
Beyond CCA: Moment Matching for Multi-View Models

Anastasia Podosinnikova ANASTASIA.PODOSINNIKOVA@INRIA.FR
Francis Bach FRANCIS.BACH@INRIA.FR
Simon Lacoste-Julien FIRSTNAME.LASTNAME@INRIA.FR
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Abstract
We introduce three novel semi-parametric exten-
sions of probabilistic canonical correlation anal-
ysis with identifiability guarantees. We con-
sider moment matching techniques for estima-
tion in these models. For that, by drawing ex-
plicit links between the new models and a dis-
crete version of independent component analy-
sis (DICA), we first extend the DICA cumulant
tensors to the new discrete version of CCA. By
further using a close connection with indepen-
dent component analysis, we introduce general-
ized covariance matrices, which can replace the
cumulant tensors in the moment matching frame-
work, and, therefore, improve sample complexity
and simplify derivations and algorithms signifi-
cantly. As the tensor power method or orthog-
onal joint diagonalization are not applicable in
the new setting, we use non-orthogonal joint di-
agonalization techniques for matching the cumu-
lants. We demonstrate performance of the pro-
posed models and estimation techniques on ex-
periments with both synthetic and real datasets.

1. Introduction
Canonical correlation analysis (CCA), originally intro-
duced by Hotelling (1936), is a common statistical tool for
the analysis of multi-view data. Examples of such data in-
clude, for instance, representation of some text in two lan-
guages (e.g., Vinokourov et al., 2002) or images aligned
with text data (e.g., Hardoon et al., 2004; Gong et al.,
2014). Given two multidimensional variables (or datasets),
CCA finds two linear transformations (factor loading ma-
trices) that mutually maximize the correlations between
the transformed variables (or datasets). Together with its
kernelized version (see, e.g., Shawe-Taylor & Cristianini,
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2004; Bach & Jordan, 2003), CCA has a wide range of ap-
plications (see, e.g., Hardoon et al. (2004) for an overview).

Bach & Jordan (2005) provide a probabilistic interpretation
of CCA: they show that the maximum likelihood estimators
of a particular Gaussian graphical model, which we refer
to as Gaussian CCA, is equivalent to the classical CCA by
Hotelling (1936). The key idea of Gaussian CCA is to al-
low some of the covariance in the two observed variables
to be explained by a linear transformation of common in-
dependent sources, while the rest of the covariance of each
view is explained by their own (unstructured) noises. Im-
portantly, the dimension of the common sources is often
significantly smaller than the dimensions of the observa-
tions and, potentially, than the dimensions of the noise. Ex-
amples of applications and extensions of Gaussian CCA are
the works by Socher & Fei-Fei (2010), for mapping visual
and textual features to the same latent space, and Haghighi
et al. (2008), for machine translation applications.

Gaussian CCA is subject to some well-known unidentifi-
ability issues, in the same way as the closely related fac-
tor analysis model (FA; Bartholomew, 1987; Basilevsky,
1994) and its special case, the probabilistic principal com-
ponent analysis model (PPCA; Tipping & Bishop, 1999;
Roweis, 1998). Indeed, as FA and PPCA are identifiable
only up to multiplication by any rotation matrix, Gaussian
CCA is only identifiable up to multiplication by any invert-
ible matrix. Although this unidentifiability does not affect
the predictive performance of the model, it does affect the
factor loading matrices and hence the interpretability of the
latent factors. In FA and PPCA, one can enforce additional
constraints to recover unique factor loading matrices (see,
e.g., Murphy, 2012). A notable identifiable version of FA is
independent component analysis (ICA; Jutten, 1987; Jutten
& Hérault, 1991; Comon & Jutten, 2010). One of our goals
is to introduce identifiable versions of CCA.

The main contributions of this paper are as follows. We first
introduce for the first time, to the best of our knowledge,
three new formulations of CCA: discrete, non-Gaussian,
and mixed (see Section 2.1). We then provide identifiabil-
ity guarantees for the new models (see Section 2.2). Then,
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in order to use a moment matching framework for estima-
tion, we first derive a new set of cumulant tensors for the
discrete version of CCA (Section 3.1). We further replace
these tensors with their approximations by generalized co-
variance matrices for all three new models (Section 3.2).
Finally, as opposed to standard approaches, we use a par-
ticular type of non-orthogonal joint diagonalization algo-
rithms for extracting the model parameters from the cumu-
lant tensors or their approximations (Section 4).

Models. The new CCA models are adapted to applications
where one or both of the data-views are either counts, like
in the bag-of-words representation for text, or continuous
data, for instance, any continuous representation of images.
A key feature of CCA compared to joint PCA is the fo-
cus on modeling the common variations of the two views,
as opposed to modeling all variations (including joint and
marginal ones).

Moment matching. Regarding parameter estimation, we
use the method of moments, also known as “spectral meth-
ods.” It recently regained popularity as an alternative to
other estimation methods for graphical models, such as ap-
proximate variational inference or MCMC sampling. Es-
timation of a wide range of models is possible within
the moment matching framework: ICA (e.g., Cardoso &
Comon, 1996; Comon & Jutten, 2010), mixtures of Gaus-
sians (e.g., Arora & Kannan, 2005; Hsu & Kakade, 2013),
latent Dirichlet allocation and topic models (Arora et al.,
2012; 2013; Anandkumar et al., 2012; Podosinnikova et al.,
2015), supervised topic models (Wang & Zhu, 2014),
Indian buffet process inference (Tung & Smola, 2014),
stochastic languages (Balle et al., 2014), mixture of hid-
den Markov models (Sübakan et al., 2014), neural networks
(see, e.g., Anandkumar & Sedghi, 2015; Janzamin et al.,
2016), and other models (see, e.g., Anandkumar et al.,
2014, and references therein).

Moment matching algorithms for estimation in graphical
models mostly consist of two main steps: (a) construction
of moments or cumulants with a particular diagonal struc-
ture and (b) joint diagonalization of the sample estimates
of the moments or cumulants to estimate the parameters.

Cumulants and generalized covariance matrices. By us-
ing the close connection between ICA and CCA, we first
derive in Section 3.1 the cumulant tensors for the discrete
version of CCA from the cumulant tensors of a discrete
version of ICA (DICA) proposed by Podosinnikova et al.
(2015). Extending the ideas from the ICA literature (Yere-
dor, 2000; Todros & Hero, 2013), we further generalize
in Section 3.2 cumulants as the derivatives of the cumu-
lant generating function. This allows us to replace cumu-
lant tensors with “generalized covariance matrices”, while
preserving the rest of the framework. As a consequence
of working with the second-order information only, the

derivations and algorithms get significantly simplified and
the sample complexity potentially improves.

Non-orthogonal joint diagonalization. When estimating
model parameters, both CCA cumulant tensors and gener-
alized covariance matrices for CCA lead to non-symmetric
approximate joint diagonalization problems. Therefore, the
workhorses of the method of moments in similar context —
orthogonal diagonalization algorithms, such as the tensor
power method (Anandkumar et al., 2014), and orthogonal
joint diagonalization (Bunse-Gerstner et al., 1993; Cardoso
& Souloumiac, 1996) — are not applicable. As an alter-
native, we use a particular type of non-orthogonal Jacobi-
like joint diagonalization algorithms (see Section 4). Im-
portantly, the joint diagonalization problem we deal with
in this paper is conceptually different from the one con-
sidered, e.g., by Kuleshov et al. (2015) (and references
therein) and, therefore, the respective algorithms are not
applicable here.

2. Multi-view models
2.1. Extensions of Gaussian CCA

Gaussian CCA. Classical CCA (Hotelling, 1936) aims to
find projections D1 ∈ RM1×K and D2 ∈ RM2×K , of two
observation vectors x1 ∈ RM1 and x2 ∈ RM2 , each rep-
resenting a data-view, such that the projected data, D>1 x1

and D>2 x2, are maximally correlated. Similarly to classi-
cal PCA, the solution boils down to solving a generalized
SVD problem. The following probabilistic interpretation of
CCA is well known (Browne, 1979; Bach & Jordan, 2005;
Klami et al., 2013). Given that K sources are i.i.d. stan-
dard normal random variables, α ∼ N (0, IK), the Gaus-
sian CCA model is given by

x1 |α, µ1, Ψ1 ∼ N (D1α+ µ1, Ψ1),

x2 |α, µ2, Ψ2 ∼ N (D2α+ µ2, Ψ2),
(1)

where the matrices Ψ1 ∈ RM1×M1 and Ψ2 ∈ RM2×M2

are positive semi-definite. Then, the maximum likelihood
solution of (1) coincides (up to permutation, scaling, and
multiplication by any invertible matrix) with the classical
CCA solution. The model (1) is equivalent to

x1 = D1α+ ε1,

x2 = D2α+ ε2,
(2)

where the noise vectors are normal random variables, i.e.
ε1 ∼ N (µ1,Ψ1) and ε2 ∼ N (µ2,Ψ2), and the following
independence assumptions are made:

α1, . . . , αK are mutually independent,
α ⊥⊥ ε1, ε2 and ε1 ⊥⊥ ε2.

(3)

The following three models are our novel semi-parametric
extensions of Gaussian CCA (1)–(2).
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Figure 1. Graphical models for non-Gaussian (4), discrete (5),
and mixed (6) CCA.

Multi-view models. The first new model follows by drop-
ping the Gaussianity assumption on α, ε1, and ε2. In par-
ticular, the non-Gaussian CCA model is defined as

x1 = D1α+ ε1,

x2 = D2α+ ε2,
(4)

where, as opposed to (2), no assumptions are made on the
sources α and the noise ε1 and ε2 except for the indepen-
dence assumption (3).

Similarly to Podosinnikova et al. (2015), we further “dis-
cretize” non-Gaussian CCA (4) by applying the Poisson
distribution to each view (independently on each variable):

x1 |α, ε1 ∼ Poisson(D1α+ ε1),

x2 |α, ε2 ∼ Poisson(D2α+ ε2).
(5)

We obtain the (non-Gaussian) discrete CCA (DCCA)
model, which is adapted to count data (e.g., such as word
counts in the bag-of-words model of text). In this case, the
sources α, the noise ε1 and ε2, and the matricesD1 andD2

have non-negative components.

Finally, by combining non-Gaussian and discrete CCA, we
also introduce the mixed CCA (MCCA) model:

x1 = D1α+ ε1,

x2 |α, ε2 ∼ Poisson(D2α+ ε2),
(6)

which is adapted to a combination of discrete and contin-
uous data (e.g., such as images represented as continuous
vectors aligned with text represented as counts). Note that
no assumptions are made on distributions of the sources α
except for independence (3).

The plate diagram for the models (4)–(6) is presented in
Fig. 1. We call D1 and D2 factor loading matrices (see a
comment on this naming convention in Appendix A.2).

Relation between PCA and CCA. The key difference be-
tween Gaussian CCA and the closely related FA/PPCA
models is that the noise in each view of Gaussian CCA is
not assumed to be isotropic unlike for FA/PPCA. In other
words, the components of the noise are not assumed to be
independent or, equivalently, the noise covariance matrix
does not have to be diagonal and may exhibit a strong struc-
ture. In this paper, we never assume any diagonal structure

of the covariance matrices of the noises of the models (4)–
(6). The following example illustrates the mentioned re-
lation. Assuming a linear structure for the noise, (non-)
Gaussian CCA (NCCA) takes the form

x1 = D1α+ F1β1,

x2 = D2α+ F2β2,
(7)

where ε1 = F1β1 with β1 ∈ RK1 and ε2 = F2β2 with
β2 ∈ RK2 . By stacking the vectors on the top of each other

x =

(
x1

x2

)
, D =

(
D1 F1 0
D2 0 F2

)
, z =

α
β1

β2

 , (8)

we rewrite the model as x = Dz. Assuming that the noise
sources β1 and β2 have mutually independent components,
ICA is recovered. If the sources z are further assumed to
be Gaussian, x = Dz corresponds to PPCA. However, we
do not assume the noise in Gaussian CCA (and in (4)–(6))
to have a very specific low dimensional structure.

Related work. Some extensions of Gaussian CCA were
proposed in the literature: exponential family CCA (Virta-
nen, 2010; Klami et al., 2010) and Bayesian CCA (see, e.g.,
Klami et al., 2013, and references therein). Although expo-
nential family CCA can also be discretized, it assumes in
practice that the prior of the sources is a specific combina-
tion of Gaussians. Bayesian CCA models the factor loading
matrices and the covariance matrix of Gaussian CCA. Sam-
pling or approximate variational inference are used for es-
timation and inference in both models. Both models, how-
ever, lack our identifiability guarantees and are quite dif-
ferent from the models (4)–(6). Song et al. (2014) consider
a multi-view framework to deal with non-parametric mix-
ture components, while our approach is semi-parametric
with an explicit linear structure (our loading matrices) and
makes the explicit link with CCA. See also Ge & Zou
(2016) for a related approach.

2.2. Identifiability

In this section, the identifiability of the factor loading ma-
trices D1 and D2 is discussed. In general, for the type of
models considered, the unidentifiability to permutation and
scaling cannot be avoided. In practice, this unidentifiabil-
ity is however easy to handle and, in the following, we only
consider identifiability up to permutation and scaling.

ICA can be seen as an identifiable analog of FA/PPCA. In-
deed, it is known that the mixing matrix D of ICA is iden-
tifiable if at most one source is Gaussian (Comon, 1994).
The factor loading matrix of FA/PPCA is unidentifiable
since it is defined only up to multiplication by any orthog-
onal rotation matrix.

Similarly, the factor loading matrices of Gaussian CCA (1),
which can be seen as a multi-view extension of PPCA, are
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identifiable only up to multiplication by any invertible ma-
trix (Bach & Jordan, 2005). We show the identifiability
results for the new models (4)–(6): the factor loading ma-
trices of these models are identifiable if at most one source
is Gaussian (see Appendix B for a proof).

Theorem 1. Assume that matrices D1 ∈ RM1×K and
D2 ∈ RM2×K , where K ≤ min(M1, M2), have full rank.
If the covariance matrices cov(x1) and cov(x2) exist and if
at most one source αk, for k = 1, . . . ,K, is Gaussian and
none of the sources are deterministic, then the models (4)–
(6) are identifiable (up to scaling and joint permutation).

Importantly, the permutation unidentifiability does not de-
stroy the alignment in the factor loading matrices, that is,
for some permutation matrix P , if D1P is the factor load-
ing matrix of the first view, than D2P must be the factor
loading matrix of the second view. This property is impor-
tant for the interpretability of the factor loading matrices
and, in particular, is used in our experiments in Section 5.

3. The cumulants and generalized covariances
In this section, we first derive the cumulant tensors for the
discrete CCA model (Section 3.1) and then generalized co-
variance matrices (Section 3.2) for the models (4)–(6). We
show that both cumulants and generalized covariances have
a special diagonal form and, therefore, can be efficiently
used within the moment matching framework (Section 4).

3.1. From discrete ICA to discrete CCA

In this section, we derive the DCCA cumulants as an exten-
sion of the cumulants of discrete independent component
analysis (DICA; Podosinnikova et al., 2015).

Discrete ICA. Podosinnikova et al. (2015) consider the
discrete ICA model (9), where x ∈ RM has condition-
ally independent Poisson components with mean Dα and
α ∈ RK has independent non-negative components:

x |α ∼ Poisson(Dα). (9)

For estimating the factor loading matrix D, Podosinnikova
et al. (2015) propose an algorithm based on the moment
matching method with the cumulants of the DICA model.
In particular, they define the DICA S-covariance matrix and
T-cumulant tensor as

S := cov(x)− diag [Ex] ,

[T ]m1m2m3
:= cum(x)m1m2m3 + [τ ]m1m2m3 ,

(10)

where indicesm1,m2, andm3 take the values in 1, . . . ,M ,
and [τ ]m1m2m3

= 2δm1m2m3
Exm1

−δm2m3
cov(x)m1m2

−
δm1m3

cov(x)m1m2
− δm1m2

cov(x)m1m3
with δ being the

Kronecker delta. For completeness, we outline the deriva-
tion by Podosinnikova et al. (2015) below. Let y := Dα.
By the law of total expectation E(x) = E(x|y) = E(y) and
by the law of total covariance

cov(x) = E[cov(x|y)] + cov[E(x|y), E(x|y)]

= diag[E(y)] + cov(y),

since all the cumulants of a Poisson random variable with
parameter y are equal to y. Therefore, S = cov(y). Simi-
larly, by the law of total cumulance T = cum(y). Then, by
the multilinearity property for cumulants, one obtains

S = D cov(α)D>,

T = cum(α)×1 D
> ×2 D

> ×3 D
>,

(11)

where ×i denotes the i-mode tensor-matrix product (see,
e.g., Kolda & Bader, 2009). Since the covariance cov(α)
and cumulant cum(α) of the independent sources are diag-
onal, (11) is called the diagonal form. This diagonal form
is further used for estimation of D (see Section 4).

Noisy discrete ICA. The following noisy version (12) of
the DICA model reveals the connection between DICA
and DCCA. Noisy discrete ICA is obtained by adding non-
negative noise ε, such that α ⊥⊥ ε, to discrete ICA (9):

x |α, ε ∼ Poisson (Dα+ ε) . (12)

Let y := Dα+ ε and S and T are defined as in (10). Then
a simple extension of the derivations from above gives
S = cov(y) and T = cum(y). Since the covariance matrix
(cumulant tensor) of the sum of two independent multivari-
ate random variables, Dα and ε, is equal to the sum of the
covariance matrices (cumulant tensors) of these variables,
the “perturbed” version of the diagonal form (11) follows

S = Dcov(α)D> + cov(ε),

T = cum(α)×1 D
> ×2 D

> ×3 D
> + cum(ε).

(13)

DCCA cumulants. By analogy with (8), stacking the
observations x = [x1; x2], the factor loading matrices
D = [D1; D2], and the noise vectors ε = [ε1; ε2] of dis-
crete CCA (5) gives a noisy version of discrete ICA with a
particular form of the covariance matrix of the noise:

cov(ε) =

(
cov(ε1) 0

0 cov(ε2)

)
, (14)

which is due to the independence ε1 ⊥⊥ ε2. Similarly,
the cumulant cum(ε) of the noise has only two diagonal
blocks which are non-zero. Therefore, considering only
those parts of the S-covariance matrix and T-cumulant ten-
sor of noisy DICA that correspond to zero blocks of the
covariance cov(ε) and cumulant cum(ε), gives immedi-
ately a matrix and tensor with a diagonal structure similar
to the one in (11). Those blocks are the cross-covariance
and cross-cumulants of x1 and x2.

We define the S-covariance matrix of discrete CCA1 as the
cross-covariance matrix of x1 and x2:

S12 := cov(x1, x2). (15)

1 Note that S21 := cov(x2, x1) is just the transpose of S12.
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From (13) and (14), the matrix S12 has the following diag-
onal form

S12 = D1cov(α)D>2 . (16)

Similarly, we define the T-cumulant tensors of discrete
CCA ( T121 ∈ RM1×M2×M1 and T122 ∈ RM1×M2×M2 )
through the cross-cumulants of x1 and x2, for j = 1, 2:

[T12j ]m1m2m̃j
:= [cum(x1, x2, xj)]m1m2m̃j

− δmjm̃j [cov(x1, x2)]m1m2
,

(17)

where the indices m1, m2, and m̃j take the values m1 ∈
1, . . . ,M1, m2 ∈ 1, . . . ,M2, and m̃j ∈ 1, . . . ,Mj .
From (11) and the mentioned block structure (14) of
cov(ε), the DCCA T-cumulants have the diagonal form:

T121 = cum(α)×1 D
>
1 ×2 D

>
2 ×3 D

>
1 ,

T122 = cum(α)×1 D
>
1 ×2 D

>
2 ×3 D

>
2 .

(18)

In Section 4, we show how to estimate the factor loading
matrices D1 and D2 using the diagonal form (16) and (18).
Before that, in Section 3.2, we first derive the generalized
covariance matrices of discrete ICA and the CCA mod-
els (4)–(6) as an extension of the ideas by Yeredor (2000);
Todros & Hero (2013).

3.2. Generalized covariance matrices

In this section, we introduce the generalization of the S-
covariance matrix for both DICA and the CCA models (4)–
(6), which are obtained through the Hessian of the cumu-
lant generating function. We show that (a) the generalized
covariance matrices can be used for approximation of the
T-cumulant tensors using generalized derivatives and (b) in
the DICA case, these generalized covariance matrices have
the diagonal form analogous to (11), and, in the CCA case,
they have the diagonal form analogous to (16). Therefore,
generalized covariance matrices can be seen as a substitute
for the T-cumulant tensors in the moment matching frame-
work. This (a) significantly simplifies derivations and the
final expressions used for implementation of resulting algo-
rithms and (b) potentially improves the sample complexity,
since only the second-order information is used.

Generalized covariance matrices. The idea of general-
ized covariance matrices is inspired by the similar exten-
sion of the ICA cumulants by Yeredor (2000).

The cumulant generating function (CGF) of a multivariate
random variable x ∈ RM is defined as

Kx(t) = logE(et
>x), (19)

for t ∈ RM . The cumulants κs(x), for s = 1, 2, 3, . . . , are
the coefficients of the Taylor series expansion of the CGF
evaluated at zero. Therefore, the cumulants are the deriva-
tives of the CGF evaluated at zero: κs(x) = ∇sKx(0),
s = 1, 2, 3, . . . , where∇sKx(t) is the s-th order derivative
of Kx(t) with respect to t. Thus, the expectation of x is the

gradient E(x) = ∇Kx(0) and the covariance of x is the
Hessian cov(x) = ∇2Kx(0) of the CGF evaluated at zero.

The extension of cumulants then follows immediately:
for t ∈ RM , we refer to the derivatives ∇sKx(t) of
the CGF as the generalized cumulants. The respective
parameter t is called a processing point. In particular, the
gradient, ∇Kx(t), and Hessian, ∇2Kx(t), of the CGF are
referred to as the generalized expectation and generalized
covariance matrix, respectively:

Ex(t) := ∇Kx(t) =
E(xet

>x)

E(et>x)
, (20)

Cx(t) := ∇2Kx(t) =
E(xx>et

>x)

E(et>x)
− Ex(t)Ex(t)>. (21)

We now outline the key ideas of this section. When a
multivariate random variable α ∈ RK has independent
components, its CGF Kα(h) = logE(eh

>α), for some
h ∈ RK , is equal to a sum of decoupled terms: Kα(h) =∑
k logE(ehkαk). Therefore, the Hessian ∇2Kα(h) of the

CGF Kα(h) is diagonal (see Appendix C.1). Like covari-
ance matrices, these Hessians (a.k.a. generalized covari-
ance matrices) are subject to the multilinearity property for
linear transformations of a vector, hence the resulting di-
agonal structure of the form (11). This is essentially the
previous ICA work (Yeredor, 2000; Todros & Hero, 2013).
Below we generalize these ideas first to the discrete ICA
case and then to the CCA models (4)–(6).

Discrete ICA generalized covariance matrices. Like co-
variance matrices, generalized covariance matrices of a
vector with independent components are diagonal: they
satisfy the multilinearity property CDα(h) = D Cα(h)D>,
and are equal to covariance matrices when h = 0. There-
fore, we can expect that the derivations of the diagonal
form (11) of the S-covariance matrices extends to the gen-
eralized covariance matrices case. By analogy with (10),
we define the generalized S-covariance matrix of DICA:

S(t) := Cx(t)− diag[Ex(t)]. (22)

To derive the analog of the diagonal form (11) for S(t), we
have to compute all the expectations in (20) and (21) for
a Poisson random variable x with the parameter y = Dα.
To illustrate the intuition, we compute here one of these
expectations (see Appendix C.2 for further derivations):

E(xx>et
>x) = E[E(xx>et

>x | y)]

= diag[et]E(yy>ey
>(et−1))diag[et]

=
(
diag[et]D

)
E(αα>eα

>h(t))
(
diag[et]D

)>
,

where h(t) = D>(et−1) and et denotes anM -vector with
the m-th component equal to etm . This gives

S(t) =
(
diag[et]D

)
Cα (h(t))

(
diag[et]D

)>
, (23)

which is a diagonal form similar (and equivalent for t = 0)
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to (11) since the generalized covariance matrix Cα(h) of in-
dependent sources is diagonal (see (40) in Appendix C.1).
Therefore, the generalized S-covariance matrices, esti-
mated at different processing points t, can be used as a
substitute of the T-cumulant tensors in the moment match-
ing framework. Interestingly enough, the T-cumulant ten-
sor (10) can be approximated by the generalized covariance
matrix via its directional derivative (see Appendix C.5).

CCA generalized covariance matrices. For the CCA
models (4)–(6), straightforward generalizations of the ideas
from Section 3.1 leads to the following definition of the
generalized CCA S-covariance matrix:

S12(t) :=
E(x1x

>
2 e

t>x)

E(et>x)
− E(x1e

t>x)

E(et>x)

E(x>2 e
t>x)

E(et>x)
, (24)

where the vectors x and t are obtained by vertically stack-
ing x1 & x2 and t1 & t2 as in (8). In the discrete CCA case,
S12(t) is essentially the upper-right block of the general-
ized S-covariance matrix S(t) of DICA and has the form

S12(t) =
(
diag[et1 ]D1

)
Cα(h(t))

(
diag[et2 ]D2

)>
, (25)

where h(t) = D>(et − 1) and the matrix D is obtained
by vertically stacking D1 & D2 by analogy with (8). For
non-Gaussian CCA, the diagonal form is

S12(t) = D1 Cα (h(t)) D>2 , (26)

where h(t) = D>1 t1 +D>2 t2. Finally, for mixed CCA,

S12(t) = D1 Cα (h(t))
(
diag[et2 ]D2

)>
, (27)

where h(t) = D>1 t1 + D>2 (et2 − 1). Since the gener-
alized covariance matrix of the sources Cα(·) is diagonal,
expressions (25)–(27) have the desired diagonal form (see
Appendix C.4 for detailed derivations).

4. Joint diagonalization algorithms
The standard algorithms such as TPM or orthogonal joint
diagonalization cannot be used for the estimation ofD1 and
D2. Indeed, even after whitening, the matrices appearing
in the diagonal form (16)&(18) or (25)–(27) are not orthog-
onal. As an alternative, we use Jacobi-like non-orthogonal
diagonalization algorithms (Fu & Gao, 2006; Iferroudjene
et al., 2009; Luciani & Albera, 2010). These algorithms are
discussed in this section and in Appendix F.

The estimation of the factor loading matrices D1 and D2

of the CCA models (4)–(6) via non-orthogonal joint diag-
onalization algorithms consists of the following steps: (a)
construction of a set of matrices, called target matrices, to
be jointly diagonalized (using finite sample estimators), (b)
a whitening step, (c) a non-orthogonal joint diagonaliza-
tion step, and (d) the final estimation of the factor loading
matrices (Appendix E.5).

Target matrices. There are two ways to construct tar-
get matrices: either with the CCA S-matrices (15) and T-
cumulants (17) (only DCCA) or the generalized covariance
matrices (24) (D/N/MCCA). These matrices are estimated
with finite sample estimators (Appendices D.1 & D.2).

The (computationally efficient) construction of target ma-
trices from S- and T-cumulants was discussed by Podosin-
nikova et al. (2015) and we recall it in Appendix E.1. Al-
ternatively, the target matrices can be constructed by esti-
mating the generalized S-covariance matrices at P +1 pro-
cessing points 0, t1, . . . , tP ∈ RM1+M2 :

{S12 = S12(0), S12(t1), . . . , S12(tP )}, (28)
which also have the diagonal form (25)–(27). It is interest-
ing to mention the connection between the T-cumulants and
the generalized S-covariance matrices. The T-cumulant can
be approximated via the directional derivative of the gener-
alized covariance matrix (see Appendix C.5). However, in
general, e.g., S12(t) with t = [t1; 0] is not exactly the same
as T121(t1) and the former can be non-zero even when the
latter is zero. This is important since order-4 and higher
statistics are used with the method of moments when there
is a risk that an order-3 statistic is zero like for symmet-
ric sources. In general, the use of higher-order statistics
increases the sample complexity and makes the resulting
expressions quite complicated. Therefore, replacing the
T-cumulants with the generalized S-covariance matrices is
potentially beneficial.

Whitening. The matrices W1 ∈ RK×M1 and W2 ∈
RK×M2 are called whitening matrices of S12 if

W1S12W
>
2 = IK , (29)

where IK is the K-dimensional identity matrix. W1 and
W2 are only defined up to multiplication by any invertible
matrix Q ∈ RK×K , since any pair of matrices W̃1 = QW1

and W̃2 = Q−>W2 also satisfy (29). In fact, using higher-
order information (i.e. the T-cumulants or the generalized
covariances for t 6= 0) allows to solve this ambiguity.

The whitening matrices can be computed via SVD of S12

(see Appendix E.2). When M1 and M2 are too large, one
can use a randomized SVD algorithm (see, e.g., Halko
et al., 2011) to avoid the construction of the large matrix
S12 and to decrease the computational time.

Non-orthogonal joint diagonalization (NOJD). Let us
consider joint diagonalization of the generalized covariance
matrices (28) (the same procedure holds for the S- and T-
cumulants (43); see Appendix E.3). Given the whitening
matrices W1 and W2, the transformation of the generalized
covariance matrices (28) gives P + 1 matrices
{W1S12W

>
2 , W1S12(tp)W

>
2 , p = 1, . . . , P}, (30)

where each matrix is in RK×K and has reduced dimension
since K < M1,M2. In practice, finite sample estimators
are used to construct (28) (see Appendices D.1 and D.2).
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Due to the diagonal form (16) and (25)–(27), each matrix
in (28) has the form2 (W1D1) diag(·) (W2D2)>. Both D1

and D2 are (full) K-rank matrices and W1 and W2 are
K-rank by construction. Therefore, the square matrices
V1 = W1D1 and V2 = W2D2 are invertible. From (16)
and (29), we get V1cov(α)V >2 = I and hence V2 =
diag[var(α)−1]V −1

1 (the covariance matrix of the sources
is diagonal and we assume they are non-deterministic, i.e.
var(α) 6= 0). Substituting this into W1S12(t)W>2 and
using the diagonal form (25)–(27), we obtain that the
matrices in (28) have the form V1diag(·)V −1

1 . Hence,
we deal with the problem of the following type: Given
P non-defective (a.k.a. diagonalizable) matrices B =
{B1, . . . , BP }, where each matrix Bp ∈ RK×K , find and
invertible matrix Q ∈ RK×K such that

QBQ−1 = {QB1Q
−1, . . . , QBPQ

−1} (31)

are (jointly) as diagonal as possible. This can be seen as
a joint non-symmetric eigenvalue problem. This problem
should not be confused with the classical joint diagonaliza-
tion problem by congruence (JDC), where Q−1 is replaced
by Q>, except when Q is an orthogonal matrix (Luciani
& Albera, 2010). JDC is often used for ICA algorithms or
moment matching based algorithms for graphical models
when a whitening step is not desirable (see, e.g., Kuleshov
et al. (2015) and references therein). However, neither JDC
nor the orthogonal diagonalization-type algorithms (such
as, e.g., the tensor power method by Anandkumar et al.,
2014) are applicable for the problem (31).

To solve the problem (31), we use the Jacobi-like non-
orthogonal joint diagonalization (NOJD) algorithms (e.g.,
Fu & Gao, 2006; Iferroudjene et al., 2009; Luciani & Al-
bera, 2010). These algorithms are an extension of the
orthogonal joint diagonalization algorithms based on Ja-
cobi (=Givens) rotations (Golub & Van Loan, 1996; Bunse-
Gerstner et al., 1993; Cardoso & Souloumiac, 1996). Due
to the space constraint, the description of the NOJD algo-
rithms is moved to Appendix F. Although these algorithms
are quite stable in practice, we are not aware of any the-
oretical guarantees about their convergence or stability to
perturbation.

Spectral algorithm. By analogy with the orthogonal case
(Cardoso, 1989; Anandkumar et al., 2012), we can eas-
ily extend the idea of the spectral algorithm to the non-
orthogonal one. Indeed, it amounts to performing whiten-
ing as before and constructing only one matrix with the
diagonal structure, e.g., B = W1S12(t)W>2 for some t.
Then, the matrix Q is obtained as the matrix of the eigen-
vectors of B. The vector t can be, e.g., chosen as t = Wu,
where W = [W1; W2] and u ∈ RK is a vector sampled
uniformly at random.

2 Note that when the diagonal form has terms diag[et], we
simply multiply the expression by diag[e−t].

This spectral algorithm and the NOJD algorithms are
closely connected. In particular, when B has real eigen-
vectors, the spectral algorithm is equivalent to NOJD of
B. Indeed, in such case, NOJD boils down to an algo-
rithm for a non-symmetric eigenproblem (Eberlein, 1962;
Ruhe, 1968). In practice, however, due to the presence of
noise and finite sample errors, B may have complex eigen-
vectors. In such case, the spectral algorithm is different
from NOJD. Importantly, the joint diagonalization type al-
gorithms are known to be more stable in practice (see, e.g.,
Bach & Jordan, 2003; Podosinnikova et al., 2015).

While deriving precise theoretical guarantees is beyond the
scope of this paper, the techniques outlined by Anand-
kumar et al. (2012) for the spectral algorithm for latent
Dirichlet Allocation can potentially be extended. The main
difference is obtaining the analogue of the SVD accuracy
(Lemma C.3, Anandkumar et al., 2013) for the eigen de-
composition. This kind of analysis can potentially be ex-
tended with the techniques outlined in (Chapter 4, Stewart
& Sun, 1990). Nevertheless, with appropriate parametric
assumptions on the sources, we expect that the above de-
scribed extension of the spectral algorithm should lead to
similar guarantee as the spectral algorithm of Anandkumar
et al. (2012).

See Appendix E for some important implementation de-
tails, including the choice of the processing points.

5. Experiments
Synthetic data. We sample synthetic data to have ground
truth information for comparison. We sample from lin-
ear DCCA which extends linear CCA (7) such that each
view is xj ∼ Poisson(Djα + Fjβj). The sources α ∼
Gamma(c, b) and the noise sources βj ∼ Gamma(cj , bj),
for j = 1, 2, are sampled from the gamma distribution
(where b is the rate parameter). Let sj ∼ Poisson(Djα)
be the part of the sample due to the sources and nj ∼
Poisson(Fjβj) be the part of the sample due to the noise
(i.e., xj = sj + nj). Then we define the expected sample
length due to the sources and noise, respectively, as Ljs :=
E[
∑

m sjm] and Ljn := E[
∑

m njm]. For sampling, the
target values Ls = L1s = L2s and Ln = L1n = L2n

are fixed and the parameters b and bj are accordingly set
to ensure these values: b = Kc/Ls and bj = Kjcj/Ln
(see Appendix B.2 of Podosinnikova et al. (2015)). For
the larger dimensional example (Fig. 2, right), each col-
umn of the matrices Dj and Fj , for j = 1, 2, is sampled
from the symmetric Dirichlet distribution with the concen-
tration parameter equal to 0.5. For the smaller 2D exam-
ple (Fig. 2, left), they are fixed: D1 = D2 with [D1]1 =
[D1]2 = 0.5 and F1 = F2 with [F1]11 = [F1]22 = 0.9
and [F1]12 = [F1]21 = 0.1. For each experiment, Dj

and Fj , for j = 1, 2, are sampled once and, then, the x-
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Figure 2. Synthetic experiment with discrete data. Left (2D example): M1 = M2 = K1 = K2 = 2, K = 1, c = c1 = c2 = 0.1, and
Ls = Ln = 100; middle (2D data): the x1-observations and factor loading matrices for the 2D example (F1j denotes the j-th column
of the noise factor matrix F1); right (20D example): M1 = M2 = K1 = K2 = 20, K = 10, Ls = Ln = 1, 000, c = 0.3, and
c1 = c2 = 0.1.

nato otan work travail board commission nisga nisga
kosovo kosovo workers négociations wheat blé treaty autochtones
forces militaires strike travailleurs farmers agriculteurs aboriginal traité

military guerre legislation grève grain administration agreement accord
war international union emploi producers producteurs right droit

troops pays agreement droit amendment grain land nations
country réfugiés labour syndicat market conseil reserve britannique
world situation right services directors ouest national indiennes

national paix services accord western amendement british terre
peace yougoslavie negotiations voix election comité columbia colombie

Table 1. Factor loadings (a.k.a. topics) extracted from the Hansard collection for K = 20 with DCCA.

observations are sampled for different sample sizes N =
{500, 1, 000, 2, 000, 5, 000, 10, 000}, 5 times for each N .

Metric. The evaluation is performed on a matrix D ob-
tained by stacking D1 and D2 vertically (see also the
comment after Thm. 1). As in Podosinnikova et al.
(2015), we use as evaluation metric the normalized `1-
error between a recovered matrix D̂ and the true matrix
D with the best permutation of columns err1(D̂,D) :=

minπ∈PERM
1

2K

∑
k ‖d̂πk − dk‖1 ∈ [0, 1]. The minimiza-

tion is over the possible permutations π ∈ PERM of the
columns of D̂ and can be efficiently obtained with the Hun-
garian algorithm for bipartite matching. The (normalized)
`1-error takes the values in [0, 1] and smaller values of this
error indicate better performance of an algorithm.

Algorithms. We compare DCCA (implementation with
the S- and T-cumulants) and DCCAg (implementation with
the generalized S-covariance matrices and the processing
points initialized as described in Appendix E.4) to DICA
and the non-negative matrix factorization (NMF) algorithm
with multiplicative updates for divergence (Lee & Seung,
2000). To run DICA or NMF, we use the stacking trick (8).
DCCA is set to estimate K components. DICA is set to es-
timate eitherK0 = K+K1+K2 orM = M1+M2 compo-
nents (whichever is the smallest, since DICA cannot work
in the over-complete case). NMF is always set to estimate
K0 components. For the evaluation of DICA/NMF, the
K columns with the smallest `1-error are chosen. NMF◦

stands for NMF initialized with a matrix D of the form (8)
with induced zeros; otherwise NMF is initialized with (uni-
formly) random non-negative matrices. The running times

are discussed in Appendix G.5.

Synthetic experiment. We first perform an experiment
with discrete synthetic data in 2D (Fig. 2) and then repeat
the same experiment when the size of the problem is 10
times larger. In practice, we observed that for K0 < M
all models work approximately equally well, except for
NMF which breaks down in high dimensions. In the over-
complete case as in Fig. 2, DCCA works better. A con-
tinuous analogue of this experiment is presented in Ap-
pendix G.1.

Real data (translation). Following Vinokourov et al.
(2002), we illustrate the performance of DCCA by extract-
ing bilingual topics from the Hansard collection (Vinok-
ourov & Girolami, 2002) with aligned English and French
proceedings of the 36-th Canadian Parliament. In Ta-
ble 1, we present some of the topics extracted after run-
ning DCCA with K = 20 (see all the details in Ap-
pendices G.3 and G.4). The (Matlab/C++) code for re-
producing the experiments of this paper is available at
https://github.com/anastasia-podosinnikova/cca.

Conclusion

We have proposed the first identifiable versions of CCA, to-
gether with moment matching algorithms which allow the
identification of the loading matrices in a semi-parametric
framework, where no assumptions are made regarding the
distribution of the source or the noise. We also introduce
new sets of moments (our generalized covariance matri-
ces), which could prove useful in other settings.

https://github.com/anastasia-podosinnikova/cca
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6. Appendix
The appendix is organized as follows.

- In Appendix A, we summarize our notation.

- In Appendix B, we present the proof of Theorem 1
stating the identifiability of the CCA models (4)–(6).

- In Appendix C, we provide some details for the gen-
eralized covariance matrices: the form of the gen-
eralized covariance matrices of independent variables
(Appendix C.1), the derivations of the diagonal form
of the generalized covariance matrices of discrete ICA
(Appendix C.3), the derivations of the diagonal form
of the generalized covariance matrices of the CCA
models (4)–(6) (Appendix C.4), and approximation of
the T-cumulants with the generalized covariance ma-
trix (Appendix C.5).

- In Appendix D, we provide expressions for natural fi-
nite sample estimators of the generalized covariance
matrices and the T-cumulant tensors for the consid-
ered CCA models.

- In Appendix E, we discuss some rather technical im-
plementation details: computation of whitening ma-
trices (Appendix E.2), selection of the projection vec-
tors for the T-cumulants and the processing points for
the generalized covariance matrices (Appendix E.4),
and the final estimation of the factor loading matrices
(Appendix E.5).

- In Appendix F, we describe the non-orthogonal joint
diagonalization algorithms used in this paper.

- In Appendix G, we present some supplementary ex-
periments: a continuous analog of the synthetic exper-
iment from Section 5 (Appendix G.1), an experiment
to analyze the sensitivity of the DCCA algorithm with
the generalized S-covariance matrices to the choice of
the processing points (Appendix G.2), and a detailed
description of the experiment with the real data from
Section 5 (Appendices G.3 and G.4).

A. Notation

A.1. NOTATION SUMMARY

The vector α ∈ RK refers to the latent sources. Unless oth-
erwise specified, the components α1, . . . , αK of the vec-
tor α are mutually independent. For a linear single-view
model, x = Dα, the vector x ∈ RM denotes the obser-
vation vector (sensors or documents), where M is, respec-
tively, the number of sensors or the vocabulary size. For
the two-view model, x, M , and D take the indices 1 and 2.

A.2. NAMING CONVENTION

A number of models have the linear form x = Dα. De-
pending on the context, the matrix D is called differently:
topic matrix3 in the topic learning context, factor loading or
projection matrix in the FA and/or PPCA context, mixing
matrix in the ICA context, or dictionary in the dictionary
learning context.

Our linear multi-view models, x1 = D1α and x2 = D2α,
are closely related the linear models mentioned above. For
example, due to the close relation of DCCA and DICA,
the former is closely related to the multi-view topic mod-
els (see, e.g., Blei & Jordan, 2003). In this paper, we refer
to D1 and D2 as the factor loading matrices, although de-
pending on contex any other name can be used.

B. Identifiability

In this section, we prove that the factor loading matricesD1

and D2 of the non-Gaussian CCA (4), discrete CCA (5),
and mixed CCA (6) models are identifiable up to permuta-
tion and scaling if at most one source αk is Gaussian. We
provide a complete proof for the non-Gaussian CCA case
and show that the other two cases can be proved by analogy.

B.1. IDENTIFIABILITY OF NON-GAUSSIAN CCA (4)

The proof uses the notion of the second characteristic func-
tion (SCF) of a random variable x ∈ RM :

φx(t) = logE(eit
>x),

for all t ∈ RM . The SCF completely defines the proba-
bility distribution of x (see, e.g., Jacod & Protter, 2004).
Important difference between the SCF and the cumulant
generating function (19) is that the former always exists.

The following property of the SCF is of central importance
for the proof: if two random variables, z1 and z2, are in-
dependent, then φA1z1+A2z2(t) = φz1(A>1 t) + φz2(A>2 t),
where A1 and A2 are any matrices of compatible sizes.

We can now use our CCA model to derive an expression of
φx(t). Indeed, defining a vector x by stacking the vectors
x1 and x2, the SCF of x for any t = [t1; t2], takes the form

φx(t) = logE(eit
>
1 x1+it>2 x2)

(a)
= logE(eiα

>(D>1 t1+D>2 t2)+iε>1 t1+iε>2 t2)

(b)
= logE(eiα

>(D>1 t1+D>2 t2))

+ logE(eiε
>
1 t1) + logE(eiε

>
2 t2)

= φα(D>1 t1 +D>2 t2) + φε1(t1) + φε2(t2),

3 Note that Podosinnikova et al. (2015) show that DICA is
closely connected (and under some conditions is equivalent) to
latent Dirichlet allocation (Blei et al., 2003).
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where in (a) we substituted the definition (4) of x1 and x2

and in (b) we used the independence α ⊥⊥ ε1 ⊥⊥ ε2. There-
fore, the blockwise mixed derivatives of φx are equal to

∂1∂2φx(t) = D1φ
′′
α(D>1 t1 +D>2 t2)D>2 , (32)

where ∂1∂2φx(t) := ∇t1∇t2φx(h(t1, t2)) ∈ RM1×M2 and
φ′′α(u) := ∇2

uφα(u), does not depend on the noise vectors
ε1 and ε2.

For simplicity, we first prove the identifiability result when
all components of the common sources are non-Gaussian.
The high level idea of the proof is as follows. We as-
sume two different representations of x1 and x2 and us-
ing (32) and the independence of the components of α and
the noises, we first show that the two potential dictionaries
are related by an orthogonal matrix (and not any invertible
matrix), and then show that this implies that the two poten-
tial sets of independent components are (orthogonal) linear
combinations of each other, which, for non-Gaussian com-
ponents which are not reduced to point masses, imposes
that this orthogonal transformation is the combination of a
permutation matrix and marginal scaling—a standard result
from the ICA literature (Comon, 1994, Theorem 11).

Let us then assume that two equivalent representations of
non-Gaussian CCA exist:

x1 = D1α+ ε1 = E1β + η1,

x2 = D2α+ ε2 = E2β + η2,
(33)

where the other sources β = (β1, . . . , βK) are also as-
sumed mutually independent and non-degenerate. As a
standard practice in the ICA literature and without loss of
generality as the sources have non-degenerate components,
one can assume that the sources have unit variances, i.e.
cov(α, α) = I and cov(β, β) = I , by respectively rescal-
ing the columns of the factor loading matrices. Under this
assumption, the two expressions of the cross-covariance
matrix are

cov(x1, x2) = D1D
>
2 = E1E

>
2 , (34)

which, given that D1, D2 have full rank, implies that4

E1 = D1Q, E2 = D2Q
−>, (35)

where Q ∈ RK×K is some invertible matrix. Substituting
the representations (33) into the blockwise mixed deriva-
tives of the SCF (32) and using the expressions (35) give

D1φ
′′
α(D>1 t1 +D>2 t2)D>2

= D1Qφ
′′
β(Q>D>1 t1 +Q−1D>2 t2)Q−1D>2 ,

4The fact that D1, D2 have full rank and that E1, E2 have K
columns, combined with (34), implies that E1, E2 have also full
rank.

for all t1 ∈ RM1 and t2 ∈ RM2 . Since the matrices D1 and
D2 have full rank, this can be rewritten as

φ′′α(D>1 t1 +D>2 t2)

= Qφ′′β(Q>D>1 t1 +Q−1D>2 t2)Q−1,

which holds for all t1 ∈ RM1 and t2 ∈ RM2 . Moreover,
still since D1 and D2 have full rank, we have, for any
u1, u2 ∈ RK the existence of t1 ∈ RM1 and t2 ∈ RM2 ,
such that u1 = D>1 t1 and u2 = D>2 t2, that is,

φ′′α(u1 + u2) = Qφ′′β(Q>u1 +Q−1u2)Q−1, (36)

for all u1, u2 ∈ RK .

We will now prove two facts:

(F1) For any vector v ∈ RK , then φ′′β((Q>Q−I)v) = −I ,
which will imply that QQ> = I because of the non-
Gaussian assumptions.

(F2) If QQ> = I , then φ′′α(u) = φ′′Qβ(u) for any u ∈
RK , which will imply that Q is the composition of a
permutation and a scaling. This will end the proof.

Proof of fact (F1). By letting u1 = Qv and u2 = −Qv, we
get:

φ′′α(0) = Qφ′′β((Q>Q− I)v)Q−1, (37)

Since5 φ′′α(0) = −cov(α) = −I , one gets

φ′′β((Q>Q− I)v) = −I,

for any v ∈ RK .

Using the property that φ′′A>β(v) = A>φ′′β(Av)A for any
matrix A, and in particular with A = Q>Q − I , we have
that φ′′A>β(v) = −A>A, i.e. is constant.

If the second derivative of a function is constant, the func-
tion is quadratic. Therefore, φA>β(·) is a quadratic func-
tion. Since the SCF completely defines the distribution
of its variable (see,e.g., Jacod & Protter (2004)), A>β
must be Gaussian (the SCF of a Gaussian random vari-
able is a quadratic function). Given Lemma 9 from Comon
(1994) (i.e., Cramer’s lemma: a linear combination of non-
Gaussian random variables cannot be Gaussian unless the
coefficients are all zero), this implies thatA = 0, and hence
Q>Q = I , i.e., Q is an orthogonal matrix.

Proof of fact (F2). Plugging Q> = Q−1 into (36), with
u1 = 0 and u2 = u, gives

φ′′α(u) = Qφ′′β(Q>u)Q> = φ′′Qβ(u), (38)

5 Note that ∇2
uφα(u) = −E(αα>eiu

>α)

E(eiu>α)
+ Eα(u)Eα(u)>,

where Eα(u) = E(αeiu
>α)

E(eiu>α)
.
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for any u ∈ RK . By integrating both sides of (38) and us-
ing φα(0) = φQβ(0) = 0, we get that φα(u) = φQβ(u) +
iγ>u for all u ∈ RK for some constant vector γ. Us-
ing again that the SCF completely defines the distribution,
it follows that α − γ and Qβ have the same distribution.
Since both α and β have independent components, this is
only possible when Q = ΛP , where P is a permutation
matrix and Λ is some diagonal matrix (Comon, 1994, The-
orem 11).

B.2. CASE OF A SINGLE GAUSSIAN SOURCE

Without loss of generality, we assume that the potential
Gaussian source is the first one for α and β. The first
change is in the proof of fact (F1). We use the same ar-
gument up to the point where we conclude that A>β is a
Gaussian vector. As only β1 can be Gaussian, Cramer’s
lemma implies that only the first row of A can have non-
zero components, that is A = Q>Q − I = e1f

>, where
e1 is the first basis vector and f any vector. Since Q>Q is
symmetric, we must have

Q>Q = I + ae1e
>
1 ,

where a is a constant scalar different than −1 as Q>Q is
invertible. This implies that Q>Q is an invertible diago-
nal matrix Λ, and hence QΛ−1/2 is an orthogonal matrix,
which in turn implies that Q−1 = Λ−1Q>.

Plugging this into (36) gives, for any u1 and u2:

φ′′α(u1 + u2) = Qφ′′β(Q>u1 + Λ−1Q>u2)Λ−1Q>.

Given that diagonal matrices commute and that φ′′β is diag-
onal for independent sources (see Appendix C.1), this leads
to

φ′′α(u1+u2) = QΛ−1/2φ′′β(Q>u1+Λ−1Q>u2)Λ−1/2Q>.

For any given v ∈ RK , we are looking for u1 and u2 such
that Q>u1 + Λ−1Q>u2 = Λ−1/2Q>v and u1 + u2 = v,
which is always possible by setting Q>u2 = (Λ−1/2 +
I)−1Q>v and Q>u1 = Q>v−Q>u2 by using the special
structure of Λ. Thus, for any v,

φ′′α(v) = QΛ−1/2φ′′β(Λ−1/2Q>v)Λ−1/2Q> = φ′′QΛ−1/2β(v).

Integrating as previously, this implies that the characteristic
function of α andQΛ−1/2β differ only by a linear function
iγ>v, and thus, that α − γ and QΛ−1/2β have the same
distribution. This in turn, from Comon (1994, Theorem
11), implies that QΛ−1/2 is a product of a scaling and a
permutation, which ends the proof.

B.3. IDENTIFIABILITY OF DISCRETE CCA (5) AND
MIXED CCA (6)

Given the discrete CCA model, the SCF φx(t) takes the
form

φx(t) = φα(D>1 (eit1 − 1) +D>2 (eit2 − 1))

+ φε1(eit1 − 1) + φε2(eit2 − 1),

where eitj , for j = 1, 2, denotes a vector with them-th ele-
ment equal to ei[tj ]m , and we used the arguments analogous
with the non-Gaussian case. The rest of the proof extends
with a correction that sometimes one has to replaceDj with
diag[eitj ]Dj and that uj = D>j (eitj − 1) for j = 1, 2. For
the mixed CCA case, only the part related to x2 and D2

changes in the same way as for the discrete CCA case.

C. The generalized expectation and covariance matrix

C.1. THE GENERALIZED EXPECTATION AND
COVARIANCE MATRIX OF THE SOURCES

Note that some properties of the generalized expectation
and covariance matrix, defined in (20) and (21), and their
natural finite sample estimators are analyzed by Slapak &
Yeredor (2012b). Note also that we find the name “general-
ized covariance matrix” to be more meaningful than “char-
relation” matrix as was proposed by previous authors (see,
e.g. Slapak & Yeredor, 2012a;b).

The sources α = (α1, . . . , αK) are mutually independent.
Therefore, for some h ∈ RK , their CGF (19) Kα(h) =

logE(eα
>h) takes the form

Kα(h) =
∑

k
log
[
E(eαkhk)

]
.

Therefore, the k-th element of the generalized expecta-
tion (20) of α is (separable in αk)

[Eα(h)]k =
E(αke

αkhk)

E(eαkhk)
(39)

and the generalized covariance (21) of α is diagonal due to
the separability and its k-th diagonal element is

[Cα(h)]kk =
E(α2

ke
αkhk)

E(eαkhk)
− [Eα(h)]

2
k . (40)

C.2. SOME EXPECTATIONS OF A POISSON RANDOM
VARIABLE

Let x ∈ RM be a multivariate Poisson random variable
with mean y ∈ RM+ . Then, for some t ∈ RM ,

E(et
>x) = ey

>(et−1),

E(xme
t>x) = yme

tmey
>(et−1),

E(x2
me

t>x) =
[
yme

tm + 1
]
yme

tmey
>(et−1),

E(xmxm′e
t>x) = yme

tmym′e
tm′ ey

>(et−1), m 6= m′,
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where et denotes anM -vector with them-th element equal
to etm .

C.3. THE GENERALIZED EXPECTATION AND
COVARIANCE MATRIX OF DISCRETE ICA

In this section, we use the expectations of a Poisson random
variable presented in Appendix C.2.

Given the discrete ICA model (9), the generalized expecta-
tion (20) of x ∈ RM takes the form

Ex(t) =
E(xet

>x)

E(et>x)
=

E
[
E(xet

>x|α)
]

E
[
E(et>x|α)

]
= diag[et]D

E(αeα
>h(t))

E(eα>h(t))

= diag[et]DEα(h(t)),

where t ∈ RM is a parameter, h(t) = D>(et − 1), and et

denotes an M -vector with the m-th element equal to etm .
Note that in the last equation we used the definition (20) of
the generalized expectation Eα(·).

Further, the generalized covariance (21) of x takes the form

Cx(t) =
E(xx>et

>x)

E(et>x)
− Ex(t)Ex(t)>

=
E
[
E(xx>et

>x|α)
]

E
[
E(et>x|α)

] − Ex(t)Ex(t)>.

Plugging into this expression the expression for Ex(t) and

E(xx>et
>x|α) = diag[et]DE(αα>eα

>h(t))D>diag[et]

+ diag[et]diag
[
DE(αeα

>h(t))
]

we get

Cx(t) = diag[Ex(t)] + diag[et]DCα(h(t))D>diag[et],

where we used the definition (21) of the generalized covari-
ance of α.

C.4. THE GENERALIZED CCA S-COVARIANCE MATRIX

In this section we sketch the derivation of the diagonal
form (27) of the generalized S-covariance matrix of mixed
CCA (6). Expressions (25) and (26) can be obtained in a
similar way.

Denoting x = [x1; x2] and t = [t1; t2] (i.e. stacking the
vectors as in (8)), the CGF (19) of mixed CCA (6) can be

written as

Kx(t) = logE(et
>
1 x1+t>2 x2)

= logE
[
E(et

>
1 x1+t>2 x2 |α, ε1, ε2)

]
(a)
= logE

[
E(et

>
1 x1 |α, ε1)E(et

>
2 x2 |α, ε2)

]
(b)
= logE

(
et
>
1 (D1α+ε1)e(D2α+ε2)>(et2−1)

)
(c)
= logE

(
eα
>h(t)

)
+ logE

(
eε
>
2 (et2−1)

)
+ logE(et

>
1 ε1),

where h(t) = (D>1 t1 +D>2 (et2 − 1), in (a) we used the
conditional independence of x1 and x2, in (b) we used the
first expression from Appendix C.2, and in (c) we used the
independence assumption (3).

The generalized CCA S-covariance matrix is defined as

S12(t) := ∇t2∇t1Kx(t).

Its gradient with respect to t1 is

∇t1Kx(t) =
D1E(αeα

>h(t))

E(eα>h(t))
+

E(ε1e
t>1 ε1)

E(et
>
1 ε1)

,

where the last term does not depend on t2. Computing the
gradient of this expression with respect to t2 gives

S12(t) = D1Cα(h(t))
(
diag[et2 ]D2

)>
,

where we substituted expression (40) for the generalized
covariance of the independent sources.

C.5. APPROXIMATION OF THE T-CUMULANTS WITH
THE GENERALIZED COVARIANCE MATRIX

Let fmm′(t) = [Cx(t)]mm′ be a function R → RM cor-
responding to the (m,m′)-th element of the generalized
covariance matrix. Then the following holds for its direc-
tional derivative at t0 along the direction t:

〈∇fmm′(t0), t〉 = lim
δ→0

fmm′(t0 + δt)− fmm′(t0)

δ
,

where 〈·, ·〉 stands for the inner product. Therefore, when
using the fact that ∇f(t0) = ∇Cx(t) is the generalized
cumulant of x at t0 and the definition of a projection of a
tensor onto a vector (42), one obtains for t0 = 0 the ap-
proximation of the cumulant cum(x) with the generalized
covariance matrix Cx(t).

Let us define v1 = W>1 u1 and v1 = W>2 u2 for
some u1, u2 ∈ RK . Then, approximations for the T-
cumulants (17) of discrete CCA take the following form:
W1T121(v1)W2 is approximated by the generalized S-
covariances (24) S12(t) via the following expression

W1T121(v1)W2 ≈
W1S12(δt1)W>2 −W1S12(0)W>2

δ

−W1diag(v1)S12W
>
2 ,
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where t1 =

(
v1

0

)
and W1T122(v2)W2 is approximated by

the generalized S-covariances S12(t) via

W1T122(v2)W2 ≈
W1S12(δt2)W>2 −W1S12(0)W>2

δ

−W1S12diag(v2)W>2 ,

where t2 =

(
0
v2

)
and δ are chosen to be small.

D. Finite sample estimators

D.1. FINITE SAMPLE ESTIMATORS OF THE
GENERALIZED EXPECTATION AND COVARIANCE
MATRIX

Following Yeredor (2000); Slapak & Yeredor (2012b), we
use the most direct way of defining the finite sample esti-
mators of the generalized expectation (20) and covariance
matrix (21).

Given a finite sample X = {x1, x2, . . . , xN}, an estimator
of the generalized expectation is

Êx(t) =

∑
n xnwn∑
n wn

where weights wn = et
>xn and an estimator of the gener-

alized covariance is

Ĉx(t) =

∑
n xnx

>
nwn∑

n wn
− Êx(t)Êx(t)>.

Similarly, an estimator of the generalized S-covariance ma-
trix is then

Ĉx1,x2
(t) =

∑
n x1nx

>
2nwn∑

n wn
−
∑

n x1nwn∑
n wn

∑
n x
>
2nwn∑
n wn

,

where x = [x1; x2] and t = [t1; t2] for some t1 ∈ RM1

and t2 ∈ RM2 .

Some properties of these estimators are analyzed by Slapak
& Yeredor (2012b).

D.2. FINITE SAMPLE ESTIMATORS OF THE DCCA
CUMULANTS

In this section, we sketch the derivation of unbiased finite
sample estimators for the CCA cumulants S12, T121, and
T122. Since the derivation is nearly identical to the deriva-
tion of the estimators for the DICA cumulants (see Ap-
pendix F.2 of Podosinnikova et al. (2015)), all details are
omitted.

Given a finite sample X1 = {x11, x12, . . . , x1N} and
X2 = {x21, x22, . . . , x2N}, the finite sample estima-
tor of the discrete CCA S-covariance (15), i.e., S12 :=

cum(x1, x2), takes the form

Ŝ12 = η1

[
X1X

>
2 −N Ê(x1)Ê(x2)>

]
, (41)

where Ê(x1) = N−1
∑

n x1n, Ê(x2) = N−1
∑

n x2n,
and η1 = 1/(N − 1).

Substitution of the finite sample estimators of the 2nd
and 3rd cumulants (see, e.g., Appendix C.4 of Podosin-
nikova et al. (2015)) into the definition of the DCCA T-
cumulants (17) leads to the following expressions

Ŵ1T̂12j(vj)Ŵ
>
2 = η2[(Ŵ1X1)diag(X>j vj)]⊗ (Ŵ2X2)

+ η2〈vj , Ê(xj)〉2N [Ŵ1Ê(x1)]⊗ [Ŵ2Ê(x2)]

− η2〈vj , Ê(xj)〉(Ŵ1X1)⊗ (Ŵ2X2)

− η2[(Ŵ1X1)(X>j vj)]⊗ [Ŵ2Ê(x2)]

− η2[Ŵ1Ê(x1)]⊗ [(Ŵ2X2)(X>j vj)]

− η1(Ŵ
(j)
1 X1)⊗ (Ŵ

(j)
2 X2)

+ η1N [Ŵ
(j)
1 Ê(x1)]⊗ [Ŵ

(j)
2 Ê(x2)],

where η2 = N/((N−1)(N−2)) and Ŵ (1)
1 = Ŵ1diag(v1),

Ŵ
(1)
2 = Ŵ2, Ŵ (2)

1 = Ŵ1, and Ŵ (2)
2 = Ŵ2diag(v2).

In the expressions above, Ŵ1 and Ŵ2 denote whitening ma-
trices of Ŝ12, i.e. such that Ŵ1Ŝ12Ŵ

>
2 = I .

E. Implementation details

E.1. CONSTRUCTION OF S- AND T-CUMULANTS

By analogy with Podosinnikova et al. (2015), the target ma-
trices for joint diagonalization can be constructed from S-
and T-cumulants.

When dealing with the S- and T-cumulants, the target ma-
trices are obtained via tensor projections. We define a
projection T (v) ∈ RM1×M2 of a third-order tensor T ∈
RM1×M2×M3 onto a vector v ∈ RM3 as

[T (v)]m1m2
:=

M3∑
m3=1

[T ]m1m2m3
vm3

. (42)

Note that the projection T (v) is a matrix. Therefore, given
2P vectors {v11, v21, v12, v22, . . . , v1P , v2P }, one can con-
struct 2P + 1 matrices

{S12, T121(v1p), T122(v2p), for p = 1, . . . , P}, (43)

which have the diagonal form (16) and (18). Impor-
tantly, the tensors are never constructed (see Anandkumar
et al. (2012; 2014); Podosinnikova et al. (2015) and Ap-
pendix D.2).
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E.2. COMPUTATION OF WHITENING MATRICES

One can compute such whitening matrices (29) via the
singular value decomposition (SVD) of S12. Let S12 =
UΣV > be the SVD of S12, then one can define W1 =
U1:KΛ and W2 = V1:KΛ, where U1:K and V1:K are
the first K left- and right-singular vectors and Λ =

diag(σ
−1/2
1 , . . . , σ

−1/2
K ) and σ1, . . . , σK are the K largest

singular values.

Although SVD is computed only once, the size of the ma-
trix S12 can be significant even for storage. To avoid con-
struction of this large matrix and speed up SVD, one can
use randomized SVD techniques (Halko et al., 2011). In-
deed, since the sample estimator Ŝ12 has the form (41), one
can reduce this matrix by sampling two Gaussian random
matrices Ω1 ∈ RK̃×M1 and Ω2 ∈ RK̃×M2 , where K̃ is
slightly larger than K. Now, if U and V are the K largest
singular vectors of the reduced matrix Ω1Ŝ12Ω2, then Ω†1U

and Ω†2V are approximately (and up to permutation and
scaling of the columns) the K largest singular vectors of
Ŝ12.

E.3. APPLYING WHITENING TRANSFORM TO DCCA
T-CUMULANTS

Transformation of the T-cumulants (43) with whitening
matrices W1 and W2 gives new tensors T̂12j ∈ RK×K×K :

T̂12j := T12j ×1 W
>
1 ×2 W

>
2 ×3 W

>
j , (44)

where j = 1, 2. Combining this transformation with the
projection (42), one obtains 2P + 1 matrices

W1S12W
>
2 , W1T12j(W

>
j ujp)W

>
2 , (45)

where p = 1, . . . , P and j = 1, 2 and we used vjp =
W>j ujp to take into account whitening along the third di-
rection. By choosing ujp ∈ RK to be the canonical vec-
tors of the RK , the number of tensor projections is reduced
from M = M1 +M2 to 2K.

E.4. CHOICE OF PROJECTION VECTORS OR
PROCESSING POINTS

For the T-cumulants (43), we choose the K projection vec-
tors as v1p = W>1 ep and v2p = W>2 ep, where ep is one of
the columns of the K-identity matrix (i.e., a canonical vec-
tor). For the generalized S-covariances (28), we choose the
processing points as t1p = δ1v1p and t2p = δ2v2p, where
δj , for j = 1, 2 are set to a small value such as 0.1 divided
by
∑
m E(|xjm|)/Mj , for j = 1, 2.

When projecting a tensor T12j onto a vector, part of the
information contained in this tensor gets lost. To pre-
serve all information, one could project a tensor T12j onto
the canonical basis of RMj to obtain Mj matrices. How-
ever, this would be an expensive operation in terms of both

memory and computational time. In practice, we use the
fact, that the tensor T12j , for J = 1, 2, is transformed
with whitening matrices (44). Hence, the projection vec-
tor has to include multiplication by the whitening matrices.
Since they reduce the dimension toK, choosing the canon-
ical basis in RK becomes sufficient. Hence, the choice
v1p = W>1 ep and v2p = W>2 ep, where ep is one of the
columns of the K-identity matrix.

Importantly, in practice, the tensors are never constructed
(see Appendix D.2).

The choice of the processing points of the generalized co-
variance matrices has to be done carefully. Indeed, if the
values of t1 or t2 are too large, the exponents blow up.
Hence, it is reasonable to maintain the values of the pro-
cessing points very small. Therefore, for j = 1, 2, we
set tjp = δjvjp where δj is proportional to a parameter
δ which is set to a small value (δ = 0.1 by default), and the
scale is determined by the inverse of the empirical average
of the component of xj , i.e.:

δj := δ
NMj∑N

n=1

∑Mj

m=1[|Xj |]mn
, (46)

for j = 1, 2. See Appendix G.2 for an experimental com-
parison of different values of δ (the default value used in
other experiments is δ = 0.1).

E.5. FINALIZING ESTIMATION OF D1 AND D2

The non-orthogonal joint diagonalization algorithm out-
puts an invertible matrix Q. If the estimated factor loading
matrices are not supposed to be non-negative (continuous
case of NCCA (4)), then

D1 = W †1Q,

D2 = W †2Q
−1,

(47)

where † stands for the pseudo-inverse. For the spectral al-
gorithm, whereQ are eigenvectors of a non-symmetric ma-
trix and are not guaranteed to be real, only real parts are
kept after evaluating matrices D1 and D2 in accordance
with (47).

If the matrices D1 and/or D2 have to be non-negative (the
discrete case of DCCA (5) and MCCA (6)), they have to be
further mapped. For that, we select the sign of each column
such that the vector (column) has less negative than posi-
tive components, which is measured by the sum of squares
of the components of each sign, (this is necessary since
the scaling unidentifiability includes the scaling by−1) and
then truncate all negative values at 0.

In practice, due to the scaling unidentifiability, each col-
umn of the obtained matrices D1 and D2 can be further
normalized to have the unit `1-norm. This is applicable in
all cases (D/M/NCCA).
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F. Jacobi-like joint diagonalization of non-symmetric
matrices

Given N non-defective (a.k.a. diagonalizable) not neces-
sary normal6 matrices

A = {A1, A2, . . . , AN} ,

where each matrix An ∈ RM×M , find such matrix Q ∈
RM×M that matrices

Q−1AQ =
{
Q−1A1Q, Q

−1A2Q, . . . , Q
−1ANQ

}
are (jointly) as diagonal as possible. We refer to this
problem as a non-orthogonal joint diagonalization (NOJD)
problem.7

Algorithm 1 Non-orthogonal joint diagonalization
(NOJD)

1: Initialize: A(0) ← A and Q(0) ← IM and iterations
` = 0

2: for sweeps k = 1, 2, . . . do
3: for p = 1, . . . , M − 1 do
4: for q = p+ 1, . . . , M do
5: Increase ` = `+ 1
6: Find the (approx.) shear parameter y∗ defined

in (54)
7: Find the Jacobi angle θ∗ defined in (53)
8: Update Q(`) ← Q(`−1)S

(`)
∗ U

(`)
∗

9: Update A(`) ← U
(`)>
∗ S

(`)−1
∗ A(`−1)S

(`)
∗ U

(`)
∗

10: end for
11: end for
12: end for
13: Output: Q(`)

Algorithm. Non-orthogonal Jacobi-like joint diagonaliza-
tion algorithms have the high level structure which is out-
lined in Alg. 1.

The algorithm iteratively constructs the sequence of matri-
ces A(`) =

{
A

(`)
1 , A

(`)
2 , . . . , A

(`)
N

}
, which is initialized

with A(0) = A. Each such iteration ` corresponds to a sin-
gle update (Line (1) of Alg. (1)) of the matrices with the
optimal shear S(`)

∗ and unitary U (`)
∗ transforms:

A(`)
n = U

(`)>
∗ S

(`)−1
∗ A(`−1)

n S
(`)
∗ U

(`)
∗ ,

where S(`)
∗ = S(`)(y∗) and U (`)

∗ = U (`)(θ∗) for the chosen
in accordance with some rules (see below) optimal shear
parameter y∗ and optimal Jacobi (=Givens) angle θ∗.

6A real matrix A is normal if A>A = AA>.
7An orthogonal joint diagonalization problem corresponds to

the case where the matrices A1, A2, . . . , AN are normal and,
hence, diagonalizable by an orthogonal matrix Q.

For the theoretical analysis purposes, the two transforms
are considered separately:

A′(`)n = S(`)−1(y)A(`−1)
n S(`)(y),

A(`)
n = A′′(`)n = U (`)>(θ)A′(`)n U (`)(θ).

(48)

Each such iteration ` is a combination of the iteration k
and the pivots p and q (see Alg. 1). The iteration k is re-
ferred to as a sweep. Within each sweep k, M(M − 1)/2
pivots p < q are chosen in accordance with the lexico-
graphical rule. The rule for the choice of pivots can af-
fect convergence as was analyzed for the single matrix case
(see, e.g., Ruhe, 1968; Eberlein, 1962), where more so-
phisticated rules were proposed for the algorithm to have
a quadratic convergence phase. However, up to our best
knowledge, no such analysis was done for the several ma-
trices case. We assume the simple lexicographical rule all
over the paper.

The shear transform is defined by the hyperbolic rotation
matrix S(`) = S(`)(y) which is equal to the identity matrix
except for the following entries(

S
(`)
pp S

(`)
pq

S
(`)
qp S

(`)
qp

)
=

(
cosh y sinh y
sinh y cosh y

)
, (49)

where the shear parameter y ∈ R. The unitary transform
is defined by the Jacobi (=Givens) rotation matrix U (`) =
U (`)(θ) which is equal to the identity matrix except for the
following entries(

U
(`)
pp U

(`)
pq

U
(`)
qp U

(`)
qp

)
=

(
cos θ sin θ
− sin θ cos θ

)
, (50)

where the Jacobi (=Givens) angle θ ∈
[
−π4 ,

π
4

]
.

The following two objective functions are of the central
importance for this type of algorithms: (a) the sum of
squares of all the off-diagonal elements of the matrices8

A′′(`) which are the transformed with the unitary transform
U (`) matrices A′(`):

Off
(
A′′(`)

)
=

N∑
n=1

Off
(
U (`)>A′(`)n U (`)

)
(51)

and (b) the sum of the squared Frobenius norms of the ma-
trices A′(`) which are the transformed with the share trans-
form S(`) matrices A(`−1):∥∥∥A′(`)∥∥∥2

F
=

N∑
n=1

∥∥∥S(`)−1A(`−1)
n S(`)

∥∥∥2

F
. (52)

8In the JUST algorithm (Iferroudjene et al., 2009), this objec-
tive function is also considered for the (shear transformed) matrix
A′(`).
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We refer to (51) as the diagonality measure and to (52) as
the normality measure.

All the considered algorithms find the optimal Jacobi an-
gle θ∗ as the minimizer of the diagonality measure of the
(unitary transformed) matrices A′′(`) (48):

θ∗ = arg min
θ∈[−π4 ,

π
4 ]

Off
(
A′′(`)

)
, (53)

which admits a unique closed form solution (Cardoso &
Souloumiac, 1996). The optimal shear parameter y∗ is
found9 as a minimizer of the normality measure of the
(shear transformed) matrices A′(`) (48):

y∗ = arg min
y∈R

∥∥∥A′(`)∥∥∥2

F
. (54)

All the considered algorithms (Fu & Gao, 2006; Iferroud-
jene et al., 2009; Luciani & Albera, 2010) solve this step
only approximately. In particular, the sh-rt algorithm (Fu &
Gao, 2006) approximates the equation for finding the nulls
of the gradient of the objective; the JUST algorithm (Ifer-
roudjene et al., 2009) replaces the normality measure with
the diagonality measure and provides a closed form solu-
tion for the resulting problem; and the JDTM algorithm
(Luciani & Albera, 2010) replaces the normality measure
with the sum of only two squared elementsA′n,pq andA′n,qp
and provides a closed form solution for the resulting prob-
lem.

The three NOJD algorithms can have slightly different con-
vergence properties, however, for the purposes of this paper
their performance can hardly be distinguished. That is, the
difference in the performance of the algorithms in terms of
the `1-error of the factor loading matrices is hardly notice-
able. For the experiments, we use the JDTM algorithm,
the other two algorithms could be equally used. To the
best of our knowledge, no theoretical analysis of the NOJD
algorithms is available, except for the single matrix case
when they boil down to the (non-symmetric) eigenproblem
(Eberlein, 1962; Ruhe, 1968).

The following intuitively explains why the normality mea-
sure, i.e. the sum of the squared Frobenius norms, has to
be minimized at the shear transform. As (Ruhe, 1968) men-
tion, for every matrix A and non-singular Q:

inf
Q

∥∥Q−1AQ
∥∥2

F
= ‖Λ‖2F ,

where Λ is the diagonal matrix containing the eigenvalues
of A. Therefore, a diagonalized version of the matrix A
must have the smallest Frobenius norm. Since the unitary

9The JUST algorithm is an exception here, since it minimizes
the diagonality measure Off[A′(`)] of the (shear transformed) ma-
trices A′(`) with respect to y.

transform does not change the Frobenius norm, it can only
be minimized with the shear transform. Further, if a matrix
is normal, i.e. A>A = AA> with a symmetric matrix as a
particular case, the upper triangular matrix in its Schur de-
composition is zero (Golub & Van Loan, 1996, Chapter 7)
and then the Schur vectors correspond to the (orthogonal in
this case) eigenvectors of this matrix. Therefore, a normal
non-defective matrix can be diagonalized by an orthogo-
nal matrix, which preserves the Frobenius norm. Hence,
the shear transform by minimizing the normality measure
decreases the deviation from normality and then the uni-
tary transform by minimizing the diagonality measure de-
creases the deviation from diagonality.

G. Supplementary experiments

The code for reproducing the experiments described in
Section 5 as well as in this appendix is available at
https://github.com/anastasia-podosinnikova/cca.

G.1. CONTINUOUS SYNTHETIC DATA

This experiment is essentially a continuous analogue to the
synthetic experiment with the discrete data from Section 5.

Synthetic data. We sample synthetic data from the lin-
ear non-Gaussian CCA (NCCA) model (7) with each view
xj = Djα + Fjβj . The (non-Gaussian) sources are
α ∼ zαGamma(c, b), where zα is a Rademacher random
variable (i.e., takes the values −1 or 1 with the equal prob-
abilities). The noise sources are βj ∼ zβjGamma(cj , bj),
for j = 1, 2, where again zβj is a Rademacher random vari-
able. Parameters of the gamma distribution are initialized
by analogy with the discrete case (see Section 5). The ele-
ments of the matrices Dj and Fj , for j = 1, 2, are sampled
i.i.d. for the uniform distribution in [−1, 1]. Each column
of Dj and Fj , for j = 1, 2, is normalized to have the unit
`1-norm.

Algorithms. We compare gNCCA (the implementa-
tion of NCCA with the generalized S-covariance ma-
trices with the default values of the parameters δ1
and δ2 as described in Appendix E.4) the spec-
tral algorithm for NCCA (also with the generalized
S-covariance matrices) to the JADE algorithm (the
code is available at http://perso.telecom-paristech.fr/ car-
doso/Algo/Jade/jadeR.m; Cardoso & Souloumiac, 1993)
for independent component analysis (ICA) and to classical
CCA.

Synthetic experiment. In Fig. 3 (left and middle), the re-
sults of the experiment for the different number of topics
are presented. The error of the classical CCA is high due
to the mentioned unidentifiability issues.

https://github.com/anastasia-podosinnikova/cca
http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
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Figure 3. (left and middle) The continuous synthetic data experiment from Appendix G.1 with M1 = M2 = 20, c = c1 = c2 = 0.1
andLn = Ls = 1000. The number of factors: (left)K1 = K2 = K = 1 and (middle)K1 = K2 = K = 10. (right): An experimental
analysis of the performance of DCCAg with generalized covariance matrices using different parameters δj for the processing points.
The numbers in the legend correspond to the values of δ defining δj via (46) in Appendix E.4. The default value (def) is δ = 0.1. The
data is the discrete synthetic data as described in Section 5 with the parameters set as in Fig. 2 (right).

G.2. SENSITIVITY OF THE GENERALIZED COVARIANCE
MATRICES TO THE CHOICE OF THE PROCESSING
POINTS

In this section, we experimentally analyze the performance
of the DCCAg algorithm based on the generalized S-
covariance matrices vs. the parameters δ1 and δ2. We use
the experimental setup of the synthetic discrete data from
Section 5 with K1 = K2 = K = 10. The results are
presented in Fig. 3 (right).

G.3. REAL DATA EXPERIMENT – TRANSLATION TOPICS

For the real data experiment, we estimate the factor
loading matrices (topics, in the following) D1 and D2

of aligned proceedings of the 36-th Canadian Parlia-
ment in English and French languages (can be found at
http://www.isi.edu/natural-language/download/hansard/).

Although going into details of natural language processing
(NLP) related problems is not the goal of this paper, we
do minor pre-processing (see Appendix G.4) of this text
data to improve the presentation of the estimated bilingual
topics D1 and D2.

The 20 topics obtained with DCCA are presented in Ta-
bles 2–6. For each topic, we display the 20 most frequent
words (ordered from top to bottom in the decreasing order).
Most of the topic have quite clear interpretation. Moreover,
we can often observe the pairs of words which are each oth-
ers translations in the topics. Take, e.g.,

- the topic 10: the phrase “pension plan” can be trans-
lated as “régime de retraite”, the word “benefits” as
“prestations”, and abbreviations “CPP” and “RPC”
stand for “Canada Pension Plan” and “Régime de pen-
sions du Canada”, respectively;

- the topic 3: “OTAN” is the French abbreviation for
“NATO”, the word “war” is translated as “guerre”, and
the word “peace” as “paix”;

- the topic 9: “Nisga” is the name of an Indigenous (or

“aboriginal”) people in British Columbia, the word
“aboriginal” translates to French as “autochtontes”,
and, e.g., the word “right” can be translated as “droit”.

Note also that, e.g., in topic 10, although the French words
“ans” and “années” are present in the French topic, their
English translation “year” is not, since it was removed as
one of the 15 most frequent words in English (see Ap-
pendix G.4).

G.4. DATA PREPROCESSING

For the experiment, we use House Debate Training
Set of the Hansard collection, which can be found at
http://www.isi.edu/natural-language/download/hansard/.

To pre-process this text data, we perform case conversion,
stemming, and removal of some stop words. For stemming,
the SnowballStemmer of the NLTK toolbox by Bird et al.
(2009) was used for both English and French languages.
Although this stemmer has particular problems (such as
mapping several different forms of a word to a single stem
in one language but not in the other), they are left beyond
our consideration. Moreover, in addition to the standard
stop words of the NLTK toolbox, we also removed the fol-
lowing words that we consider to be stop words for our
task10 (and their possible forms):

- from English: ask, become, believe, can, could, come,
cost, cut, do, done, follow, get, give, go, know, let,
like, listen, live, look, lost, make, may, met, move,
must, need, put, say, see, show, take, think, talk, use,
want, will, also, another, back, day, certain, certainly,
even, final, finally, first, future, general, good, high,
just, last, long, major, many, new, next, now, one,
point, since, thing, time, today, way, well, without;

10This list of words was obtained by looking at words that ap-
pear in the top-20 words of a large number of topics in a first
experiment. Removing these words did not change much the con-
tent of the topics, but made them much more interpretable.

http://www.isi.edu/natural-language/download/hansard/
http://www.isi.edu/natural-language/download/hansard/
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farmers agriculteurs division no nato otan tax impôts
agriculture programme negatived vote kosovo kosovo budget budget
program agricole paired rejetée forces militaires billion enfants

farm pays declare voix military guerre families économie
country important yeas mise war international income années
support problème divided pairs troops pays country dollars
industry aide nays porte country réfugiés debt pays

trade agriculture vote contre world situation students finances
provinces années order déclaration national paix children familles

work secteur deputy suppléant peace yougoslavie money fiscal
problem provinces thibeault vice international milosevic finance milliards

issue gens mcclelland lethbridge conflict forces education libéraux
us économie ms poisson milosevic serbes liberal jeunes
tax industrie oversee mme debate intervention fund gens

world dollars rise plantes support troupes care important
help mesure past harvey action humanitaire poverty revenu

federal faut army perdront refugees nations jobs mesure
producers situation peterson sciences ground conflit benefits argent
national réformiste heed liberté happen ethnique child santé
business accord moral prière issue monde pay payer

Table 2. The real data (translation) experiment. Topics 1 to 4.

- from French (translations in brackets): demander
(ask), doit (must), devenir (become), dit (speak, talk),
devoir (have to), donner (give), ila (he has), met
(put), parler (speak, talk), penser (think), pourrait
(could), pouvoir (can), prendre (take), savoir (know),
aller (go), voir (see), vouloir (want), actuellement,
après (after), aujourd’hui (today), autres (other), bien
(good), beaucoup (a lot), besoin (need), cas (case),
cause, cela (it), certain, chose (thing), déjà (al-
ready), dernier (last), égal (equal), entre (between),
façon (way), grand (big), jour (day), lorsque (when),
neuf (new), passé (past), plus, point, présent, prêts
(ready), prochain (next), quelque (some), suivant
(next), unique.

After stemming and removing stop words, several files had
different number of documents in each language and had to
be removed too. The numbers of these files are: 16, 36, 49
55, 88, 103, 110, 114, 123, 155, 159, 204, 229, 240, 2-17,
2-35.

We also removed the 15 most frequent words from each
language. These include:

- in English: Mr, govern, member, speaker, minist(er),
Hon, Canadian, Canada, bill, hous(e), peopl(e), year,
act, motion, question;

- in French: gouvern(er), président, loi, déput(é), min-
istr(e), canadien, Canada, projet, Monsieur, question,
part(y), chambr(e), premi(er), motion, Hon.

Removing these words is not necessary, but improves the
presentation of the learned topics significantly. Indeed, the

most frequent words tend to appear in nearly every topic
(often in pairs in both languages as translations of each
other, e.g., “member” and “député” or “Canada” in both
languages, which confirms one more time the correctness
of our algorithm).

Finally, we select M1 = M2 = 5, 000 words for each
language to form matrices X1 and X2 each containing
N = 11, 969 documents in columns. As stemming re-
moves the words endings, we map the stemmed words to
the respective most frequent original words when showing
off the topics in Tables 2-6.

G.5. RUNNING TIME

For the real experiment, the runtime of DCCA algorithm
is 24 seconds including 22 seconds for SVD at the whiten-
ing step. In general, the computational complexity of the
D/N/MCCA algorithms is bounded by the time of SVD
plus O(RNK) + O(NK2), where R is the largest num-
ber of non-zero components in the stacked vector x =
[x1; x2], plus the time of NOJD for P target matrices of
size K-by-K. In practice, DCCAg is faster than DCCA.

Supplementary References
Bird, S., Loper, E., and Klei, E. Natural Language Pro-

cessing with Python. O’Reilly Media Inc., 2009.

Blei, D.M. and Jordan, M.I. Modeling annotated data. In
Proc. SIGIR, 2003.

Jacod, J. and Protter, P. Probability Essentials. Springer,
2004.
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work travail justice jeunes business entreprises board commission
workers négociations young justice small petites wheat blé
strike travailleurs crime victimes loans programme farmers agriculteurs

legislation grève offenders systéme program banques grain administration
union emploi victims crime bank finances producers producteurs

agreement droit system mesure money important amendment grain
labour syndicat legislation criminel finance économie market conseil
right services sentence contrevenants access secteur directors ouest

services accord youth peine jobs argent western amendement
negotiations voix criminal ans economy emplois election comité

chairman adopter court juge industry assurance support réformiste
public réglement issue enfants financial financiére party propos
party article law important billion appuyer farm important

employees retour community gens support créer agriculture compte
collective gens right tribunaux ovid choc clause prix

agreed conseil reform droit merger accés ottawa no
board collectivités country problème information milliards us dispositions

arbitration postes problem réformiste size propos vote information
grain grain person traité korea pme cwb mesure
order trésor support faut companies obtenir states produits

Table 3. The real data (translation) experiment. Topics 5 to 8.

nisga nisga pension régime newfoundland terre health santé
treaty autochtones plan pensions amendment droit research recherche

aboriginal traité fund cotisations school modifications care fédéral
agreement accord benefits prestations education provinces federal provinces

right droit public retraite right école provinces soins
land nations investment emploi constitution comité budget budget

reserve britannique money assurance provinces éducation billion dollars
national indiennes contribution investissement committee enseignement social systéme
british terre cpp fonds system systéme money finances

columbia colombie retirement années reform enfants tax transfert
indian réserves pay ans minority vote system milliards
court non billion argent denominational amendement provincial domaine
party affaires change important referendum constitution fund sociale
law négociations liberal administration children religieux country années

native bande legislation dollars quebec référendum quebec maladie
non réformiste board propos parents article transfer important

constitution constitution employment milliards students réformiste debt programme
development application tax gens change québec liberal libéraux

reform user rate taux party constitutionnelle services environnement
legislation gestion amendment rpc labrador confessionnelles issue assurance

Table 4. The real data (translation) experiment. Topics 9 to 12.



Beyond CCA: Moment Matching for Multi-View Models

party pays tax agence quebec québec court pêches
country politique provinces provinces federal québécois right droit

issue important agency revenu information fédéral fisheries juge
us comité federal impôts provinces provinces decision cours

debate libéraux revenue fiscal protection protection fish gens
liberal réformiste taxpayers fédéral right renseignements issue décision

committee gens equalization contribuables legislation droit law important
work débat system payer provincial personnel work pays
order accord services taxe person privé us traité

support démocratique accountability péréquation law protéger party conservateur
reform québécois amendment argent constitution électronique debate région
election réglement billion services privacy article justice problème
world propos money fonction country commerce problem supréme

quebec collégue party modifier electronic provinciaux community tribunaux
standing parlementaire provincial article court bloc supreme faut
national appuyer public ministére bloc vie country situation
interest opposition business administration students application area victimes

important élections reform déclaration section citoyens case appuyer
right bloc office tps clear non order mesure

public industrie support provinciaux states nationale parliament trouve

Table 5. The real data (translation) experiment. Topics 13 to 16.

legislation important national important vote voix water eau
issue environnement area gens yeas no trade ressources

amendment mesure parks environnement division adopter resources accord
committee enfants work parcs nays vote country environnement

support comité country pays agreed non agreement important
protection propos us marine deputy contre provinces industrie

information pays development mesure paired dépenses industry américains
industry appuyer support propos responsible accord protection pays

concerned protection community fédéral treasury conseil export provinces
right article federal jeunes divided budget environmental exportations

important droit issue appuyer order crédit us échange
change accord legislation années fiscal trésor freshwater conservateur
world gens help assurance amount oui federal responsabilité
law amendement liberal gestion pleased mise world effet

families adopter world conservateur budget propos issue quantité
work industrie responsible accord ms porte legislation traité

children non concerned région infrastructure lib environment commerce
order société committee problème board pairs responsible unis

national porte problem nationale consent veuillent development économie
states no important québec estimates vice culture alena

Table 6. The real data (translation) experiment. Topics 17 to 20.
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