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Abstract
We consider a generalized version of the cor-
relation clustering problem, defined as follows.
Given a complete graph G whose edges are la-
beled with + or −, we wish to partition the
graph into clusters while trying to avoid errors:
+ edges between clusters or − edges within
clusters. Classically, one seeks to minimize the
total number of such errors. We introduce a
new framework that allows the objective to be a
more general function of the number of errors at
each vertex (for example, we may wish to min-
imize the number of errors at the worst vertex)
and provide a rounding algorithm which converts
“fractional clusterings” into discrete clusterings
while causing only a constant-factor blowup in
the number of errors at each vertex. This round-
ing algorithm yields constant-factor approxima-
tion algorithms for the discrete problem under a
wide variety of objective functions.

1. Introduction
Correlation clustering is a clustering model first introduced
by Bansal, Blum, and Chawla (Bansal et al., 2002; 2004).
The basic form of the model is as follows. We are given
a collection of objects and, for some pairs of objects, we
are given a judgment of whether the objects are similar
or dissimilar. This information is represented as a labeled
graph, with edges labeled + or − according to whether the
endpoints are similar or dissimilar. Our goal is to cluster
the graph so that + edges tend to be within clusters and −
edges tend to go across clusters. The number of clusters is
not specified in advance; determining the optimal number
of clusters is instead part of the optimization problem.

Given a solution clustering, an error is a + edge whose
endpoints lie in different clusters or a − edge whose end-
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points lie in the same cluster. In the original formulation
of the correlation clustering, the goal is to minimize the to-
tal number of errors; this formulation of the optimization
problem is called MINDISAGREE. Finding an exact opti-
mal solution is NP-hard even when the input graph is com-
plete (Bansal et al., 2002; 2004). Furthermore, if the input
graph is allowed to be arbitrary, the best known approxima-
tion ratio is O(log n), obtained by (Charikar et al., 2003;
2005; Demaine et al., 2006). Assuming the Unique Games
Conjecture of Khot (Khot, 2002), no constant-factor ap-
proximation for MINDISAGREE on arbitrary graphs is pos-
sible; this follows from the results of (Chawla et al., 2006;
Steurer & Vishnoi, 2009) concerning the minimum multi-
cut problem and the connection between correlation clus-
tering and minimum multicut described in (Charikar et al.,
2003; 2005; Demaine et al., 2006).

Since theoretical barriers appear to preclude constant-
factor approximations on arbitrary graphs, much research
has focused on special graph classes such as complete
graphs and complete bipartite graphs, which are the
graph classes we consider here. Ailon, Charikar, and
Newman (Ailon et al., 2005; 2008) gave a very sim-
ple randomized 3-approximation algorithm for MINDIS-
AGREE on complete graphs. This algorithm was deran-
domized by van Zuylen and Williamson (van Zuylen &
Williamson, 2009), and a parallel version of the algo-
rithm was studied by Pan, Papailiopoulos, Recht, Ram-
chandran, and Jordan (Pan et al., 2015). More recently, a
2.06-approximation algorithm was announced by Chawla,
Makarychev, Schramm and Yaroslavtsev (Chawla et al.,
2014). Similar results have been obtained for complete
bipartite graphs. The first constant approximation al-
gorithm for correlation clustering on complete bipartite
graphs was described by Amit (Amit, 2004), who gave an
11-approximation algorithm. This ratio was improved by
Ailon, Avigdor-Elgrabli, Liberty and van Zuylen (Ailon
et al., 2012), who obtained a 4-approximation algorithm.
Chawla, Makarychev, Schramm and Yaroslavtsev (Chawla
et al., 2014) announced a 3-approximation algorithm for
correlation clustering on complete k-partite graphs, for
arbitrary k, which includes the complete bipartite case.
Bipartite clustering has also been studied, outside the
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correlation-clustering context, by Lim, Chen, and Xu (Lim
et al., 2015).

We depart from the classical correlation-clustering litera-
ture by considering a broader class of objective functions
which also cater to the need of many community-detection
applications in machine learning, social sciences, recom-
mender systems and bioinformatics (Cheng & Church,
2000; Symeonidis et al., 2007; Kriegel et al., 2009). The
technical details of this class of functions can be found in
Section 2. As a representative example of this class, we
introduce minimax correlation clustering.

In minimax clustering, rather than seeking to minimize the
total number of errors, we instead seek to minimize the
number of errors at the worst-off vertex in the clustering.
Put more formally, if for a given clustering each vertex v
has yv incident edges that are errors, then we wish to find a
clustering that minimizes maxv yv .

Minimax clustering, like classical correlation clustering, is
NP-hard on complete graphs, as we prove in the extended
version of this paper (Puleo & Milenkovic, 2016). To de-
sign approximation algorithms for minimax clustering, it
is necessary to bound the growth of errors locally at each
vertex when we round from a fractional clustering to a dis-
crete clustering; this introduces new difficulties in the de-
sign and analysis of our rounding algorithm. These new
technical difficulties cause the algorithm of (Ailon et al.,
2005; 2008) to fail in the minimax context, and there is no
obvious way to adapt that algorithm to this new context;
this phenomenon is explored further in the extended ver-
sion of this paper (Puleo & Milenkovic, 2016).

Minimax correlation clustering on graphs is relevant in de-
tecting communities, such as gene, social network, or voter
communities, in which no antagonists are allowed. Here,
an antagonist refers to an entity that has properties incon-
sistent with a large number of members of the community.
Alternatively, one may view the minimax constraint as en-
abling individual vertex quality control within the clusters,
which is relevant in biclustering applications such as col-
laborative filtering for recommender systems, where mini-
mum quality recommendations have to be ensured for each
user in a given category. As an illustrative example, one
may view a complete bipartite graph as a preference model
in which nodes on the left represent viewers and nodes on
the right represent movies. A positive edge between a user
and a movie indicates that the viewer likes the movie, while
a negative edge indicates that they do not like or have not
seen the movie. We may be interested in finding commu-
nities of viewers for the purpose of providing them with
joint recommendations. Using a minimax objective func-
tion here allows us to provide a uniform quality of recom-
mendations, as we seek to minimize the number of errors
for the user who suffers the most errors.

A minimax objective function for a graph partitioning prob-
lem different from correlation clustering was previously
studied by (Bansal et al., 2011). In that paper, the problem
under consideration was to split a graph into k roughly-
equal-sized parts, minimizing the total number of edges
leaving any part. Thus, the minimum in (Bansal et al.,
2011) is being taken over the parts of the solution, rather
than minimizing over vertices as we do here.

Another idea slightly similar to minimax clustering has
previously appeared in the literature on fixed-parameter
tractability of the CLUSTER EDITING problem, which is
an equivalent formulation of Correlation Clustering. In
particular, Komusiewicz and Uhlmann (Komusiewicz &
Uhlmann, 2012) proved that the following problem is fixed-
parameter tractable for the combined parameter (d, t):

(d, t)-Constrained-Cluster Editing
Input: A labeled complete graph G, a function
τ : V (G) → {0, . . . , t}, and nonnegative inte-
gers d and k.
Question: Does G admit a clustering into at
most d clusters with at most k errors such that
every vertex v is incident to at most τ(v) errors?

(Here, we have translated their original formulation into
the language of correlation clustering.) Komusiewicz and
Uhlmann also obtained several NP-hardness results related
to this formulation of the problem. While their work
involves a notion of local errors for correlation cluster-
ing, their results are primarily focused on fixed-parameter
tractability, rather than approximation algorithms, and are
therefore largely orthogonal to the results of this paper.

The contributions of this paper are organized as follows. In
Section 2, we introduce and formally express our frame-
work for the generalized version of correlation clustering,
which includes both classical clustering and minimax clus-
tering as special cases. In Section 3, we give a round-
ing algorithm which allows the development of constant-
factor approximation algorithms for the generalized clus-
tering problem. In Section 4, we give a version of this
rounding algorithm for complete bipartite graphs.

2. Framework and Formal Definitions
In this section, we formally set up the framework we will
use for our broad class of correlation-clustering objective
functions.

Definition 1. Let G be an edge-labeled graph. A discrete
clustering (or just a clustering) of G is a partition of V (G).
A fractional clustering ofG is a vector x indexed by

(
V (G)

2

)
such that xuv ∈ [0, 1] for all uv ∈

(
V (G)

2

)
and such that

xvz ≤ xvw + xwz for all distinct v, w, z ∈ V (G).
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If x is a fractional clustering, we can view xuv as a “dis-
tance” from u to v; the constraints xvz ≤ xvw + xwz are
therefore referred to as triangle inequality constraints. We
also adopt the convention that xuu = 0 for all u.

In the special case where all coordinates of x are 0 or 1,
the triangle inequality constraints guarantee that the rela-
tion defined by u ∼ v iff xuv = 0 is an equivalence re-
lation. Such a vector x can therefore naturally be viewed
as a discrete clustering, where the clusters are the equiv-
alence classes under ∼. By viewing a discrete clustering
as a fractional clustering with integer coordinates, we see
that fractional clusterings are a continuous relaxation of
discrete clusterings, which justifies the name. This gives
a natural notion of the total weight of errors at a given ver-
tex.

Definition 2. Let G be an edge-labeled complete graph,
and let x be a fractional clustering ofG. The error vector of
x with respect to G, written err(x), is a real vector indexed
by V (G) whose coordinates are defined by

err(x)v =
∑

w∈N+(v)

xvw +
∑

w∈N−(v)

(1− xvw).

If C is a clustering of G and xC is the natural associated
fractional clustering, we define err(C) as err(xC).

We are now prepared to formally state the optimization
problem we wish to solve. Let Rn≥0 denote the set of vec-
tors in Rn with all coordinates nonnegative. Our problem
is parameterized by a function f : Rn≥0 → R.

f -Correlation Clustering
Input: A labeled graph G.
Output: A clustering C of G.
Objective: Minimize f(err(C)).

In order to approximate f -Correlation Clustering, we intro-
duce a relaxed version of the problem.

Fractional f -Correlation Clustering
Input: A labeled graph G.
Output: A fractional clustering x of G.
Objective: Minimize f(err(x)).

If f is convex on Rn≥0, then using standard techniques
from convex optimization (Boyd & Vandenberghe, 2004),
the Fractional f -Correlation Clustering problem can be ap-
proximately solved in polynomial time, as the composite
function f◦err is convex and the constraints defining a frac-
tional clustering are linear inequalities in the variables xe.
When G is a complete graph, we then employ a rounding
algorithm based on the algorithm of Charikar, Guruswami,
and Wirth (Charikar et al., 2003; 2005) to transform the

fractional clustering into a discrete clustering. Under rather
modest conditions on f , we are able to obtain a constant-
factor bound on the error growth, that is, we can produce a
clustering C such that f(err(C)) ≤ cf(err(x)), where c is a
constant not depending on f or x. In particular, we require
the following assumptions on f .

Assumption A. We assume that f : Rn≥0 → R has the
following properties.

(1) f(cy) ≤ cf(y) for all c ≥ 0 and all y ∈ Rn, and

(2) If y, z ∈ Rn≥0 are vectors with yi ≤ zi for all i, then
f(y) ≤ f(z).

Under Assumption A, the claim that f(err(C)) ≤
cf(err(x)) follows if we can show that err(C)v ≤
c err(x)v for every vertex v ∈ V (G). This is the property
we prove for our rounding algorithms.

We will slightly abuse terminology by referring to the con-
stant c as an approximation ratio for the rounding algo-
rithm; this notation is motivated by the fact that when f
is linear, the Fractional f -Correlation Clustering problem
can be solved exactly in polynomial time, and applying a
rounding algorithm with constant c to the fractional solu-
tion yields a c-approximation algorithm to the (discrete)
f -Correlation Clustering problem. In contrast, when f
is nonlinear, we may only be able to obtain a (1 + ε)-
approximation for the Fractional f -Correlation Clustering
problem, in which case applying the rounding algorithm
yields a c(1 + ε)-approximation algorithm for the discrete
problem.

A natural class of convex objective functions obeying As-
sumption A is the class of `p norms. For all p ≥ 1, the
`p-norm on Rn is defined by

`p(x) =

(
n∑
i=1

|xi|p
)1/p

.

As p grows larger, the `p-norm puts more emphasis on the
coordinates with larger absolute value. This justifies that
definition of the `∞-norm as

`∞(x) = max{x1, . . . , xn}.

Classical correlation clustering is the case of f -Correlation
Clustering where f(x) = 1

n`
1(x), while minimax cor-

relation clustering is the case of f -Correlation Clustering
where f(x) = `∞(x).

Our emphasis on convex f is due to the fact that con-
vex programming techniques allow the Fractional f -
Correlation Clustering problem to be approximately solved
in polynomial time when f is convex. However, the cor-
rectness of our rounding algorithm does not depend on the
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convexity of f , only on the properties listed in Assump-
tion A. If f is nonconvex and obeys Assumption A, and we
produce a “good” fractional clustering x by some means,
then our algorithm still produces a discrete clustering C
with f(err(C)) ≤ cf(err(x)).

3. A Rounding Algorithm for Complete
Graphs

We now describe a rounding algorithm to transform an ar-
bitrary fractional clustering x of a labeled complete graph
G into a clustering C such that err(C)v ≤ c err(x)v for all
v ∈ V (G).

Our rounding algorithm is based on the algorithm of
Charikar, Guruswami, and Wirth (Charikar et al., 2003;
2005) and is shown in Algorithm 1. The main difference
between Algorithm 1 and the algorithm of (Charikar et al.,
2003; 2005) is the new strategy of choosing a pivot vertex
that maximizes |T ∗u |; in (Charikar et al., 2003; 2005), the
pivot vertex is chosen arbitrarily. Furthermore, the algo-
rithm of (Charikar et al., 2003; 2005) always uses α = 1/2
as a cutoff for forming “candidate clusters”, while we ex-
press α as a parameter which we later choose in order to
optimize the approximation ratio.

Under the classical objective function, an optimal frac-
tional clustering is the solution to a linear program, which
motivates the following notation for the more general case.

Definition 3. If uv is an edge of a labeled graph G, we
define the LP-cost of uv relative to a fractional clustering x
to be xuv if uv ∈ E+, and 1− xuv if uv ∈ E−. Likewise,
the cluster-cost of an edge uv is 1 if uv is an error in the
clustering produced by Algorithm 1, and 0 otherwise.

Our general strategy for obtaining the constant-factor error
bound for Algorithm 1 is similar to that of (Charikar et al.,
2003; 2005). Each time a cluster is output, we pay for the
cluster-cost of the errors incurred by “charging” the cost
of these errors to the LP-costs of the fractional clustering.
The main difference between our proof and the proof of
(Charikar et al., 2003; 2005) is that we must pay for errors
locally: for each vertex v, we must pay for all clustering
errors incident to v by charging to the LP cost incident to v.
In particular, every clustering error must now be paid for at
each of its endpoints, while in (Charikar et al., 2003; 2005),
it was enough to pay for each clustering error at one of its
endpoints. For edges which cross between a cluster and
its complement, this requires a different analysis at each
endpoint, a difficulty which was not present in (Charikar
et al., 2003; 2005). Our proof emphasizes the solutions to
these new technical problems; the parts of the proof that are
technically nontrivial but follow earlier work are omitted
due to space constraints but can be found in the extended
version of this paper (Puleo & Milenkovic, 2016).

Observation 4. Let x be a fractional clustering of a graph
G, and let w, z ∈ V (G). For any vertex u, we have xwz ≥
xuz − xuw and 1− xwz ≥ 1− xuz − xuw.

Theorem 5. Let G be a labeled complete graph, let α and
γ be parameters with 0 < γ < α < 1/2, and let x be any
fractional clustering of G. If C is the clustering produced
by Algorithm 1 with the given input, then for all v ∈ V (G)
we have err(C)v ≤ c err(x)v , where c is a constant de-
pending only on α and γ.

Proof. Let k1, k2, k3 be constants to be determined, with
1/2 < k1 < 1 and 0 < 2k2 ≤ k3 < 1/2. Also assume that
k1α > γ and that k2α ≤ 1− 2α.

To prove the approximation ratio, we consider the cluster-
costs incurred as each cluster is output, splitting into cases
according to the type of cluster. In our analysis, as the al-
gorithm runs, we will mark certain vertices as “safe”, rep-
resenting the fact that some possible future clustering costs
have been paid for in advance. Initially, no vertex is marked
as safe.

Case 1: A Type 1 cluster is output. Let X = S ∩ N+(u),
with S as in Algorithm 1. The new cluster-cost incurred at
u is |X|, and for each v ∈ X , a new cluster-cost of 1 is
incurred at v.

First we pay for the new cluster cost incurred at u. For each
edge uv with v ∈ T , we have xuv ≤ α and so 1 − xuv ≥
1 − α ≥ xuv . Thus, the total LP cost of edges uv with
v ∈ T is at least

∑
v∈T xuv , which is at least α |T | /2 since

{u} is output as a Type 1 cluster. Thus, charging each edge
uv with v ∈ T a total of 2/α times its LP-cost pays for the
cluster-cost of any positive edges from u to T . On the other
hand, if uv is a positive edge with v ∈ S − T , then since
v /∈ T , we have xuv ≥ α. Hence, the LP-cost of uv is at
least α, and charging 1/α times the LP-cost of uv pays for
the cluster-cost of this edge.

Now let v ∈ X; we must pay for the new cluster cost at v.
If xuv ≥ k2α, then the edge uv already incurs LP cost at
least k2α, so the new cost at v is only 1/(k2α) times the
LP-cost of the edge uv. So assume xuv < k2α. In this
case, we say that u is a bad pivot for v.

First suppose that v is not safe (as is initially the case).
We will make a single charge to the edges incident to v
that is large enough to pay for both the edge uv and for
all possible future bad pivots, and then we will mark v as
safe to indicate that we have done this. The basic idea is
that if v has many possible bad pivots, then since xuv is
“small”, all of these possible bad pivots are also close to u,
thus included in Tu. Since

∑
w∈Tu

xuw ≥ α |Tu| /2, there
is a large set B ⊆ Tu of vertices that are “moderately far”
from u, and therefore moderately far from v. The number
of these vertices grows with the number of bad pivots, so
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Algorithm 1 Round fractional clustering x to obtain a discrete clustering, using threshold parameters α, γ with 0 < γ <
α < 1/2.

Let S = V (G).
while S 6= ∅ do

For each u ∈ S, let Tu = {w ∈ S − {u} : xuw ≤ α} and let T ∗u = {w ∈ S − {u} : xuw ≤ γ}.
Choose a pivot vertex u ∈ S that maximizes |T ∗u |.
Let T = Tu.
if
∑
w∈T xuw ≥ α |T | /2 then

Output the cluster {u}. {Type 1 cluster}
Let S = S − {u}.

else
Output the cluster {u} ∪ T . {Type 2 cluster}
Let S = S − ({u} ∪ T ).

end if
end while

charging all the edges vz for z ∈ B is sufficient to pay for
all bad pivots.

We now make this argument rigorous. Let Pv be the set of
potential bad pivots for v, defined by

Pv = {p ∈ S : xvp < k2α}.

Note that u ∈ Pv . Since k2 < 1/4, we have xup ≤ xuv +
xvp < α/2 for all p ∈ Pv; hence Pv ⊆ T . Define the
vertex set B by

B = {z ∈ T : xuz > k3α}.

Since xuz ≤ α for all z ∈ T , we see that∑
z∈T

xuz ≤ k3α |T −B|+ α |B| .

On the other hand, since {u} is output as a Type 1 cluster,
we have ∑

z∈T
xuz ≥ α |T | /2.

Combining these inequalities and rearranging, we obtain
|B| ≥ (1 − 2k3) |T −B|. For each vertex z ∈ B, we
have xvz ≥ xuz − xuv ≥ (k3 − k2)α; in particular, since
k3 ≥ 2k2, we have xvz ≥ k2α, so that z /∈ Pv . Hence
|T −B| ≥ |Pv|, and we have |B| ≥ (1− 2k3) |Pv|.

On the other hand, for z ∈ B we also have 1− xvz ≥ 1−
xuv−xuz ≥ 1−(1+k2)α. It follows that each edge vz for
z ∈ B has LP-cost at least min((k3−k2)α, 1−(1+k2)α),
independent of whether vz is positive or negative. It is easy
to check that since α < 1/2 and k3 < 1, this minimum is
always achieved by (k3 − k2)α. Therefore, we can pay for
the (possible) Type-1-cluster cost of all edges vp for p ∈ Pv
by charging each edge vz with z ∈ B a total of

1

(1− 2k3)(k3 − k2)α

times its LP-cost. We make all these charges when the clus-
ter {u} is created and put them in a “bank account” to pay
for later Type-1-cluster costs for v. Then we mark v as safe.
The total charge in the bank account is at least |Pv|, which
is enough to pay for all bad pivots for v.

We have just described the case where u is a bad pivot and
v is not safe. On the other hand, if u is a bad pivot and v is
safe, then v already has a bank account large enough to pay
for all its bad pivots, and we simply charge 1 to the account
to pay for the edge uv.

Case 2: A Type 2 cluster {u} ∪ T is output. The negative
edges within {u}∪T are easy to pay for: if vw if a negative
edge inside {u} ∪ T , then we have 1 − xvw ≥ 1 − xuv −
xuw ≥ 1 − 2α, so we can pay for each of these edges by
charging a factor of 1

1−2α times its LP-cost.

Thus, we consider edges joining {u}∪T with S−({u}∪T ).
We call these edges cross-edges for their endpoints. A
standard argument (see the extended version of this pa-
per (Puleo & Milenkovic, 2016)) shows that for z ∈ S −
({u} ∪ T ), the total cluster-cost of the cross-edges for z is
at most max{1/(1− 2α), 2/α} times the LP-cost of those
edges, so the vertices outside {u} ∪ T can be dealt with
easily.

However, we also must bound the cluster-cost at vertices
inside {u} ∪ T . This is where we use the maximality of
|T ∗u |.

Let w ∈ {u} ∪ T . First consider the positive cross-edges
wz such that xwz ≥ γ. Any such edge has cluster-cost 1
and already has LP-cost at least γ, so charging 1/γ times
the LP-cost to such an edge pays for its cluster cost. Now
let X = {z ∈ S − ({u} ∪ T ) : xwz < γ}; we still must
pay for the edges wz with z ∈ X .

If xuw ≤ k1α, which includes the case u = w, then for all
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z ∈ X , we have xwz ≥ xuz−xuw ≥ α−k1α = (1−k1)α.
Hence, for any positive edgewz with z ∈ X , the LP-cost of
wz is at least (1− k1)α, and so the cluster cost of the edge
wz is at most 1/((1 − k1)α) times the LP cost. Charging
this factor to each cross-edge pays for the cluster-cost of
each cross-edge.

Now suppose xuw > k1α. Since k1α > γ, this implies
w /∈ T ∗u . In this case, it is possible that w may have many
positive neighbors z ∈ X for which xwz is quite small, so
we cannot necessarily pay for the cluster-cost of the edges
joining w andX by using their LP-cost. Instead, we charge
their cluster-cost to the LP-cost of edges within T .

Observe that X ⊆ T ∗w, and hence |T ∗w| ≥ |X|. By the
maximality of |T ∗u |, this implies that |T ∗u | ≥ |X|. Now for
any v ∈ T ∗u , we have the following bounds:

xwv ≥ xuw − xuv ≥ k1α− γ,
1− xwv ≥ 1− xuw − xuv ≥ 1− α− γ.

Since α < 1/2 and k1 ≤ 1, we have k1α ≤ α < 1− α, so
these lower bounds imply that each edge wv with v ∈ T ∗u
has LP-cost at least k1α− γ, independent of whether wv is
a positive or negative edge. Thus, the total LP cost of edges
joining w to T ∗u is at least (k1α− γ) |T ∗u |.

Since the total cluster-cost of edges joining w and X is at
most |X| and since |T ∗u | ≥ |X|, we can pay for these edges
by charging each edge wv with v ∈ T ∗u a factor of 1

k1α−γ
times its LP-cost.

Having paid for all cluster-costs, we now look at the total
charge accrued at each vertex. Fix any vertex v and an edge
vw incident to v. We bound the total amount charged to vw
by v in terms of the LP-cost of vw. There are three distinct
possibilities for the edge vw: either vw ended inside a clus-
ter, or v was clustered before w, or w was clustered before
v.

Case 1: vw ended within a cluster. In this case, v may have
made the following charges:

• A charge of 1
(1−2k3)(k3−k2)α times the LP-cost, to pay

for a “bank account” for v,

• A charge of 1
1−2α times the LP-cost, to pay for vw

itself if vw is a negative edge,

• A charge of 1
k1α−γ times the LP-cost, to pay for posi-

tive edges leaving the v-cluster.

Thus, in this case the total cost charged to vw by v is at
most c1 times the LP-cost of vw, where

c1 =
1

(1− 2k3)(k3 − k2)α
+

1

1− 2α
+

1

k1α− γ
.

Case 2: v was clustered before w. In this case, v may have
made the following charges:

• A charge of 1
(1−2k3)(k3−k2)α times the LP-cost, to pay

for a “bank account” for v,

• A charge of at most 2
α times the LP-cost, to pay for all

cross-edges if v was output as a Type 1 cluster,

• A charge of at most max
{

1
(1−k1)α ,

1
γ

}
times the LP-

cost, to pay for vw if v was output in a Type 2 cluster.

Note that k1 > 1/2 implies that 1
(1−k1)α ≥

2
α , so we may

disregard the case where v is output as a Type 1 cluster.
Thus, in this case the total cost charged to vw by v is at
most c2 times the LP-cost of vw, where

c2 =
1

(1− 2k3)(k3 − k2)α
+max

{
1

(1− k1)α
,
1

γ

}
.

Case 3: w was clustered before v. In this case, v may have
made the following charges:

• A charge of at most 1
(1−2k3)(k3−k2)α times the LP-

cost, to pay for a “bank account” for v,

• A charge of at most 1
k2α

times the LP-cost, to pay for
the cluster-cost of vw if vw is a positive edge and w
was output as a Type 1 cluster,

• A charge of at most

max

{
1

1− 2α
,
2

α

}
times the LP-cost, to pay for vw if w was output in a
Type 2 cluster.

Clearly vw cannot receive both the second and third types
of charge. Furthermore, since k2 ≤ 1/4, we have 1

k2α
≥ 2

α .
Since k2α ≤ 1 − 2α, we see that 1

k2α
is the largest charge

that vw could receive from either the second or third type
of charge. Thus, in this case the total cost charged to vw by
v is at most c3 times the LP-cost, where

c3 =
1

(1− 2k3)(k3 − k2)α
+

1

k2α.

Thus, the approximation ratio of the algorithm is at most
max{c1, c2, c3}. We wish to choose the various param-
eters to make this ratio as small as possible, subject to the
various assumptions on the parameters required for the cor-
rectness of the proof. It seems difficult to obtain an exact
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solution to this optimization problem. Solving the prob-
lem numerically, we obtained the following values for the
parameters:

α = 0.465744 γ = 0.0887449

k1 = 0.767566 k2 = 0.117219 k3 = 0.308433.

These parameters yield an approximation ratio of roughly
48.

4. A Rounding Algorithm for One-Sided
Biclustering

In this section, we consider a version of the f -Correlation
Clustering problem on complete bipartite graphs. Let G be
a complete bipartite graph with edges labeled + and−, and
let V1 and V2 be its partite sets. We will obtain a rounding
algorithm that transforms any fractional clustering x into a
discrete clustering C such that err(C)v ≤ c err(x)v for all
v ∈ V1. Our algorithm is shown in Algorithm 2.

Our algorithm does not guarantee any upper bound on
err(C)v for v ∈ V2: as the algorithm treats the sides V1 and
V2 asymmetrically, it is difficult to control the per-vertex
error at V2. Nevertheless, an error guarantee for the ver-
tices in V1 suffices for some applications. Our approach is
motivated by applications in recommender systems, where
vertices in V1 correspond to users, while vertices in V2 cor-
respond to objects to be ranked. In this context, quality of
service conditions only need to be imposed for users, and
not for objects.

Theorem 6. Let G be a labeled complete bipartite graph
with partite sets V1 and V2, let α, γ be parameters as de-
scribed in Algorithm 2, and let x be any fractional clus-
tering of G. If C is the clustering produced by Algo-
rithm 2 with the given input, then for all v ∈ V1 we have
err(C)v ≤ c err(x)v , where c is a constant depending only
on α and γ.

We note that the proof of Theorem 6 is actually simpler
than the proof of Theorem 5, because the focus on errors
only at V1 eliminates the need for the “bad pivots” argu-
ment used in Theorem 6. This also leads to a smaller value
of c in Theorem 6 than we were able to obtain in Theo-
rem 5.

Proof. As before, we make charges to pay for the new clus-
ter costs at each vertex of V1 as each cluster is output, split-
ting into cases according to the type of cluster. Let k1 be a
constant to be determined, with k1α > γ.

Case 1: A Type 1 cluster {u} is output. In this case, the
only cluster costs incurred are the positive edges incident
to u, all of which have their other endpoint in V2. The
averaging argument used in Case 1 of Section 3 shows that

charging every edge incident to u a factor of 2/α times its
LP cost pays for the cluster cost of all such edges.

Case 2: A Type 2 cluster {u}∪T is output. Negative edges
within the cluster are easy to pay for: if w1w2 is a negative
edge within the cluster, with wi ∈ Vi, then we have

1− xw1w2
≥ 1− xuw1

− xuw2
≥ 1− 2α,

so we can pay for the cluster-cost of such an edge by charg-
ing it a factor of 1/(1− 2α) times its LP-cost.

We still must pay for positive edges joining the cluster with
the rest of S; we call such edges cross-edges. Each such
edge must be paid for at its endpoint in V1.

If z ∈ V1 is a vertex outside the cluster, then a standard
argument (see the extended version of this paper (Puleo &
Milenkovic, 2016)) shows that the cross-edges for z can be
paid for by charging each such edge a factor of max{1/(1−
2α), 2/α)} times its LP cost.

Now let w ∈ V1 be a vertex inside the cluster. We must
pay for the cross-edges incident to w using the LP-cost of
the edges incident to w. First consider the positive edges
from w to vertices z outside the cluster such that xwz ≥ γ.
Any such edge has cluster-cost 1 and LP-cost at least γ,
so charging each such edge a factor of 1/γ times its LP-
cost pays for its cluster cost. Let X = {z ∈ (S ∩ V2) −
T : xwz < γ}; we must pay for the edges wz with z ∈ X .
Note that xuz > α for all z ∈ X , since z ∈ X implies
z /∈ T .

If xuw ≤ k1α, then for all z ∈ X , we have

xwz ≥ xuz − xuw ≥ (1− k1)α.

Hence, for any positive cross-edge wz with z ∈ X , the LP-
cost of wz is at least (1 − k1)α, and so we can pay for the
cluster-cost ofwz by chargingwz a factor of 1

(1−k1)α times
its LP-cost.

Now suppose xuw > k1α. As before, we pay for the cross-
edges by charging the edges inside the cluster. Observe
that |T ∗w| ≥ |X|. Since u was chosen to maximize |T ∗u |,
this implies that |T ∗u | ≥ |X|. For any v ∈ T ∗u , we have

xwv ≥ xuw − xuv ≥ k1α− γ.

On the other hand, for any v ∈ T ∗u we also have

1− xwv ≥ 1− xuw − xuv ≥ 1− α− γ ≥ α− γ.

Since k1 ≤ 1, it follows that the edge wv has LP-cost at
least k1α − γ independent of whether wv is positive or
negative. Thus, the total LP cost of edges joining w to T ∗u
is at least (k1α− γ) |T ∗u |.

Since the total cluster-cost of the cross- edges joining w
and X is at most |X| and since |T ∗u | ≥ |X|, we can pay for
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Algorithm 2 Round fractional clustering to obtain a discrete clustering, using threshold parameters α, γ with α < 1/2 and
γ < α.

Let S = V (G).
while V1 ∩ S 6= ∅ do

For each u ∈ V1 ∩ S, let Tu = {w ∈ S − {u} : xuw ≤ α} and let T ∗u = {w ∈ V2 ∩ S : xuw ≤ γ}.
Choose a pivot vertex u ∈ V1 ∩ S that maximizes |T ∗u |.
Let T = Tu.
if
∑
w∈V2∩T xuw ≥ α |V2 ∩ T | /2 then

Output the singleton cluster {u}. {Type 1 cluster}
Let S = S − {u}.

else
Output the cluster {u} ∪ T . {Type 2 cluster}
Let S = S − ({u} ∪ T ).

end if
end while
Output each remaining vertex of V2 ∩ S as a singleton cluster.

the cross-edges by charging each edge wv with v ∈ T ∗u a
factor of 1

k1α−γ times its LP-cost.

Having paid for all cluster-costs, we now look at the to-
tal charge accrued at each vertex. Fix a vertex v ∈ V1
and an edge vw incident to v. We bound the total amount
charged to vw by v in terms of the LP-cost of vw. There
are three distinct possibilities for the edge vw: either vw
ended inside a cluster, or v was clustered before w, or w
was clustered before v.

Case 1: vw ended within a cluster. In this case, v may have
made the following charges:

• A charge of at most 1
1−2α times the LP cost, to pay for

vw itself if vw is a negative edge,

• A charge of 1
k1α−γ times the LP-cost, to pay for posi-

tive edges leaving the v-cluster.

Thus, in this case the total cost charged to vw by v is at
most c1 times the LP-cost of vw, where

c1 =
1

1− 2α
+

1

k1α− γ
.

Case 2: v was clustered before w. In this case, v may have
made the following charges:

• A charge of 2/α times the LP cost, to pay for vw if v
was output as a singleton,

• A charge of max{ 1
(1−k1)α ,

1
γ } times the LP cost, to

pay for vw if v was output in a nonsingleton cluster,

Since v makes at most one of the charges above, the total
cost charged to vw by v is at most c2 times the LP-cost of

vw, where

c2 = max

{
1

(1− k1)α
,
1

γ
,
2

α

}
.

Case 3: w was clustered before v. In this case, v may have
made the following charges:

• A charge of at most max{ 1
1−2α ,

2
α} times the LP cost,

to pay for cross-edges at v if w is output in a nonsin-
gleton cluster.

Thus, in this case the total cost charged to vw by v is at
most c3 times the LP-cost of vw, where

c3 = max

{
1

1− 2α
,
2

α

}
.

The approximation ratio is max{c1, c2, c3}. Numerically,
we obtain an approximation ratio of at most 10 by taking
the following parameter values:

α = 0.377 γ = 0.102 k1 = 0.730
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