
Supplementary Material of Fast Rate Analysis of

Some Stochastic Optimization Algorithms

The following two lemmas are Lemma 3 and Lemma 4 in [1], we present here
for completeness.

Lemma A. 1. Suppose X1, ..., XT is a martingale difference sequence with
|Xt| ≤ b. Let

V artXt = V ar(Xt|X1, ..., Xt−1).

Let V =
∑T
t=1 V artXt be the sum of conditional variance of X ′ts. Further, let

σ =
√
V . Then we have for any δ < 1/e and T ≥ 3,

Prob(

T∑
t=1

Xt > max{2σ, 3b
√

ln(1/δ)}
√

ln(1/δ)) ≤ 4 ln(T )δ

Lemma A. 2. Suppose s, r, d, b,∆ ≥ 0 and we have

s− r ≤ max{4
√
ds, 6b∆}∆.

Then, it follows that

s ≤ r + 4
√
dr∆ + max{16d, 6b}∆2.

Regularized Dual Averaging Method

Now we begin the proof of convergence rate of RDA. We define the following
conjugate type function used in the proof.

Vt(s) = max
w

[〈s, w − w0〉 − tr(w)− γ
t∑

τ=1

‖wτ − w‖22 − βth(w)]

Lemma A. 3. The function Vt(·) is convex and differentiable. ∇V (st) =
wt+1 − w0, where st =

∑t
τ=1 f

′(wτ , zτ ). The gradient is Lipschitz continu-
ous with constant 1

2γt+βt
, which is

‖∇Vt(s1)−∇Vt(s2)‖2 ≤
1

2γt+ βt
‖s1 − s2‖2,

Proof. Because γ
∑t
τ=1 ‖wτ − w‖22 + βth(w) is strongly convex with convexity

parameter 2γt+ βt. It is a direct result from theorem 1 in [2].
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A property of Vt(·) with Lipschitz continuous gradient is

Vt(s+ δ) ≤ Vt(s) + 〈δ,∇Vt(s)〉+
1

2(2γt+ βt)
‖δ‖22

We refer to [2] for more details.

Proof of Lemma 3.

Regt − γ
t∑

τ=1

‖wτ − w‖22

≤
t∑

τ=1

〈f ′(wτ , zτ ), wτ − w〉+

t∑
τ=1

r(wτ )− tr(w)− γ
t∑

τ=1

‖wτ − w‖22

=

t∑
τ=1

〈f ′(wτ , zτ ), wτ − w0〉+

t∑
τ=1

r(wτ )− tr(w)− γ
t∑

τ=1

‖wτ − w‖22

+

t∑
τ=1

〈f ′(wτ , zτ ), w0 − w〉

(1)

where the first inequity holds from the convexity of f(·, z).
Before we bound above terms, we relate Vt−1(−st) and Vt(−st) in the following
way

Vt−1(−st) = max
w

[〈−st, w − w0〉 − (t− 1)r(w)− γ
t−1∑
τ=1

‖wτ − w‖22 − βt−1h(w)]

≥ 〈−st, wt+1 − w0〉 − (t− 1)r(wt+1)− γ
t−1∑
τ=1

‖wτ − wt+1‖22 − βt−1h(wt+1)

= 〈−st, wt+1 − w0〉 − tr(wt+1)− γ
t∑

τ=1

‖wτ − wt+1‖22 − βth(wt+1) + r(wt+1)

+ γ‖wt − wt+1‖22 − (βt−1 − βt)h(wt+1)

(2)

Notice the summation of first four terms is Vt(−st).
When t > 1, since βt is an increasing sequence , we have

Vt(−st) + r(wt+1) + γ‖wt − wt+1‖22 ≤ Vt−1(−st)

We then upper bound Vt−1(−st)

Vt−1(−st) = Vt−1(−st−1 − f ′(wt, zt))

≤ Vt−1(−st−1)− 〈∇Vt−1(−st−1), f ′(wt, zt)〉+
1

2(2γ(t− 1) + βt−1)
‖f ′(wt, zt)‖22,

(3)

where the inequality holds from the property of Lipschitz continuous of ∇Vt(·).
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Now we have

Vt(−st)− Vt−1(−st−1) ≤ −〈∇Vt−1(st−1), f ′(wt, zt)〉+
1

2(2γ(t− 1) + βt−1)
‖f ′(wt, zt)‖22

− r(wt+1)− γ‖wt − wt+1‖22

≤ −〈wt − w0, f
′(wt, zt)〉+

1

2(2γ(t− 1) + βt−1)
‖f ′(wt, zt)‖22

− r(wt+1),

(4)

where the second inequality uses the fact ∇V (st) = wt+1−w0 from Lemma A.3
.
When t = 1, we have

V1(−s1)− 0 ≤ −〈w1−w0, f
′(w1, z1)〉+ ‖f

′(w1, z1)‖22
2β0

− r(w2) + (β0− β1)h(w2).

(5)
Sum both sides of Vτ (sτ ) from τ = 1 to t, we have

Vt(−st) ≤ −
∑t
τ=1〈wτ −w0, f

′(wτ , zτ )〉+
∑t
τ=1

‖f ′(wτ ,zτ )‖22
2(2γ(τ−1)+βτ−1)

−
∑t+1
τ=2 r(wτ )+

(β0 − β1)h(w2).
We then bound Regt − γ

∑t
τ=1 ‖wτ − w‖22 for all w ∈ FD using above result,

Regt − γ
t∑

τ=1

‖wτ − w‖22 ≤
t∑

τ=1

r(wτ ) +

t∑
τ=1

〈f ′(wτ , zτ ), wτ − w0〉+ max
w∈FD

[〈−st, w − w0〉 − tr(w)

− γ
t∑

τ=1

‖wτ − w‖22]

≤
t∑

τ=1

r(wτ ) +

t∑
τ=1

〈f ′(wτ , zτ ), wτ − w0〉+ Vt(−st) + βtD
2

≤ r(w1)− r(wt+1) + (β0 − β1)h(w2) +

t∑
τ=1

‖f ′(wτ , zτ )‖22
2(2γ(τ − 1) + βτ−1)

+ βtD
2,

(6)

where the second inequality holds from the fact that

max
w∈FD

[〈st, w − w0〉 − tr(w)− γ
t∑

τ=1

‖wτ − w‖22] ≤ Vt(−st) + βtD
2.

Since arg minw h(w) = arg minw r(w) and w1 = arg minh(w), r(w1)−r(wt+1) ≤
0. We set β0 = β1 = γ and βt = γ(1 + ln t), then we have

RegT−γ
T∑
t=1

‖wt−w‖22 ≤ γD2(1+ln(T ))+

T∑
t=1

L2

2γ(2t− 1 + ln t)
≤ (C1γD

2+
C2L

2

γ
)(1+lnT ).
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Proof of Theorem 2. Since we have already known RegT − γ
∑T
t=1 ‖wt −

w‖22 ≤ C1 lnT + C2, using similar steps in the proof of Theorem 1, we have,

1

2
DiffT ≤

T∑
t=1

ξt + C1 lnT + C2.

Then we apply Lemma 2, Lemma A.1 and Lemma A.2 to get the result.

OPG-ADMM

The following Lemma is extracted from Theorem 4 in the appendix of [3].

Lemma A. 4. Let {xt}Tt=1, {yt}Tt=1 and {λt}Tt=1 be the sequence generated by

the algorithm. For all x̂ ∈ X , ŷ ∈ Y and λ̂ ∈ Rl and f is weakly convex, we
have

T∑
t=1

(f(xt, zt) + ψ(yt))−
T∑
t=1

(f(x̂, zt) + ψ(ŷ)) +

T∑
t=1

 −AT λ̃t
−BT λ̃t

Axt +Byt − b

T xt − x̂yt − ŷ
λ̃t − λ̂


+

T∑
t=1

‖λt − λt+1‖22
2ρ

+
‖λT+1 − λ̂‖22

2ρ

≤
‖x̂‖2G1

2η1
+

T∑
t=2

(
γ

2ηt
− γ

2ηt−1
)‖xt − x̂‖22 +

T∑
t=1

ηt
2
‖gt‖2G−1

t
+
ρ

2
‖b−Bŷ‖22

+
‖λ̂‖22
2ρ

+ 〈AxT+1, λ̂〉+ 〈B(ŷ − yT+1), λT+1 − λ̂〉 − 〈Bŷ − b, λ̂〉,

(7)

where gt denotes f ′(xt, zt) for short.

Proof of Lemma 4. We subtract
∑T
t=1

β
4 ‖xt − x̂‖22 at both side of Lemma

A.4. Notice 〈ŷ− yT+1, B
T (λT+1− λ̂)〉 ≤ 〈ŷ− yT+1,∇ψ(yT+1)−BT λ̂〉 using the

optimality of yt+1 in the algorithm, i.e., 〈∇ψ(yt)− BTλt, y − yt〉 ≥ 0 . So this

term can also be bounded if λ̂ is bounded, in particular we choose λ̂ = 0.
Notice Gt � I in the algorithm by choosing γ, ρ, ηt. Similar to the proof of
Lemma 1, the term

∑T
t=2( γ

2ηt
− γ

2ηt−1
)‖xt−x̂‖22+

∑T
t=1

ηt
2 ‖gt‖

2
G−1
t

−
∑T
t=1

β
4 ‖xt−

x̂‖22 is bounded by C1 lnT + C2, if we choose ηt = 2γ
βt .

We choose λ̂ = 0 to simplify the left hand side. For all x̂, ŷ such thatAx̂+Bŷ = b,
we have
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T∑
t=1

 −AT λ̃t
−BT λ̃t

Axt +Byt − b

T xt − x̂yt − ŷ
λ̃t − λ̂

 =

T∑
t=1

 AT λ̂

BT λ̂
Ax̂+Bŷ − b

T x̂− xtŷ − yt
λ̃t − λ̂


=

T∑
t=1

〈λ̂, A(x̂− xt) +B(ŷ − yt)〉

=

T∑
t=1

〈λ̂, b−Axt −Byt〉

=

T∑
t=1

〈λ̂, (λt − λt−1)〉

= 〈1
ρ
λ̂, λT − λ1〉,

(8)

where last two equality hold from the fact that b − Axt − Byt = λt−λt−1

ρ and
Ax1 +By1 − b = 0.
We set λ̂ = 0, so the third term on the left side in Lemma 4 is 0.

Also notice
‖x̂‖2G1

2η1
and ρ

2‖b − Bŷ‖
2
2 are bounded under our assumption. Thus

the RHS of the Lemma 4 is bounded by C1 lnT + C2 when λ̂ = 0.

Similar to the previous proof, we define

Diff =

T∑
t=1

(F (xt) + ψ(yt))−
T∑
t=1

(F (x∗) + ψ(y∗))

and

Reg =

T∑
t=1

(f(xt, zt) + ψ(yt))−
T∑
t=1

(f(x∗, zt) + ψ(y∗)),

where F (x) = Ef(x, z), G(x, y) = F (x) +ψ(y). Remind that Axt +Byt− b 6= 0
in general, thus we use y′t = B−1(b−Axt) as an estimator of y at the t-th step.

Proof of Theorem 3. Similar to the previous proof in OPG, we define

ξt = F (xt) + ψ(yt)− F (x∗)− r(y∗)− (f(xt, zt) + r(yt)− f(x∗, zt)− ψ(y∗))

= F (xt)− F (x∗)− (f(xt, zt)− f(x∗, zt)).

(9)

ξt is a martingale difference, since xt just depends on the data from time step
1, ..., t − 1, Et−1f(x∗, zt) = F (x∗), Et−1f(xt, zt) = F (xt). Using Lemma 2,
V art−1ξt = Et−1ξ

2
t ≤ L2‖xt − x∗‖22.

Next we relate Diff to
∑T
t=1 V art−1ξt.
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Diff ≥
T∑
t=1

〈∇F (x∗), xt − x∗〉+
β

2
‖xt − x∗‖22 + 〈∇ψ(y∗), yt − y∗〉

=

T∑
t=1

[〈∇F (x∗), xt − x∗〉+ 〈∇ψ(y∗), y′t − y∗〉+ 〈∇ψ(y∗), yt − y′t〉+
β

2
‖xt − x∗‖22],

(10)

where the first inequality holds from the convexity of F and ψ.
Recall that y′t = B−1(b − Axt) and Ax∗ + By∗ − b = 0, so 〈∇F (x∗), xt −
x∗〉+ 〈∇ψ(y∗), y′t − y∗〉 ≥ 0 using the optimality of (x∗, y∗). Thus we have the
following relation.

Diff +
1

ρ
〈B−T∇ψ(y∗), λT − λ1〉 = Diff +

T∑
t=1

〈∇ψ(y∗), y′t − yt〉 ≥
T∑
t=1

β

2
‖xt − x∗‖22,

(11)

where the first equality holds from the fact that B(y′t − yt) = b− Axt −Byt =
λt−λt−1

ρ and Ax1 +By1 − b = 0.

We denote 1
ρ 〈B

−T∇ψ(y∗), λT − λ1〉 as NT , and discuss two conditions.

When NT ≤ 0, we have Diff ≥
∑T
t=1

β
2 ‖xt − x

∗‖22.

When NT ≥ 0, we need a upper bound of NT .

NT =
1

ρ
〈B−T∇ψ(y∗), λT − λ1〉

≤ 3

2ρ
‖B−T∇ψ(y∗)‖22 +

1

6ρ
‖λT − λ1‖22

=
3

2ρ
‖B−T∇ψ(y∗)‖22 +

1

6ρ
‖λT − λT+1 + λT+1 − λ1‖22

≤ 3

2ρ
‖B−T∇ψ(y∗)‖22 +

1

2ρ
(‖λT − λT+1‖22 + ‖λT+1‖22 + ‖λ1‖22),

(12)

where the first and second inequalities holds from the Cauchy-Schwarz inequal-
ity. Notice 3

2ρ‖B
−T∇ψ(y∗)‖22 can be bounded by our assumption.

Remind that instead of evaluating F (x̄T ) + ψ(ȳT )− F (x∗)− ψ(y∗), our aim is
to bound F (x̄T ) + ψ(ȳ′T )− F (x∗)− ψ(y∗).

T (F (x̄T ) + ψ(ȳ′T )− F (x∗)− ψ(y∗)) ≤ T (F (x̄T ) + ψ(ȳT )− F (x∗)− ψ(y∗))

+ T 〈∇ψ(ȳ′T ), ȳ′T − ȳT 〉
≤ Diff + T 〈B−T∇ψ(ȳ′T ), B(ȳ′T − ȳT )〉

= Diff +
1

ρ
〈B−T∇ψ(ȳ′T ), λT − λ1〉,

(13)
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where the first inequality holds from the convexity of ψ, the second inequality
uses the convexity of F and ψ, and the last equality holds from the fact B(y′t −
yt) = b−Axt −Byt = λt−λt−1

ρ and Ax1 +By1 − b = 0.

We also need to consider two cases, i.e., 〈B−T∇ψ(ȳ′T ), λT − λ1〉 is negative or
not.
If it is negative, T (F (x̄T ) + ψ(ȳ′T )− F (x∗)− ψ(y∗)) ≤ Diff .
If it is not negative, we need to bound it

Diff +
1

ρ
〈B−T∇ψ(ȳ′T ), λT − λ1〉

≤ Diff +
1

2ρ
(6‖B−T∇ψ(ȳ′T )‖22 +

1

6
‖λT − λ1‖22)

≤ Diff +
3

ρ
‖B−T∇ψ(ȳ′T )‖22 +

1

4ρ
(‖λT − λT+1‖22 + ‖λT+1‖22 + ‖λ1‖22).

(14)

Notice 3
ρ‖B

−T∇ψ(ȳ′T )‖22 can be bounded by our assumption.
Totally, we need to consider four cases.

Case 1 NT ≤ 0, 〈B−T∇ψ(ȳ′T ), λT − λ1〉 ≤ 0.

In this case, Diff ≥
∑T
t=1

β
2 ‖xt − x

∗‖22.
Using the similar technique in the proof of Theorem 1, we have following con-
dition with probability at least 1− 4δ lnT .
1
2Diff−(Reg−β4

∑T
t=1 ‖xt−x∗‖22) ≤ ξt ≤ max{2

√
2L2

β (Diff), 6B
√

ln(1/δ)}
√

ln(1/δ),

which implies

1

2
Diff − (Reg − β

4

T∑
t=1

‖xt − x∗‖22) ≤ max{2

√
2L2

β
(Diff), 6B

√
ln(1/δ)}

√
ln(1/δ).

(15)

Notice Reg − β
4

∑T
t=1 ‖xt − x∗‖22 is bounded by C1 lnT + C2 in Lemma 4 with

λ̂ = 0 (
∑T
t=1

‖λt−λt+1‖22
2ρ +

‖λT+1‖22
2ρ is a positive term). Following similar steps

in the proof of Theorem 1, we solve this inequality using Lemma A.2. Then we
get Diff ≤ C3 lnT +C4 with high probability. In this case T (F (x̄T ) +ψ(ȳ′T )−
F (x∗) − ψ(y∗)) ≤ Diff , thus F (x̄T ) + ψ(ȳ′T ) − F (x∗) − ψ(y∗) ≤ O( lnT

T ) with
high probability.
Case 2 NT ≥ 0, 〈B−T∇ψ(ȳ′T ), λT − λ1〉 ≤ 0.
We have following relation by (11) with probability at least 1− 4δ lnT .

1

2
(Diff +NT )− (Reg − β

4

T∑
t=1

‖xt − x∗‖22 +
NT
2

)

≤ max{2

√
2L2

β
(Diff +NT ), 6B

√
ln(1/δ)}

√
ln(1/δ).

(16)

Notice Reg − β
4

∑T
t=1 ‖xt − x∗‖22 + NT

2 is bounded by C1 lnT + C2, using the

Lemma 4 and (12) with λ̂ = 0. Solve above inequality using Lemma A.2, we have
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Diff+NT ≤ C3 lnT +C4 with high probability which implies Diff ≤ O(lnT ).
Since T (F (x̄T ) + ψ(ȳ′T ) − F (x∗) − ψ(y∗)) ≤ Diff , we have F (x̄T ) + ψ(ȳ′T ) −
F (x∗)− ψ(y∗) ≤ O( lnT

T ) with high probability.
Case 3 NT ≤ 0, 〈B−T∇ψ(ȳ′T ), λT − λ1〉 ≥ 0.
We have following relation with probability at least 1− 4δ lnT .

1

2
(Diff +

1

ρ
〈B−T∇ψ(ȳ′T ), λT − λ1〉)− (Reg − β

4

T∑
t=1

‖xt − x∗‖22 +
1

2ρ
〈B−T∇ψ(ȳ′T ), λT − λ1〉)

≤ max{2

√
2L2

β
(Diff), 6B

√
ln(1/δ)}

√
ln(1/δ)

≤ max{2

√
2L2

β
(Diff +

1

ρ
〈B−T∇ψ(ȳ′T ), λT − λ1〉), 6B

√
ln(1/δ)}

√
ln(1/δ).

(17)

Reg− β
4

∑T
t=1 ‖xt−x∗‖22 + 1

2ρ 〈∇B
−Tψ(ȳ′T ), λT −λ1〉 is bounded by C1 lnT +C2

by Lemma 4 and (14) with λ̂ = 0. We get Diff + 1
ρ 〈B

−T∇ψ(ȳ′T ), λT − λ1〉 ≤
C3 lnT + C4 with high probability. Thus we have T (F (x̄T ) + ψ(ȳ′T )− F (x∗)−
ψ(y∗)) ≤ C3 lnT + C4 by (13).
Case 4 NT ≥ 0, 〈B−T∇ψ(ȳ′T ), λT − λ1〉 ≥ 0
We have following relation with probability at least 1− 4δ lnT .

1

2
(Diff +NT +

1

ρ
〈B−T∇ψ(ȳ′T ), λT − λ1〉)− (Reg − β

4

T∑
t=1

‖xt − x∗‖22 +
NT
2

+
1

2ρ
〈B−T∇ψ(ȳ′T ), λT − λ1〉)

≤ max{2

√
2L2

β
(Diff +NT ), 6B

√
ln(1/δ)}

√
ln(1/δ)

≤ max{2

√
2L2

β
(Diff +NT +

1

ρ
〈B−T∇ψ(ȳ′T ), λT − λ1〉), 6B

√
ln(1/δ)}

√
ln(1/δ).

(18)

Notice Reg− β
4

∑T
t=1 ‖xt−x∗‖22 + NT

2 + 1
2ρ 〈B

−T∇ψ(ȳ′T ), λT −λ1〉 is bounded by

C1 lnT +C2, using Lemma 4, (12) and (14) with λ̂ = 0. Solve the inequality, we
get Diff +NT + 1

ρ 〈B
−T∇ψ(ȳ′T ), λT −λ1〉 ≤ C3 lnT +C4 with high probability.

Thus T (F (x̄T ) + ψ(ȳ′T )− F (x∗)− ψ(y∗)) ≤ C3 lnT + C4 with high probability
by (13) and the fact that NT ≥ 0.
In all cases, we have G(x̄T , ȳ

′
T )−G(x∗, y∗) ≤ O( lnT

T ) with high probability, thus
we finish our proof.
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