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Abstract

Rectified Linear Units (ReLUs) have been shown
to ameliorate the vanishing gradient problem, al-
low for efficient backpropagation, and empiri-
cally promote sparsity in the learned parameters.
They have led to state-of-the-art results in a va-
riety of applications. However, unlike threshold
and sigmoid networks, ReLU networks are less
explored from the perspective of their expressive-
ness. This paper studies the expressiveness of
ReLU networks. We characterize the decision
boundary of two-layer ReLU networks by con-
structing functionally equivalent threshold net-
works. We show that while the decision bound-
ary of a two-layer ReLU network can be captured
by a threshold network, the latter may require
an exponentially larger number of hidden units.
We also formulate sufficient conditions for a cor-
responding logarithmic reduction in the number
of hidden units to represent a sign network as a
ReLU network. Finally, we experimentally com-
pare threshold networks and their much smaller
ReLU counterparts with respect to their ability to
learn from synthetically generated data.

1. Introduction
A neural network is characterized by its architecture, the
choices of activation functions, and its parameters. We
see several activation functions in the literature – the most
common ones being threshold, logistic, hyperbolic tan-
gent and rectified linear units (ReLUs). In recent years,
deep neural networks with rectifying neurons – defined as
R (x) = max(0, x) – have shown state-of-the-art perfor-
mance in several tasks such as image and speech classifica-
tion (Glorot et al., 2011; Nair & Hinton, 2010; Krizhevsky
et al., 2012; Maas et al., 2013; Zeiler et al., 2013).
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ReLUs possess several attractive computational properties.
First, compared to deep networks with sigmoidal activation
units, ReLU networks are less affected by the vanishing
gradient problem (Bengio et al., 1994; Hochreiter, 1998;
Glorot et al., 2011). Second, rectifying neurons encourage
sparsity in the hidden layers (Glorot et al., 2011). Third,
gradient back propagation is efficient because of the piece-
wise linear nature of the function. For example, Krizhevsky
et al. (2012) report that a convolutional neural network with
ReLUs is six times faster than an equivalent one with hy-
perbolic tangent neurons. Finally, they have been empiri-
cally been shown to generalize very well.

Despite these clear computational and empirical advan-
tages, the expressiveness of rectifier units is less studied
unlike sigmoid and threshold units. In this paper, we ad-
dress the following question: Which Boolean functions do
ReLU networks express? We analyze the expressiveness
of shallow ReLU networks by characterizing their equiva-
lent threshold networks. The goal of our analysis is to of-
fer a formal understanding for the successes of ReLUs by
comparing them to threshold functions that are well stud-
ied (e.g. Hajnal et al., 1993). To this end, the contributions
of this paper are:

1. We provide a constructive proof that two layer ReLU
networks are equivalent to exponentially larger thresh-
old networks. Furthermore, we show that there exist
two layer ReLU networks that cannot be represented
by any smaller threshold networks.

2. We use this characterization to define a sufficient con-
dition for compressing an arbitrary threshold network
into a logarithmically smaller ReLU network.

3. We identify a relaxation of this condition that is appli-
cable if we treat hidden layer predictions as a multi-
class classification, thus requiring equivalence of hid-
den layer states instead of the output state.

1.1. Expressiveness of Networks: Related Work

From the learning point of view, the choice of an activa-
tion function is driven by two related aspects: the expres-



Expressiveness of Rectifier Networks

siveness of a given network using the activation function,
and the computational complexity of learning. Though this
work studies the former, we briefly summarize prior work
along both these lines.

Any continuous function can be approximated to arbitrary
accuracy with only one hidden layer of sigmoid units (Cy-
benko, 1989), leading to neural networks being called “uni-
versal approximators”. With two layers, even discontinu-
ous functions can be represented. Moreover, the approxi-
mation error (for real-valued outputs) is insensitive to the
choice of activation functions from among several com-
monly used ones (DasGupta & Schnitger, 1993), provided
we allow the size of the network to increase polynomially
and the number of layers to increase by a constant factor.
Similarly, two layer threshold networks are capable of rep-
resenting any Boolean function. However, these are exis-
tence statements; for a general target function, the number
of hidden units may be exponential in the input dimension-
ality. Maass et al. (1991; 1994) compare sigmoid networks
with threshold networks and point out that the former can
be more expressive than similar-sized threshold networks.

There has been some recent work that looks at the ex-
pressiveness of feed-forward ReLU networks. Because the
rectifier function is piece-wise linear, any network using
only ReLUs can only represent piece-wise linear functions.
Thus, the number of linear partitions of input space by the
network can be viewed as a measure of its expressiveness.
Pascanu et al. (2014) and Montufar et al. (2014) show that
for the same number of ReLUs, a deep architecture can
represent functions with exponentially more linear regions
than a shallow architecture. While more linear regions in-
dicate that more complex functions can be represented, it
does not directly tell us how expressive a function is; at
prediction time, we cannot directly correlate the number of
regions to the way we make the prediction. Another way of
measuring the expressiveness of a feed-forward networks
is by considering its classification error; Telgarsky (2015)
compares shallow and deep ReLU networks in this manner.

The learning complexity of neural networks using vari-
ous activation functions has also been studied. For in-
puts from the Boolean hypercube, the two-layer networks
with threshold activation functions is not efficiently learn-
able (e.g. Blum & Rivest, 1992; Klivans & Sherstov, 2006;
Daniely et al., 2014). Without restricting the weights, two
layer networks with sigmoid or ReLU activations are also
not efficiently learnable. We also refer the reader to Livni
et al. (2014) that summarizes and describes positive and
negative learnability results for various activations.

2. What do ReLUs express?
To simplify our analysis, we primarily focus on shallow
networks with one hidden layer with n units and a single
binary output. In all cases, the hidden layer neurons are the
object of study. The output activation function is always the
threshold function. In the rest of the paper, we use bold-
faced letters to denote vectors. Input feature vectors and
output binary labels are represented by x and y ∈ {±1}
respectively. The number of hidden units is n. The weights
and bias for the kth rectifier are uk and bk; the weights and
bias for the kth sign units are vk and dk. The weights for
the output unit are w1 through wn, and its the bias is w0.

2.1. Threshold networks

Before coming to the main results, we will first review the
expressiveness of threshold networks. Assuming there are
n hidden units and one output unit, the output of the net-
work can be written as

y = sgn

(
w0 +

n∑
k=1

wk sgn (vk · x + dk)

)
. (1)

Here, both hidden and output activations are the sign func-
tion, which is defined as sgn (x) = 1 if x ≥ 0, and −1
otherwise. Each hidden unit represents one hyperplane (pa-
rameterized by vk and dk) that bisects the input space into
two half spaces. By choosing different weights in the hid-
den layer we can obtain arbitrary arrangement of n hyper-
planes. The theory of hyperplane arrangement (Zaslavsky,
1975) tells us that for a general arrangement of n hyper-
planes in d dimensions, the space is divided into

∑d
s=0

(
n
s

)
regions. The output unit computes a linear combination of
the hidden output (using the w’s) and thresholds it. Thus,
for various values of the w’s, threshold networks can ex-
press intersections and unions of those regions. Figure 1
shows an example of the decision boundary of a two-layer
network with three threshold units in the hidden layer.

v1

v2

v3

Figure 1. An example of the decision boundary of a two-layer net-
work in two dimensions, with three threshold units in the hidden
layer. The arrows point towards the half-space that is classified as
positive (the green checked region).
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2.2. Rectifier networks

In this section, we will show that the decision boundary
of every two-layer neural network with rectifier activations
can be represented using a network with threshold activa-
tions with two or three layers. However, the number of
hidden threshold units can be exponential compared to the
number of hidden rectifier units.

Consider a network with one hidden layer of n ReLUs, de-
noted by R (·). For a d dimensional input x, the output y is
computed as

y = sgn

(
w0 +

n∑
k=1

wkR (uk · x + bk)

)
. (2)

Here uk and bk are weight and bias parameters for the Re-
LUs in the hidden layer, and the wk’s parameterize the out-
put unit. To simplify notation, we will use ak to denote
the the pre-activation input of the kth hidden unit. That is,
ak(x) = uk · x + bk. This allows us to simplify the output
as sgn

(
w0 +

∑
k∈[n] wkR (ak(x))

)
. Here, [n] is the set

of positive integers not more than n. Note that even when
not explicitly mentioned, each ak depends on the uk and
the bk parameters.

By definition of the rectifier, for any real number c, we have
cR (x) = sgn(c)R (|c|x). Thus, we can absorb |wk| into
the rectifier function in Eq. (2) without losing generality.
That is, other than w0, all the other output layer weights
are only relevant up to sign because their magnitude can
be absorbed into hidden layer weights. We can partition
the hidden units into two sets P and N , depending on the
sign of the corresponding wk. That is, let P = {k : k ∈
[n] and wk = +1} and let N = {k : k ∈ [n] and wk =
−1}. We will refer to these partitions as the positive and
negative hidden units respectively.

This observation lets us state the general form of two-layer
ReLU networks as:

y = sgn

(
w0 +

∑
k∈P

R (ak(x))−
∑
k∈N

R (ak(x))

)
. (3)

The following two layer rectifier network will serve as our
running example through the paper:

y = sgn (w0 +R (a1(x))−R (a2(x))−R (a3(x))) .
(4)

This network consists of three ReLUs in the hidden layer,
one of which positively affects the pre-activation output
and the other two decrease it. Hence, the set P = {1}
and the set N = {2, 3}.

Using the general representation of a two layer network
with rectifier hidden units (Eq. (3)), we can now state our
main theorem that analyzes the decision boundary of recti-
fier networks.

Theorem 1 (Main Theorem). Consider a two-layer recti-
fier network with n hidden units represented in its general
form (Eq. (3)). Then, for any input x, the following condi-
tions are equivalent:

1. The network classifies the example x as positive.

2. There exists a subset S1 of P such that, for ev-
ery subset S2 of N , we have w0 +

∑
k∈S1 ak(x) −∑

k∈S2 ak(x) ≥ 0.

3. For every subset S2 of N , there exists a subset S1 of
P such that w0 +

∑
k∈S1 ak(x)−

∑
k∈S2 ak(x) ≥ 0.

Before discussing the implications of the theorem, let us
see how it applies to our running example in Eq. (4). In
this example, P has two subsets: ∅ and {1}, and N has
four subsets: ∅, {2}, {3} and {2, 3}. The first and second
conditions of Theorem 1 indicate that the prediction is pos-
itive if, and only if, at least one of the sets of conditions in
Figure 2 hold in entirety.

Each big left brace indicates a system of inequalities all of
which should hold; thus essentially the conjunction of the
individual inequalities contained within it. We can interpret
of the subsets of P as certificates. In order for the output
of Eq. (4) to be positive, we need at least one certificate
S1 (one subset of P) such that for every subset S2 of N ,
w0 +

∑
k∈S1 ak(x) −

∑
k∈S2 ak(x) ≥ 0. The two sets of

inequalities show the choices of subsets of N for each of
the two possible choices of S1 (i.e. either ∅ or {1}). The
above conditions represent a disjunction of conjunctions.

Similarly, employing the first and third conditions of the
theorem to our running example gives us:

w0 ≥ 0, or w0 + a1(x) ≥ 0

w0 − a2(x) ≥ 0, or w0 + a1(x)− a2(x) ≥ 0

w0 − a3(x) ≥ 0, or w0 + a1(x)− a3(x) ≥ 0

w0 − a2(x)− a3(x) ≥ 0, or w0 + a1(x)− a2(x)

−a3(x) ≥ 0
(5)

Note that unlike the previous case, this gives us a condition
that is a conjunction of disjunctions.

The complete proof of Theorem 1 is given in the supple-
mentary material; here we give a sketch. To prove that con-
dition 1 implies condition 2 we construct a specific subset
S∗1 of P , where S∗1 = {k : k ∈ P and ak(x) ≥ 0} and
this S∗1 has the desired property. To prove condition 2 im-
plies condition 1 we make use of a specific subset S∗2 of
N , where S∗2 = {k : k ∈ N and ak(x) ≥ 0}, to show the
example x has a positive label. That condition 1 implies
condition 3 is a direct result of condition 1 implying condi-
tion 2. Finally, to prove condition 3 implies condition 1 we
use the same S∗2 again to show x has a positive label.
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w0 ≥ 0, (with S1 = ∅,S2 = ∅)
w0 − a2(x) ≥ 0, (with S1 = ∅,S2 = {2})
w0 − a3(x) ≥ 0, (with S1 = ∅,S2 = {3})
w0 − a2(x)− a3(x) ≥ 0. (with S1 = ∅,S2 = {2, 3})

(or)


w0 + a1(x) ≥ 0, (with S1 = {1},S2 = ∅)
w0 + a1(x)− a2(x) ≥ 0, (with S1 = {1},S2 = {2})
w0 + a1(x)− a3(x) ≥ 0, (with S1 = {1},S2 = {3})
w0 + a1(x)− a2(x)− a3(x) ≥ 0. (with S1 = {1},S2 = {2, 3})

Figure 2. The sets of inequalities that should hold for the running example to predict an input as positive.

Discussion. The only difference between the second and
the third conditions of the theorem is the order of the uni-
versal and existential quantifiers over the positive and nega-
tive hidden units, P andN respectively. More importantly,
in both cases, the inequality condition over the subsets S1
and S2 is identical. Normally, swapping the order of the
quantifiers does not give us an equivalent statement; but
here, we see that doing so retains meaning because, in both
cases, the output is positive for the corresponding input.

For any subsets S1 ⊆ P and S2 ⊆ N , we can write the
inequality condition as a Boolean function BS1,S2 :

BS1,S2(x) =


true, w0 +

∑
k∈S1 ak(x)

−
∑

k∈S2 ak(x) ≥ 0

false, w0 +
∑

k∈S1 ak(x)

−
∑

k∈S2 ak(x) < 0

(6)

If the sizes of the positive and negative subsets are n1 and
n2 respectively (i.e, n1 = |P| and n2 = |N |), then we
know that P has 2n1 subsets and N has 2n2 subsets. Thus,
there are 2n1+n2 such Boolean functions. Then, by virtue
of conditions 1 and 2 of theorem 1, we have1

y = ∨S1⊆P [∧S2⊆NBS1,S2(x)] ,

where ∧S2 indicates a conjunction over all different subsets
S2 of N , and ∨S1 indicates a disjunction over all different
subsets S1 of P . This expression is in the disjunctive nor-
mal form (DNF), where each conjunct contains 2n2 B’s
and there are 2n1 such terms. Since each B simplifies into
a hyperplane in the input space, this characterizes the deci-
sion boundary of the ReLU network as a DNF expression
over these hyperplane decisions.

Similarly, by conditions 1 and 3, we have y =
∧S2

[
∨S1BS1,S2(x)

]
. This is in the conjunctive normal

form (CNF), where each disjunctive clause contains 2n1

Boolean values and there are 2n2 such clauses.

An corollary is that if the hidden units of the ReLU network
are all positive (or negative), then the equivalent threshold
network is a pure disjunction (or conjunction).

1We write y as a Boolean with y = 1 and y = −1 representing
true and false respectively.

3. Comparing ReLU and threshold networks
In the previous section, we saw that ReLU networks can
express Boolean functions that correspond to much larger
threshold networks. Of course, threshold activations are
not generally used in applications; nonetheless, they are
well understood theoretically and they emerge naturally as
a result of the analysis above. Using threshold functions as
a vehicle to represent the decision boundaries of ReLU net-
works, naturally leads to two related questions that we will
address in this section. First, given an arbitrary ReLU net-
work, can we construct an equivalent threshold network?
Second, given an arbitrary threshold network, how can we
represent it using ReLU network?

3.1. Converting from ReLU to Threshold

Theorem 1 essentially gives us a constructive way to repre-
sent an arbitrary two layer ReLU network given in Eq. (3)
as a three-layer threshold network. For every choice of the
subsets S1 and S2 of the positive and negative units, we can
define a Boolean function BS1,S2 as per Eq. (6). By defi-
nition, each of these is a threshold unit, giving us 2n1+n2

threshold units in all. (Recall that n1 and n2 are the sizes
of P and N respectively.) Since the decision function is a
CNF or a DNF over these functions, it can be represented
using a two-layer network over theB’s, giving us three lay-
ers in all. We put all 2n1+n2 threshold units in the first
hidden layer, separated into 2n1 groups, with each group
comprising of 2n2 units.

Figure 3 shows the threshold network corresponding to our
running example from Eq. (4). For brevity, we use the no-
tation Bi,j to represent the first hidden layer, with i and j
indexing over the subsets ofP andN respectively. TheB’s
can be grouped into two groups, with units in each group
sharing the same subset S1 but with different S2. Note that,
these nodes are linear threshold units corresponding to the
inequalities in in Fig. 2. In the second hidden layer, we
have one threshold unit connected to each group of units
in the layer below. The weight for each connection unit is
1 and the bias is 2n2 − 1, effectively giving us a conjunc-
tion of the previous layer nodes. The second hidden layer
has 2n1 such units. Finally, we have one unit in the output
layer, with all weights being 1 and bias being 1− 2n1 , sim-
ulating a disjunction of the decisions of the layer below. As
discussed in the previous section, we can also construct a
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Input vector x

B0,0 B1,0B0,1 B1,1B0,2 B1,2B0,3 B1,3

1 1

C0 C1

1

y

Fully connectedS1 = ∅ (See Fig. 2, left) S1 = {1} (See Fig. 2, right)

Conjunction units

Disjunction unit

Figure 3. A threshold network corresponding to the running example. The dotted boxes label the various components of the network.
See the text above for details.

threshold networks using CNFs, with 2n1+n2 units in the
first hidden layer, and 2n2 units in the second hidden layer.

3.2. Boolean Expressiveness of ReLU Networks

Our main theorem shows that for an arbitrary two-layer
ReLU network, we can always represent it using a three-
layer threshold network in which the number of thresh-
old units is exponentially more than the number of ReLUs.
However, this does not imply that actually need that many
thresholds units. A natural question to ask is: can we repre-
sent the same ReLU network without the expense of expo-
nential number of threshold units? In general, the answer is
no, because there are families of ReLU network that need at
least an exponential number of threshold units to represent.

We can formalize this for the case of ReLU networks where
the hidden nodes are either all positive or negative – that is,
either P orN is the empty set. We restrict ourselves to this
set because we can represent such networks using a two-
layer threshold network rather than the three-layer one in
the previous section. We will consider the set of all Boolean
functions in d dimensions expressed by such a ReLU net-
work with n hidden units. Let ΓR(n, d) represent this set.
Similarly, let ΓT (n, d) denote the set of such functions ex-
pressed by threshold networks with n hidden units. We can
summarize the Boolean expressiveness of ReLU networks
via the following two-part theorem:

Theorem 2. For rectifier networks with n > 1 hidden
units, all of which are either positive or negative, and for
all input dimensionalities d ≥ n, we have

1. ΓR(n, d) ⊆ ΓT (2n − 1, d), and,

2. ΓR(n, d) 6⊂ ΓT (2n − 2, d).

Before seeing the proof sketch, let us look at an intuitive
explanation of this result. This theorem tells us that the up-
per bound on the number of threshold units corresponding
to the ReLU network is a tight one. In other words, not only
can ReLU networks express Boolean functions that corre-
spond to much larger threshold networks, there are some
ReLU networks that can only be expressed by such large
networks! This theorem may give us some intuition into
the successes of ReLU networks.

Note, however, that this theorem does not resolve the ques-
tion of what fraction of all ReLU networks can be ex-
pressed using fewer than exponential number of hidden
threshold units. Indeed, if the inputs were only Boolean
and the output was allowed to be real-valued, then Martens
et al. (2013, theorem 6) show that a two layer ReLU net-
work can be simulated using only a quadratic number of
threshold units. (In contrast, Theorem 2 above considers
the case of real-valued inputs, but Boolean outputs.)

The proof is based on Theorem 1. From Theorem 1, we
know the decision boundary of the rectifier network with n
positive ReLUs (withN being the empty set) can be deter-
mined from 2n− 1 hyperplanes. In other words, the region
of the input space that is classified as negative is the poly-
tope that is defined by the intersection of these 2n− 1 half-
planes. We can show by construction that there are rectifier
networks for which the negative region is a polytope de-
fined by 2n − 1 bounding surfaces, thus necessitating each
of the 2n−1 half-planes as predicted by the main theorem,
irrespective of how the corresponding threshold network is
constructed. In other words, the number of threshold units
cannot be reduced. The proof for the case of all negative
ReLUs is similar. The complete proof of the theorem is
given in the supplementary material.
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3.3. Converting Thresholds to ReLUs

So far, we have looked at threshold networks corresponding
to ReLU networks. The next question we want to answer
is under what condition we can use ReLUs to represent the
same decision boundary as a threshold network. In this sec-
tion, we show a series of results that address various facets
of this question. The longer proofs are in the appendices.

First, with no restrictions in the number of ReLUs in the
hidden layer, then we can always construct a rectifier net-
work that is equivalent to a threshold network. In fact, we
have the following lemma:

Lemma 1. Any threshold network with n units can be ap-
proximated to arbitrary accuracy by a rectifier network
with 2n units.

Proof. Consider a threshold unit with weight vector v and
bias d, we have

sgn(v ·x+d) ' 1

ε

[
R(v ·x+d+ε)−R(v ·x+d−ε)

]
−1.

where ε is an arbitrary small number which determines the
approximation accuracy.

This result is akin to the simulation results from (Maass
et al., 1994) that compares threshold and sigmoid networks.

Given the exponential increase in the size of the threshold
network to represent a ReLU network (Theorem 2), a natu-
ral question is whether we can use only logarithmic number
of ReLUs to represent any arbitrary threshold network. In
the general case, the following lemma points out that this
is not possible.

Lemma 2. There exists a two-layer network with n hidden
threshold units for which it is not possible to construct an
equivalent two-layer ReLU network with fewer number of
hidden units.

We provide such an example with n hidden threshold units
in the supplementary material. This lemma, in conjunction
with Theorem 2 effectively points out that by employing a
rectifier network, we are exploring a subset of much larger
threshold networks.

Furthermore, despite the negative result of the lemma, in
the general case, we can identify certain specific thresh-
old networks that can be compressed into logarithmically
smaller ones using ReLUs. Suppose we wish to compress
a two layer threshold network with three sign hidden units
into a ReLU network with dlog2 3e = 2 hidden units. The
sign network can be represented by

y = sgn(2 + sgn (v1 · x + d1) + sgn (v2 · x + d2)

+ sgn (v3 · x + d3))

Suppose one of the weight vectors can be written as the
linear combination of the other two but its bias can not.
That is, for some p and q, if v3 = pv1 + qv2 and d3 6=
pd1+qd2. Then, we can construct the following equivalent
ReLU network that is equivalent:

y = sgn (−1 +R (u1 · x + b1) +R (u2 · x + b2)) ,

where r =
1

d3 − pd1 − qd2
,

u1 = prv1,

u2 = qrv2,

b1 = prd1 + 1,

b2 = qrd2 + 1.

This equivalence can be proved by applying Theorem 1 to
the constructed ReLU network. It shows that in two dimen-
sions, we can use two ReLUs to represent three linearly
independent sign units.

We can generalize this result to the case of a two-layer
threshold network with 2n hidden threshold units that rep-
resents a disjunction over the hidden units. The goal is to
find that under what condition we can use only n rectifier
units to represent the same decision. To do so, we will use
binary encoding matrix Tn of size n × 2n whose ith col-
umn is the binary representation of i− 1. For example, the
binary encoding matrix for n = 3 is given by T3,

T3 =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


Lemma 3. Consider a two-layer threshold network with 2n

threshold units in the hidden layer whose output represents
a disjunction over the hidden units, i.e., the final output is
positive if and only if at least one of the hidden-unit outputs
is positive. That is,

y = sgn

(
2n − 1 +

2n∑
k=1

sgn (vk · x + dk)

)
. (7)

This decision can be represented using a two-layer rectifier
network with n hidden units, if the weight parameters of
the threshold units can be factored in the following form:[

v1 · · · v2n

d1 · · · d2n

]
=

[
u1 · · · un 0
b1 · · · bn w0

] [
Tn
e2n

]
(8)

where e2n is a 2n dimensional row vector of all ones and 0
is a vector of all zeros.

Proof. If the weight parameters vk and dk can be written in
the form as in Eq. (8), then we can construct the two-layer
rectifier network,

y = sgn
[
w0 +

n∑
k=1

R(uk · x + bk)
]
. (9)



Expressiveness of Rectifier Networks

Then by virtue of theorem 1, the decision boundary of the
rectifier network in Eq. (9) is the same as the decision
boundary of the threshold network in Eq. (7).

Note that this lemma only identifies sufficient conditions
for the logarithmic reduction in network size. Identifying
both necessary and sufficient conditions for such a reduc-
tion is an open question.

4. Hidden Layer Equivalence
Lemma 3 studies a specific threshold network, where the
output layer is a disjunction over the hidden layer units. For
this network, we can define an different notion of equiva-
lence between networks by studying the hidden layer acti-
vations. We do so by interpreting the hidden layer state of
the network as a specific kind of a multiclass classifier that
either rejects inputs or labels them. If the output is nega-
tive, then clearly none of the hidden layer units are active
and the input is rejected. If the output layer is positive, then
at least one of the hidden layer units is active and the mul-
ticlass label is given by the maximum scoring hidden unit,
namely arg maxk vk · x + dk.

For threshold networks, the number of hidden units is equal
to the number of classes. The goal is to learn the same
concept with rectifier units, hopefully with fewer rectifier
units than the number of classes. Suppose a ReLU network
has n hidden units, then its hidden layer prediction is the
highest scoring hidden unit of the corresponding threshold
network that has 2n hidden units. We now define hidden
layer equivalence of two networks as follows: A threshold
network and a ReLU network are equivalent if both their
hidden layer predictions are identical.

We already know from lemma 3 that if the weight parame-
ters of the true concept satisfy Eq. (8), then instead of learn-
ing 2n threshold units we can just learn n rectifier units. For
simplicity, we write Eq. (8) as V = UT where

V =

[
v1 · · · v2n

d1 · · · d2n

]
U =

[
u1 · · · un 0
b1 · · · bn w0

]
and

T =

[
Tn
e2n

]
For simplicity of notation, we will assume that the input
features x includes a constant bias feature in the last po-
sition. Thus, the vector V Tx represents the pre-activation
score for each class.

Now, we consider threshold networks with parameters such
that there is no ReLU (defined by the matrix U ) that satis-
fies this condition. Instead, we find a rectifier network with
parameters U that satisfies the following condition:

U = argminU‖(V − UT )T ‖∞, (10)

Here ‖ · ‖∞ is the induced infinity norm, defined for any
matrix A as ‖A‖∞ = supx6=0

‖Ax‖∞
‖x‖∞ .

If we have a matrix U such that V and UT are close in the
sense of induced infinity norm, then we have the following
about their equivalence.
Theorem 3. If the true concept of a 2n-class classifier is
given by a two-level threshold network in Eq. (7), then we
can learn a two-layer rectifier network with only n hidden
units of the form in Eq. (9) that is hidden layer equivalent
to it, if for any example x, we have

‖(V − UT )T ‖∞ ≤
γ(x)

2‖x‖∞
, (11)

where γ(x) is the multiclass margin for x, defined as the
difference between its highest score and second-highest
scoring classes.

The proof, in the supplementary material, is based on
the intuition that for hidden layer equivalence, as defined
above, only requires that the highest scoring label needs to
be the same in the two networks rather than the actual val-
ues of the scores. If V and UT are closed in the sense of
induced infinity norm, then the highest scoring hidden unit
will be invariant regardless of which network is used.

5. Experiments
We have seen that every two-layer rectifier network ex-
presses the decision boundary of a three-layer threshold
network. If the output weights of the former are all positive,
then a two-layer threshold network is sufficient. (See the
discussion in §3.2.) However, the fact that rectifier network
can express the same decision boundary more compactly
does not guarantee learnability because of optimization is-
sues. Specifically, in this section, we study the following
question using synthetic data: Given a rectifier network
and a threshold network with same decision boundary, can
we learn one using the data generated from another using
backpropagation?

5.1. Data generation

We use randomly constructed two-layer rectifier networks
to generate labeled examples. To do so, we specify various
values of the input dimensionality and the number of hid-
den ReLU units in the network. Once we have the network,
we randomly generate the input points and label them us-
ing the network. Using generated data we try to recover
both the rectifier network and the threshold network, with
varying number of hidden units. We considered input di-
mensionalities 3, 10 and 50 and in each case, used 3 or 10
hidden units. This gave us six networks in all. For each
network, we generated 10000 examples and 1500 of which
are used as test examples.
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5.2. Results and Analysis

For each dataset, we compare three different network archi-
tectures. The key parameter that varies across datasets is n,
the number of hidden ReLU units in the network that gener-
ated the data. The first setting learns using a ReLU network
with n hidden units. The second setting uses the activation
function tanh(cx), which we call the compressed tanh ac-
tivation. For large values of c, this effectively simulates
the threshold function. In the second setting, the number
of hidden units is still n. The final setting learns using the
compressed tanh, but with 2n hidden units following §2.2.

Figure 4. Test error for different learning settings. The x-axis
specifies the number of ReLUs used for data generalization
and the dimensionality. Each dataset is learned using ReLU
and compressed tanh activations with different number of hid-
den units. Learning rate is selected with cross-validation from
{100, 10−1, 10−2, 10−3, 10−4}. L2-regularization coefficient is
10−4. We use early-stopping optimization with a maximum of
1000 epochs. The minibatch size is 20. For the compressed tanh,
we set c = 10000.

Figure 4 shows the results on the six datasets. These results
verify several aspects of our theory. First, learning using
ReLUs always succeeds with low error (purple bars, left).
This is expected – we know that our hypothesis class can
express the true concept and training using backpropaga-
tion can successfully find it. Second, learning using com-
pressed tanh with same number of units cannot recover the
true concept (red bars, middle). This performance drop is
as expected, since compressed tanh is just like sign activa-
tion, and we know in this case we need exponentially more
hidden units.

Finally, the performances of learning using exponential
number of compressed tanh (green bars, right) are not al-

ways good.2 In this case, from the analysis in §2, we know
the hypothesis can certainly express the true concept; yet
learning does not always succeed! In fact, for the first three
groups, where we have three ReLUs for data generation,
the error for the learned classifier is rather large, suggest-
ing that even though the true concept can be expressed, it
is not found by backpropagation. For the last three groups,
where we have 10 hidden ReLUs for data generation, us-
ing exponential number of compressed tanh does achieve
better performance. We posit that this incongruence is due
to the interplay between the non-convexity of the objective
function and the fact that the set of functions expressed by
threshold functions is larger (a consequence of lemma 2).

6. Conclusions
In this paper, we have presented a novel analysis of the
expressiveness of rectifier neural networks. Specifically,
for binary classification we showed that even though the
decision boundary of two-layer rectifier network can be
represented using threshold unit network, the number of
threshold units required is exponential. Further, while a
corresponding general logarithmic reduction of threshold
units is not possible, for specific networks, we character-
ized sufficient conditions for reducing a threshold network
to a much smaller rectifier network. We also presented a
relaxed condition where we can approximately recover a
rectifier network that is hidden layer equivalent to an expo-
nentially larger threshold network.

Our work presents a natural next step: can we use the
equivalence of the expressiveness results given in this pa-
per to help us study the sample complexity of rectifier net-
works? Another open question is the generalization of
these results to deep networks. Finally, from our experi-
ments we see that expressiveness is not enough to guarantee
learnability. Studying the interplay of expressiveness, sam-
ple complexity and the convexity properties of the training
objective function for rectifier networks represents an ex-
citing direction of future research.
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