Supplementary Material of Fast Rate Analysis of
Some Stochastic Optimization Algorithms

The following two lemmas are Lemma 3 and Lemma 4 in [1], we present here
for completeness.

Lemma A. 1. Suppose Xi,..., X1 is a martingale difference sequence with

VCM"tXt = Var(Xt|X1, ceey thl)'

Let V = Zle Var,X; be the sum of conditional variance of X{s. Further, let
o0 =V V. Then we have for any 6 < 1/e and T > 3,

T
Prob(Y X, > max{20,3b\/In(1/6)}/In(1/6)) < 41n(T)5

t=1
Lemma A. 2. Suppose s,r,d,b, A > 0 and we have

s —r < max{4Vds, 6bA}A.
Then, it follows that

s <1+ 4VdrA + max{16d, 6b} A%

Regularized Dual Averaging Method

Now we begin the proof of convergence rate of RDA. We define the following
conjugate type function used in the proof.

Vi(s) = max{(s,w — wo) — tr(w) =7 S Jwy — w]f - Bih(w)]
T=1

w

Lemma A. 3. The function Vi(-) is convex and differentiable. VV(sy) =
wyy1 — wo, where sy = Z:Zl f'(wr,z7). The gradient is Lipschitz continu-
ous with constant Th‘ﬁt’ which is

[VVi(s1) = VVi(s2)l2 <

$1 — S2l|2,
- 2’Yt+ﬁt ! 212

Proof. Because v 3 "_, |w, — w||3 + B:h(w) is strongly convex with convexity
parameter 29t + ;. It is a direct result from theorem 1 in [2]. O



A property of V;(-) with Lipschitz continuous gradient is

Vi(s +6) < Vils) + (6, VVi(s)) + 15113

2(2y t+[3)

We refer to [2] for more details.

Proof of Lemma 3.

t
Regy — 72 [wr —wl3

T=1
t
<Z (wy, 27), T—w)—&-Z?“( ) —tr(w VZHwT—ng
=1
¢
—Z wT,zT —wo>+z7‘( —tT ’YZ”wr—sz

+ E "(wr, 2r), wo — w)

(1)

where the first inequity holds from the convexity of f(-, 2).
Before we bound above terms, we relate V;_1(—s;) and V;(—s;) in the following
way

Vie1(=s¢) = max[(=sy, w — wo) — (¢ = 1)r VZ [wr — w3 = Be—1h(w)]
T=1
t—1
> (=s,wip1 — wo) — (t = Dr(wern) =7 Y llwr = wera |3 = Brorh(wep)
T=1

t

= (=st,wpp1 — wo) — tr(wir) =7 Y [[wy — wepa |5 = Beh(wepr) + 7(wega)
T=1

+lJwe — wiga |13 — (Bi—1 — Be)h(wit1)
(2)

Notice the summation of first four terms is Vi(—s:).
When ¢ > 1, since f; is an increasing sequence , we have

Vi(=st) +r(wi1) +Yllwe — wiga]|3 < Vi (—s1)
We then upper bound V;_1(—s:)
Vici(=s¢) = Vici(=si—1 — f(wye, z0))

<Vici(=si-1) = (Vi1 (=si—1), [ (we, 2¢)) + =

2(2y(t = 1) + Bi-1)

3)

where the inequality holds from the property of Lipschitz continuous of VV;(-).

Hf/(wh Zt)”;



Now we have

1
2(29(t = 1) + Bi-1)

Vi(=st) = Vica(=si-1) < —(VVioi(se-1), f'(w, 20)) + 1f! (we, ze) I3

= r(wigr) = y|lwe — wt+1||§
1

2(2y(t = 1) + Br-1)

IN

—(wy — wo, f(wy, 2)) + 1 (we, 20) |13

— r(weg1),

(4)

where the second inequality uses the fact VV (s;) = w¢11 — wp from Lemma A.3

When t = 1, we have

£/ (w1, 213
283

Sum both sides of V;(s;) from 7 =1 to ¢, we have

t U, 27 t+1
Vi(=8¢) € = St (wr —wo, f/(wr, 20)) + 00y gl ezle 570 ) 4
(Bo — B1)h(w2).
We then bound Reg; — v 3" _, |w, — w||3 for all w € Fp using above result,

Vi(=s1) —0 < —{wy —wo, f'(w1,21)) + —r(w2) + (Bo — f1)h(w2).

()

t t t
Regi =7 _llwy —wll§ <Y r(wr) + D (f'(wr, ), wr —wo) + max [(—s;,w —wo) — tr(w)
T=1 T=1 T=1 P
t
=D llwr = wl]3]
T=1

< r(we) + > (wr, 20), wr — wo) + Vi(—sy) + B D

T=1 T=1
t wr, z0)I13
<r(wp)—r(w - —|— LRk
< r(w1) = r(weg1) + (Bo = Br)h ;2277_14_& N
+ 615D2a
(6)
where the second inequality holds from the fact that
t
— wp) — tr( _— < Vi( D2,
Jmax [{s¢, w — wo) —tr(w 7; [wr —wl[3] < Vi(=s:) + Be

Since arg min,, h(w) = arg min,, r(w) and wy = argmin h(w), r(wy) —r(wiy1) <
0. We set By = 1 = and 8y = y(1 + Int), then we have

= 2 2 S L2 2 O L2
RegT—VZHwt—wHQ < yD*(1+In(T))+ Zm (CryD*+—— - )(1+InT).
t=1 t=



Proof of Theorem 2. Since we have already known Regpr — ’72th1 ||w, —
w||2 < CyInT + Cy, using similar steps in the proof of Theorem 1, we have,

T
1
§Dﬁfp§§:&+CHMT+Cb

t=1

Then we apply Lemma 2, Lemma A.1 and Lemma A.2 to get the result.

OPG-ADMM

The following Lemma is extracted from Theorem 4 in the appendix of [3].

Lemma A. 4. Let {x;} |, {y:}]_, and {)\t}t 1 be the sequence generated by

the algorithm. For oall . € X, § € Y and A€ R and f is weakly convez, we
have

T T T —AT), T — &
D e z) +v(y)) = 3 _(F@z) @)+ | —BTA, vy
t=1 t=1 t=1 \Az; + By; — b At — A

T ~

At = Xeqall3 | A = All3

+ +

T %

. T

||$||2c;1 Y 2 o112

S SE 4D (5 - |17t 23 +Z g6l + *Hb Byll3

2m =2 2n

+ ”2;|)|2 +{Arri1, A) + (B = yr1), Ar1 = A) = (BY = b, ),

(7)
where g denotes f'(xt,z¢) for short.

Proof of Lemma 4. We subtract Zt 1 g Bz, — #|2 at both side of Lemma
A.4. Notice (§ —yr i1, BT (Ary1—N) < (5 — yT+1,V¢(yT+1) BT)) using the
optimality of ;11 in the algorlthm ie., (Vi(y:) — BT A\t,y —y:) > 0. So this
term can also be bounded if \ is bounded in particular we choose A=0.

Notice G; > I in the algorlthm by choosing ~, p,n;. Similar to the proof of

. T T
Lemma 1, the term Zt oo — s Mae—2[3+>,21 2l = —> i B
2|3 is bounded by C; InT + Cy, if we choose 7, =

We choose A = 0 to simplify the left hand side. For all &, § such that Az+By = b,
we have




T —AT), Ty — & T AT )\ Z—at
> | B w9 =3 | B 0=
t=1 A$t+Byt—b )\t*)\ t=1 A]A,‘—FBy—b )\th

T ~
=D W = X-1))
A AT — ),

At—Ai—1
p

where last two equality hold from the fact that b — Axy — By = and
A.’E1+By1 —b=0.

We set \ = 0, so the third term on the left side in Lemma, 4 is 0.

i 2
Also notice H2L|7f1 and £||b — Bj||3 are bounded under our assumption. Thus
the RHS of the Lemma 4 is bounded by CyInT 4+ C5 when A=0. O]

Similar to the previous proof, we define

Mﬂ

Diff = Z (@0) + ¥ (1))

t 1

and
T T
RGQZZ(f(UCnZt + ¥(yr)) Z x*, z) +Y(y*)),
t=1 t=1
where F(z) = Ef(x, 2), G(x, y) F(z)+¢(y). Remind that Ax; + By; —b#0
in general, thus we use y; = B~1(b— Axz;) as an estimator of y at the t-th step.

Proof of Theorem 8. Similar to the previous proof in OPG, we define

&= F(zy) +¢(ye) — F(2") —r(y") — (f(@e, 20) +7(ye) — f(2%,20) —¥(y"))
= F(x) — F(2") = (f(we, 2¢) — f(2", 21)).
9)

& is a martingale difference, since z; just depends on the data from time step
1wyt =1, Eeqf(x*,2¢) = F(a*), Et—1f(xt,2:) = F(z¢). Using Lemma 2,
V(lT’t_lﬁt = Et—lg? S LQHl‘t — JL‘*”g

Next we relate Dif f to Zthl Vari_1&;.



Diff 2 Y UVF@), e~ %) + 5 e~ "B+ (Vs o0~ v7)

] =

~
I
—

(VE@), 20— 2+ (V9(°), %~ 3") + (V00— ) + 5l — 23],

(10)

I
[M]=

~
Il
—

where the first inequality holds from the convexity of F' and .

Recall that y, = B71(b — Ax;) and Az* + By* — b = 0, so (VF(z*),x; —
) + (VY (y*),y; — y*) > 0 using the optimality of (z*,y*). Thus we have the
following relation.

lwe — 2113,

o™

T T

Dif f+ = (BTV0().Ar = M) = Diff+ (V00w =) = 3
t=1 t=1

(1)

where the first equality holds from the fact that B(y, — y;) = b — Azy — By =
)”_7;"5’1 and Az, + By, —b=0.

We denote %(B_TV1/)(y*), Ar — A1) as N, and discuss two conditions.

When N < 0, we have Diff > S0, &z, — a*|3.

When Np > 0, we need a upper bound of Np.

P S

Nr (B~TVY(y"), Ar — A1)

1
- B—T * (12 X — A\ 2
2p|| Vib(y*)llz + 6/)” 7 — Al

3 . 1
27)||B TV(y )||§+@H)\T_)\T+1+)\T+1_)\1||§

3. . 1
< ;pIIB TVoy)I5 + %(HAT — Arqalls + Al + 1Aall3),

where the first and second inequalities holds from the Cauchy-Schwarz inequal-
ity. Notice %HB_va(y*)H% can be bounded by our assumption.

Remind that instead of evaluating F'(Zr) + ¢ (yr) — F(z*) — ¢¥(y*), our aim is
to bound F(Zr) + ¢ (y7) — F(z*) — (y").

T(F(zr) +¥(yy) — F(a*) —(y*)) < T(F(Zr) + ¢ (gr) — F(z*) —¥(y"))
+ T(VY(r), ¥y — Ur)
< Diff+T(B~"VY(r), Blip — r))
= Diff + %(B*TVW)’T), Ar — A1),
(13)



where the first inequality holds from the convexity of v, the second inequality
uses the convexity of F and 1), and the last equality holds from the fact B(y; —

yt) =b— Az, — By = ’\”_7;\"1 and Az, + By —b=0.
We also need to consider two cases, i.e., (B~TV(y4), A\r — A1) is negative or
not.

If it is negative, T(F(Zr) + ¢(gy) — F(z*) — ¢ (y*)) < Dif f.
If it is not negative, we need to bound it

. 1, _
Diff+ ;<B V(). M — M)
) 1 _ _ 1
< Diff+ 27)(6”]3 VY ()15 + glAr - Ml3) (14)
) 3, _ 1
< Diff+ ;HB Vo)l + Zp(”)‘T = Al + Azl + IA]B)-

Notice %HB*TVUJ@’T)H% can be bounded by our assumption.
Totally, we need to consider four cases.

Case 1 Ny <0, (B‘va(;g’T), Ar — )\1> <0

In this case, Diff > Zle g”;vt —z*||3.

Using the similar technique in the proof of Theorem 1, we have following con-
dition with probability at least 1 —48§InT.

3Dif f—(Reg—§ S, lze—a*(13) < & < max{2,/25*(Dif f),6B\/In(1/6)}/In(1/3),

which implies
Z | — 2*]|2) < max{2, /25(Diff),GB\/1n(1/5)}\/1n(1/5).

(15)

1
§Dz’ff (Reg —

PMQ

Notice Reg — g Z’f 1 lz¢ — 2*[|3 is bounded by C; InT + C5 in Lemma 4 with

A=0 ( Zthl 1A= )‘;“”2 + H)‘T?HQ is a positive term). Following similar steps
in the proof of Theorem 1, we solve this inequality using Lemma A.2. Then we
get Dif f < C3InT + C4 with high probability. In this case T'(F(Zr) +¢(g) —
F(z*) = 9(y*)) < Diff, thus F(zr) +¢(g7) — F(z*) — ¢(y*) < O(%F) with
high probability.

Case 2 Ny > 0, (B~TVY(y}), A\r — A1) < 0.

We have following relation by (11) with probability at least 1 — 4§ InT.

T

1 N
S(Diff+ Np) = (Reg = 5 3 e — a3+ 50)
t=1

< maX{Q\/f(Diff + Nr),6B+/In(1/8)}/In(1/6).

Notice Reg — & Zt 1 H:Uf — 2*||3 + &z is bounded by C;InT + Cs, using the
Lemma 4 and ( 12) with A = 0. Solve above inequality using Lemma A.2, we have



Diff+ Ny < C5InT+ Cy with high probability which implies Dif f < O(InT).
Since T(F(e7) + ¢(F) — F(z*) — (")) < Diff, we have F(zr) + ¢{g) -
F(x*) —(y*) < O(L) with high probability.

Case 3 Ny <0, (B~ VY(gr), \r — A1) > 0.

We have following relation with probability at least 1 — 46 InT.

%\Q

1 . 1, _
§(D1ff + ;(B INW(), A\r — M) — (Reg —

< max{2 %(Diff), 6B+/In(1/6)}+/In(1/6)

gmax{z\/ 22’ (Diff+ - <B TNY(gh), Ar — A1), 6B/In(1/6) }y/In(1/9).
(17)

Reg— 21 Jlay—a* )3+ 35 (VB T9(gr), Ar — A1) is bounded by C1 In T+ Co
by Lemma 4 and (14) with A =0. We get Diff + %(B*va(g’T), Ar — M) <
C3InT + Cy4 with high probability. Thus we have T(F(Zr) + ¥(g7) — F(z*) —
Y(y*)) < CsInT + Cy by (13).

Case 4 Ny > 0, <BiTV1/J(§%), Ap — )\1) >0

We have following relation with probability at least 1 —46InT.

T
1
Z lze — 2% |3 + %<B*Tw<y&>, Ar — A1)

1 L r By a2, Nr

5 (DU + Nr ot Z(B7IV(5r), A = M) = (Reg - 12”“‘“““7
1

+ 27)<B_TV”L/J(37/T)7 Ar — A1)

< max{2\/2gz(Diff + Nr),6B+/In(1/8)}1/In(1/6)

< max{z\/ 2§2<Diff +Np o+ BTV, A — M), OBVE(I78)} /(1 /3).
(18)

Notice Reg— 2 S e — 23+ Nr oy 2—1;)<B_:’1V1b(y’T)7 Ar — A1) is bounded by
C1InT+ Cy, using Lemma 4, (12) and (14) with A = 0. Solve the inequality, we
get Dif f +Nr+ L(B~"V(g7), Ar — A1) < C3In T+ Cy with high probability.
Thus T'(F(Zr) + ¥(gy) — F(z*) — ¢¥(y*)) < C3InT + C, with high probability
by (13) and the fact that Ny > 0.

In all cases, we have G(Z7, ) — G(z*, y*) < O(2L) with high probability, thus
we finish our proof. [
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