent the same decision boundary, it suffices to prove
that each of the 2n − 1 hyperplanes is needed to define the
decision boundary.

Consider any hyperplane defined by non-empty subset S ∈
[n] whose cardinality s = |S|. Let S̄ be the complement of
S. Consider an input vector x that satisfies the following
condition if s > 1:{

1/s < xi < 1/(s− 1), if i ∈ S
xi < −1/(s− 1), if i ∈ S̄

For those subsets S = {xj} whose cardinality is one, we
can let xj > 1 and all the other components xi < −xj .
Clearly, the rectifier network will classify the example as
positive. Furthermore, by construction, it is clear that
−1 +

∑
i∈S xi > 0, and for all other subset S ′ ∈ [n],

−1 +
∑
i∈S′ xi < 0. In other words, only the selected hy-

perplane will classify the input as a positive one. That is,
this hyperplane is required to define the decision boundary
because without it, the examples in the above construction
will be incorrectly classified by the threshold network.

Therefore we we have identified the decision boundary of
the given rectifier network as an polytope with exactly 2n−
1 faces, by constructing 2n − 1 hyperplanes using 2n − 1
non-empty subsets S ∈ [n]. To complete the proof, we
need to show that other construction methods cannot do
better than our construction, i.e., achieving same decision
boundary with less hidden threshold units. To see this, note
that for each face of the decision polytope, one needs a

hidden threshold unit to represent it. Therefore no matter
how we construct the threshold network, we need at least
2n − 1 hidden threshold units.

3. Proof of Lemma 2
In this section, we provide a simple example of a two-layer
threshold network, whose decision boundary cannot be rep-
resented by a two-layer rectifier network with fewer hidden
units. Consider a threshold network

y = sgn[n− 1 + sgn(x1) + sgn(x2) + · · ·+ sgn(xn)],

where xi is the ith component of the input vector (here we
assume the dimensionality of the input d ≥ n > 1). It
is easy to see that the decision function of this network is
positive, if, and only if at least one of the component xi
is non-negative. From a geometric point of view, each xi
defines a hyperplane xi = 0. Let H1 be the set of n such
hyperplanes,

H1 = {xi = 0 : i ∈ [n]}

These n hyperplanes form 2n hyperoctants and only one
hyperoctant gets negative label.

Now, suppose we construct a two-layer network with m
rectifier units that has the same decision boundary as the
above threshold network, and it has the form

y = sgn

(
w0 +

∑
k∈P

R (ak(x))−
∑
k∈N

R (ak(x))

)

using the same notations as in Theorem 1. From the theo-
rem, we know the decision boundary of the above equation
is determined by 2m hyperplane equations and these 2m

hyperplanes form a set H2,

H2 =
{
w0+

∑
k∈S1

ak(x)−
∑
k∈S2

ak(x) = 0 : S1 ⊆ P,S2 ⊆ N
}

Because we assume the rectifier network has the same de-
cision function as the threshold network, we have

H1 ⊆ H2.

Note that the hyperplanes in H1 have normal vectors in-
dependent of each other, which means there are at least n
hyperplanes in H2 such that their normal vectors are inde-
pendent. Recall that ak(x) = uk · x + bk, so all normal
vectors for hyperplanes in H2 can be expressed using lin-
ear combinations of m vectors u1, . . . ,um. Since these
m vectors together define the n orthogonal hyperplanes in
H1, it is impossible to have m < n. In other words, for
this threshold network, the number of hidden units cannot
be reduced by any conversion to a ReLU network.
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4. Proof of Theorem 3
In this section we prove our theorem about hidden layer
equivalence, Theorem 3, which is repeated here for conve-
nience.

Theorem 3. If the true concept of a 2n-class classifier is
given by a two-level threshold network in Eq. (7), then we
can learn a two-layer rectifier network with only n hidden
units of the form in Eq. (9) that is hidden layer equivalent
to it, if for any example x, we have

‖(V − UT )T ‖∞ ≤
γ(x)

2‖x‖∞
,

where γ(x) is the multiclass margin for x, defined as the
difference between its highest score and second-highest
scoring classes.

Let us define ε = ‖(V − UT )T ‖∞ ≤ γ(x)
2‖x‖∞ . From the

definition of the L∞ vector norm, we have

‖(V − UT )Tx‖∞ ≥ |((V − UT )Tx)k|

for all x and all k. The subscript k labels the kth component
of the vector. From the definition of the induced norm we
have

‖(V − UT )Tx‖∞ ≤ ε‖x‖.

Combining the above two inequalities we have

|((UT )Tx)k − (V Tx)k| ≤ ε‖x‖

for all x and all k. Assuming k∗ is the highest scoring unit,
for k∗ we have

(V Tx)k∗ − ((UT )Tx)k∗ ≤ ε‖x‖,

For any other k′ 6= k∗, we have

((UT )Tx)k′ − (V Tx)k′ ≤ ε‖x‖.

From the definition of the margin γ(x), we also know that

(V Tx)k∗ − (V Tx)k′ ≥ γ(x) ≥ 2ε‖x‖.

Combining the above three inequalities, we have

((UT )Tx)k′ ≤ ((UT )Tx)k∗

which means if k∗ is the correct class with the highest score
according to the weight parameters V , it will still be the
highest scoring class according to the weight parameters
UT , even if V 6= UT .


