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Abstract

In this paper, we revisit three fundamental
and popular stochastic optimization algorithms
(namely, Online Proximal Gradient, Regularized
Dual Averaging method and ADMM with online
proximal gradient) and analyze their convergence
speed under conditions weaker than those in liter-
ature. In particular, previous works showed that
these algorithms converge at a rate of O(InT'/T")
when the loss function is strongly convex, and
O(1/+/T) in the weakly convex case. In contrast,
we relax the strong convexity assumption of the
loss function, and show that the algorithms con-
verge at a rate O(InT/T) if the expectation of
the loss function is locally strongly convex. This
is a much weaker assumption and is satisfied by
many practical formulations including Lasso and
Logistic Regression. Our analysis thus extends
the applicability of these three methods, as well
as provides a general recipe for improving analy-
sis of convergence rate for stochastic and online
optimization algorithms.

1. Introduction

The last decade has witnessed the surge of attention in big
data: learning and decision tasks involving datasets with
unprecedented size — e.g., data from computational bi-
ology, video, social networks — are becoming ubiquitous.
Big data brings in severe challenges: the memory cannot fit
the size of data, the computation time can be prohibitively
long, etc. A popular and powerful tool to overcome these
challenges is stochastic and online optimization methods,
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as they draw one data point at a time (hence mitigate the
storage issue), and update the variable to optimize with
low complexity at each iteration (Shalev-Shwartz, 2011;
Zhang, 2004). Yet, stochastic optimization methods may
suffer from slow convergence. Take the (arguably simplest)
stochastic subgradient method (SGD) as an example. SGD
converges at a rate of O(1/+/T'), and hence requires a sig-
nificant number of iterations if an accurate solution is in
need (Kushner & Yin, 2003).

To solve problems in the high-dimensional (i.e., p < n
setting), various formulations have been proposed based on
the idea of exploiting the lower dimensional structure such
as sparsity via regularization. For example, ¢; norm regu-
larization is widely used to obtain sparse solutions. SGD
cannot efficiently exploit the structure of such regularized
formulations. Fortunately, several algorithms have been
developed to successfully address this setting. Duchi’s
Forward-Backward-Splitting algorithm (Duchi et al., 2010;
Singer & Duchi, 2009), also termed online proximal gra-
dient (OPG), is an online version of the celebrated prox-
imal gradient method (Combettes & Wajs, 2005). Xiao’s
Regularized Dual Averaging method (RDA) (Xiao, 2009)
extends Nesterov’s work (Nesterov, 2009) into the online
and regularized version. Based upon these two funda-
mental algorithms, several variants have been developed.
Notably, Suzuki considers new variants of online ADMM
with online proximal gradient descent type method (OPG-
ADMM) and regularized dual averaging type method
(RDA-ADMM) (Suzuki, 2013). OPG-ADMM is also inde-
pendently developed by Ouyang et al (Ouyang et al., 2013).
It can solve problems with structured sparsity regulariza-
tion such as overlapped group lasso (Jacob et al., 2009) or
low rank tensor estimation(Signoretto et al., 2010).

This paper studies the convergence speed of OPG, RDA
and OPG-ADMM. All these three methods are known to
achieve a convergence rate of O(1/+/T') when the function
to optimize is (weakly) convex (Duchi et al., 2010; Xiao,
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2009; Suzuki, 2013). In contrast, when the loss function
or the regularization is strongly convex, they achieve a fast
convergence rate of O(InT'/T). Yet, it has been observed
in practice that in many weakly convex problems these al-
gorithms perform better than what the theory predicts, in-
dicating room of improvement for analysis under this case.
We revisit these three methods in this paper and present
some new results about their convergence speed in the
weakly convex case. In particular, we show that the conver-
gence rate of O(InT'/T') is achievable if the expectation of
the loss function is locally strongly convex around the op-
timal solution. This is a much weaker assumption than the
standard assumption that the loss function is strongly con-
vex, and is satisfied by many practical formulations. Some
examples par excellence are the renowned Lasso and lo-
gistic regression, where loss functions are ||y — z76||3 and
In(1 + exp(—y(z7))) respectively, which are obviously
not strongly convex. However, under mild conditions, its
expectation is indeed strongly convex. We remark that our
proof technique is very general: it applies to all three meth-
ods we study, and we believe can be easily adapted to ana-
lyzing other online and stochastic optimization methods.

Before concluding this section, we discuss some relevant
literature. Recently, some approaches without strongly
convex assumption on loss function to achieve convergence
rate O(1/T') has been proposed (Rakhlin et al., 2012; Bach
& Moulines, 2013; Zhong & Kwok, 2013; Bach, 2014).
Rakhlin et al. (2012) analyze SGD when the expectation
of loss function is strongly convex, while our analysis is
on more complex and general algorithms (OPG, RDA and
OPG-ADMM). Bach & Moulines (2013) propose a novel
stochastic gradient method to solve (unregularized) least-
squares regression and logistic regression, under a smooth-
ness assumption of the loss function. Bach (2014) exploits
local strong convexity of the objective function, however it
needs the objective is three-times differentiable. Zhong &
Kwok (2013) develop an ADMM type method using his-
torical gradients and hence require extra memory to store
gradients. These works are under different conditions from
ours.

2. Problem setup and notations

We consider the following stochastic learning problem.

min G(w) := E, f(w, z) + r(w), (1)

weN
where w is the variable to optimize, and z is an input-output
pair which is generated from an unknown distribution. The
loss function f(w, z) is convex with respect to w for any
z. As an example, one commonly used loss function is the
least squares f(w, (z,y)) = (y—w”z)%,where z = (z,v).
The set (2 is a compact convex set, and r(w) is a convex
regularization function. Notice that we make no assump-

tion on f(-, z) and r(-) beyond being convex. We further
assume that F'(w) := E, f(w, z) is strongly convex around
w* 1= arg min,,cq G(w), i.e., there exists 8 > 0 such that
F(w)— F(w*) > gHw —w* |3+ (VF(w*),w—w*). We
will see below that this condition is indeed implied by the
condition that F(-) is strongly convex in a neighborhood of

w*.

As the distribution of z is unknown, a common approach
to solve the learning problem is to approximate the expec-
tation using a finite set of observation and to minimize the
empirical loss

T
1
min — w, 2 r(w 2
IUEQTt_Zlf( at)+()a ()
where f(w, 2;) is a convex loss function associated with a
data point z;, and {z;}7_, are drawn from the underlying
distribution.

In the traditional batch learning, we have to access the
whole data set, e.g., computing the gradient of the objec-
tive function in (2), which is impossible in the big data set-
ting. In contrast, the stochastic optimization algorithm is a
promising approach. It sequentially draw the data and opti-
mize the decision variable based upon the last observation.
Throughout the paper, we use the subscript to denote the
variable at a certain time step, e.g., wy, 2¢+1. Given a func-
tion f(-, z), Of (w, z) denotes its subdifferential set evalu-
ated at w, and f’(w, z) denotes a particular subgradient in
this set.

We first present formally the assumptions needed for our
results.

Assumption 1.

e Both f and r are convex, and {2 is a convex compact
set with radius R.

e The subgradient of f is bounded, i.e., there exists a
constant L, such that || f/(wy, 2¢)||2 < L.

e F'is Locally Strongly Convex: there exists 5 > 0 such
that F'(w) — F(w*) > 2w —w* |3 + (VF(w*),w —
w*), where w* := arg min,ecq G(w).

Some remarks on the assumption are in order.

1. Local strong convexity of F' is clearly a much weaker
assumption than f(w, z) being strongly convex — the latter
indeed immediately implies the former.

2. Our condition of local strong convexity is a strictly
weaker condition than F being strongly convex in a neigh-
borhood of w* (say with radius 7): it is indeed implied by
the latter. To see this, by strong convexity in the neighbor-
hood, we have for all w in the neighborhood,

F(0) — F(w*) > | — w*||2 + (VF(w*),d — w*).
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Now notice w is in the compact set {2 with radius R. Let w
be the furthest point in the neighborhood of w* on the line
segment between w and w*, we have

F(w)=F(w") > (r*/R?)y|lw—w"||3+(VF
3)

Notice (3) is indeed our definition of local strong convexity.

The rest of the paper focuses on analyzing the conver-
gence of stochastic optimization algorithms under Assump-
tion 1. In specific, we will review OPG, RDA, and OPG-
ADMM and establish new convergence results with the lo-
cally strong convexity of F'(w).

3. Online Proximal Gradient

This section is devoted to the study of Online Proximal
Gradient algorithm (Duchi et al., 2010). We first briefly
review OPG, and then present our new result that the algo-
rithm converges at a rate O(In7'/T") under locally strong
convexity of F'(w). Finally, we provide a roadmap of the
proof and discuss the general insight to obtain this new re-
sult.

OPG iteratively solves the following problem

wiy = axg min & = wlF-Hd f (e, 20), w) b (),
weN 2

where 7); is a step size parameter. Note that here we use

]Jwy — wl|3 for simplicity. This can be replaced by a more

general term, i.e., Bregman divergence, and the analysis is

identical. The output of the algorithm is wy, where wp =

T
% Dt Wt
To establish the convergence rate of OPG, standard tech-

nique (Duchi et al., 2010; Xiao, 2009; Suzuki, 2013) first
defines the regret

T T
Regy = Y (20 b)) = S0 20 7))
and
T
Diffr:=> (Gw) — G(w"))
o
= > " (F(wy) +r(w)) — T(F(w*) +r(w")),

where G(w) = F(w) + r(w). Recall that F(w) =
E.f(w,z), w* is the optimal solution of G(w), and the
goal is to bound Dif fr. Duchi et al. (2010) shows when
f(w, 2) is weakly convex, Regr can be upper bounded by
O(\/T). This is in sharp contrast to the strongly convex
case where the upper bound is O(In7T"). Then by stan-
dard technique, one can convert this bound of the regret

(w*), w—w").

to the convergence rate (Cesa-Bianchi et al., 2004; Kakade
& Tewari, 2009). We now show that by a refined analysis,
we can relax the strong convexity assumption of f(w, z)
yet still achieve O(InT/T') convergence rate. We present
our main theorem in the following subsection.

3.1. Stochastic Convergence Result of OPG

We now present the main result of this section, namely the
convergence of OPG to solve (1) under weaker assumption.
As standard, the convergence rate is for the average value
of w; generated by OPG.

Theorem 1. If f(w, 2) is bounded by B, F(w) is a locally
strongly convex function with parameter 3 around w*, as-
sume there is a constant L such that || f'(we, z¢)|2 < L.
We set 1, = ﬁf’ let {w;}L_| be the sequence generated by
the algorithm then

01L2 InT 02L2

G(wr) — G(w*) < 3T + AT In(1/8)vInT
16L> In(1/6)
+ 2 max( 3 ,6B) T

“4)

with probability at least 1 — 41n(T)6, where wp =
% ZtT:1 wy, and Cy, Cy are some universal constants.

Theorem 1 essentially states that G(wr) — G(w*) is
bounded by O(InT'/T') with high probability. Notice that
while the strong convexity parameter 3 does not affect the
order of convergence rate, the speed of convergence is pro-
portional to the 1/8. F'(w) with larger convexity parameter
would converge faster.

3.2. Roadmap of the proof

We now outline the proof of Theorem 1. The main in-
novation is that instead of analyzing Regr and Dif fr
separately as in the traditional approach, which is hard
to exploit locally strong convexity of F(w), we analyze
Dif fr — Regr directly. Define

& = (Fwe) +r(wi) = F(w®) —r(w")) 5)
= (flwe, z) + r(we) — f(w*, z) —r(w”)).
Notice we have the following relation
1 . . a /8 * 2
g Diffr < Diffr =3 (Tlw” —wil3)
t=1

T

= Regr — 3 (D

t=1

T
—wil3) + Y &
t=1

where the first inequality holds using the fact that G/(w;) —
G(w*) = Gllwe — w3
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We then establish the following lemma, which is similar to
Lemma 1 of Duchi et al. (2010). The latter concerns bound
on Regr and hence requires strong convexity of f(-, z).
Instead, we bound Regr — Zthl (g |w; —w*||3), and thus
relax this strong convexity assumption.

Lemma 1. [fwe setn; = % let {w;}I_, be the sequence
generated by the algorithm. Assume there is a constant L
such that || f'(wy, z¢)||2 < L, then for w* € Q,

T

B .
Regr = (4 I = w*[)
t=1
= n
t /
<3 T s 2B — o lhwrss — w4 )
t=1
CcL?
< In(T),
< (1)

where C is some universal constant, ( is the locally
strongly convexity parameter of F(-) around w*. Re-
call our assumption F(w) — F(w*) > gHw —w*|3 +
(VF(w*),w — w*).

Lemma 1 asserts that Regr — > 1, (3 |lw, — w*|3) is
bounded by O(InT), even when f(w) is weakly convex.

Proof. The first step is same with the proof of Lemma 1 in
(Duchi et al., 2010), we present here for completeness.

ne(f(we, 2¢) +r(wegr)) — ne(f (0", 2¢) +7r(w”))
< ne(f (we, z), wp — w*) + me{wegr — w*, 7" (Weg))
= (W — wey1, we — wepr — N f (Wi, 2e) — M7’ (wig1)

+ (W — wypr, w1 — wi) + Ne{wy — wipr, f(wy, 2))

2 ﬂtz 2
!
+ EHf (we, ze) Iz,

1 *
< Sllw — w1l
(6)

1
= 5 llw”
2 2

wt||§

where the second inequality holds from the optimality of

Wept, 1.6, (W1 — we + e f (Wi, 2¢) + 1’ (W), w —

wer1) > 0 for all w, and the fact that n(w; —
2

wipr, f1(we, z)) < 2| f (we, 20) 13 + S llwr — wiga |3

Now we divide 7, at both sides of (6) , we have

(f (wt, ze) + r(wig1)) —

< L
— ||W
- 2n

(f(w", 2¢) +r(w"))

—llw* — w3

- th% - 2

Subtract %Hwt —w*||3 at both sides and sum over both side,

Ui
3 o, 2) 3

we get
T
Z (we, 2¢) + r(wegr) — f(w", 2¢) —r(w")
- *llwt —w|3]
< - * 2
Z 17/t 2| + 5 -l =
1 *12
- %HWTH — w3
T-1
1 1. 3
a2 =N _ _an*2
3l =0 = 5~ e — 'l
= 7 llwr = w2
Choose 1; = 2 and use the assumption || f/(wy, z¢)[|2 <
L, we get
T
D (weze) + r(wen) = f(w*,z) = r(w?)
t=1
_8

Jlwe = w13
<Z

< ClFIHT—l-CQ

1 (we, 20) 15 + Ca

Now we have

T
1
5 Diffr < ClnT+) &.

t=1

What remains is to convert this to the rate of convergence.
For that, we show {&;} is a martingale sequence.

Lemma 2. let {w;}_, be the sequence generated by the
algorithm and F(w) is locally strongly convex. Assume
there is a constant L such that || f' (wy, z¢)||2 < L. & isa
martingale difference, i.e. Ey_1& = 0, where Ey_1 means
the conditional expectation given 21, 23, ..., z;_1. Further-
more define the conditional variance Var;_1&; := Et,léf

and we have Vary_1& < %(G(wt) — G(w*)).
Proof. & = F(w:) — F(w*) — (f(we, 2¢)
Notice w; just depends on 21, 22, ...

E,_1& = F(w) — F(w*) —
= F(w;) — F(w") — (F(wy) — F(w

- f(w*a Zt))
, Zt—1, SO we have
Ei 1 (f(we, z) — f(w", 2¢))

*)) =0,
(7N
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which shows it is a martingale difference. To bound the
variance,

Ey_1&
= (F(w) = F(w*))? + Er1 (f (wi, 2) — f(w*, 2,))?
—2(F(w; )

where the last step holds from the locally strongly convex-
ity of G. G is locally strongly convex from the locally
strong convexity of F' and definition. O

Lemma 2 is similar in spirit to Lemma 1 of (Kakade &
Tewari, 2009), except that we only use the locally strong
convexity of F'(w). Then we use the martingale inequality
developed in (Kakade & Tewari, 2009) which connects the
regret to generalization to prove our main theorem.

Proof of Theorem 1.
- 8

Dif fr — Regr = Y (G(w;) - G(w*) — 7w = w3)
t=1

- Z(f(wt,zt) +r(we) — f(w, z) —r(w”)

1

~
Il

= llwe —w3).
®)

Define Dif fr = 1, (G(w;) — G(w*) — & lw, —w*|3)
and
T

Regr =Y (f(we, z0) +r(we) = f(w”, 2) = r(w”)

t=1

B .
— 2w — w3).

Using Lemma 1, we have R~egT < CTLz InT'. Notice we
have Dif f, > 1Dif fr using the the fact that G(w,) —
G(w*) > B |wy — w*||3, thus

T
1. ~ .
§D2ffT — Reg < Dif fr — Reg < qu

t=1

which implies L Dif fr — X0 < ST ¢,

Using Lemma 2 and Lemma A.1 in the supplementary ma-
terial, we have a upper bound of Zthl &;. Particularly, the
following relation holds with probability at least 1 —46 In T’

T T
th < max{2 ZVart,lgt,6B\/1n1/5}\/ln1/5.
t=1 t=1

Now we relate RHS to Di f fr using Lemma 2.

d [212
> & < max(2 71% ffr,6B+/In(1/6))1/In(1/6)

with probability at least 1 — 4 1In(7')J.
Now we have a inequality of Dif fr ,

2 n
Loy - CE2D

2 ©)
< max(2, /%DiffT, 6B+/In(1/6))/In(1/5).

Solving the inequality using Lemma A.2 in the supplemen-
tary material , we get

2 2
%DiffT < % 4 02%\/171(1/5)\/1@
2

TL,GB) In(1/5).

(10)

+ max(

Using the convexity of G(w), we have with high probabil-
ity

Gwr) — G(w*) < Diffr/T < O(InT/T).
O

This proof idea can be extended to other algorithms. In-
deed, our proofs of RDA and OPG-ADMM follow a simi-
lar roadmap except for some technical details.

4. Regularized Dual Averaging method

We briefly explain the RDA method. In RDA, an auxil-
iary function h(w) is needed, which is a strongly convex
function with convex parameter 1 (e.g., 1 ||w||3) on domain
of r(w), and also satisfies arg min h(w) = arg min r(w).
Define wg as wy = argminh(w). The Regularized
Dual Averaging method iteratively generates a sequence
{w;}._, in the following way,

wen = argmin((Y f(wr, z,), w) + tr(w) + Bh(w)),

T=1

with initialization w; = wy. Notice we only need to store
the summation of subgradients rather than each individ-
ual one. It achieves O(1/+/T) convergence rate when f
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is (weakly) convex and O(InT'/T) in the strongly convex
case. For more details on choices of h(w), examples of ap-
plications of RDA and proofs, we refer the readers to Xiao
(2009).

To achieve the O(InT/T') convergence rate under our as-
sumption, we propose a modified RDA method slightly dif-
ferent from the original one. It updates w; in the following
way.

t
werr = argmin((Y_ f'(wr, 27),w) + tr(w) + feh(w)

T=1

t
+ ) fwr —wl3).
T=1
(11)

Notice we add an additional strongly convex term. It is
easy to see that solving w;1; only requires knowing the
sum of wy rather than each individual one, so the memory
consumption is almost same as the original algorithm. This
additional term help us to bound Reg; —v >, ||lw, —wl|3
in the following lemma. Similarly to the proof of OPG, we
first define Regy.

t

Reg; = Z(f(w’ra Z‘r) +T(w'r)) - Z(f(wa ZT) + r(w)).

T=1 T=1

The following lemma upper bounds the regret subtracted
by a strongly convex term.

Lemma 3. If we set 8y = ~v(1 + Int) fort > 1, By =
B1 =, let {w,}L_, be the sequence generated by the
algorithm (11). Assume there is a constant L such that
I f' (wr, z:)||l2 < L, then we have

¢
L2
Reg: — vz |w, —wl||3 < CiyD?* + 6’27(1 + In(¢)),

T=1

for any w € Fp, where Fp = {w|h(w) < D?}, C1,Cs

are some universal constants.

This lemma states Reg: — 7> -, |lw, — w||3 is upper
bounded by O(Int). Notice v 3" _, [lw, — wl|3 is indeed
the new term introduced in (11).

Following a same roadmap of derivation as that of OPG,
we can apply the martingale inequality on the regret bound
given in the Lemma 3. This leads to the following theorem
that establishes an improved convergence rate of RDA to
solve the learning problem 1. The detailed proof is deferred
to the appendix.

Theorem 2. If we set ; = (1 + Int), v = % Let
{w, }t_, be the sequence generated by the algorithm. As-
sume there is a constant L such that || f' (w;, z;)||2 < L, If

f(w, 2) is bounded by B, F(w) is a locally strongly convex
function with parameter (3 around w*, then

G(@T) — G(w*) < w
/ 2
12)

with probability at least 1 — 41n(T)6, where wr =

% Z;‘le wy, C1,Co are some constants depending on D,
L and p.

5. OPG-ADMM

ADMM (Gabay & Mercier, 1976) is a framework for op-
timization of a composite function and has wide range of
applications (Candes et al., 2011; Aguiar et al., 2011; Shen
et al., 2012). It has gained lots of attentions in the machine
learning society recently (Boyd et al., 2011; Ouyang et al.,
2013; Suzuki, 2013). ADMM considers the following op-
timization problem:

min

zeX,ycy

1 T
T @Ry

st. Ar+ By—-b=0,

where X’ and ) are some convex compact sets with radius
D, ie., ||x — || < D for all z,2’ € X and similarly
ly = ¢'ll2 < D forall y,y’ € Y. B is a squared matrix
and B~! exists. One example is B = I and b = 0, i.e,
Ax = —y. ADMM splits the optimization with respect to
z and y using the augmented Lagrangian technique. It has
O(1/T) convergence rate in the weakly convex case and
linear convergence rate in the strongly convex case (He &
Yuan, 2012; Deng & Yin, 2012).

However, ADMM is basically a batch method which needs
to store the whole data in memory. To resolve this issue,
several online variants of ADMM are proposed (Ouyang
et al., 2013; Suzuki, 2013; Wang & Banerjee, 2012). The
algorithm of OPG-ADMM (Suzuki, 2013) is given by the
following update rules.

T4, = argmingl z — A\ (Az 4+ By, — b)
TeX

p 1
+ 5“1430 + By — b|5 + Tm”x —x||3,,

yre1 = argmin(y) — A/ (Azess + By —b) (19
Yy

+ £l Azies + By - b,

At1 =M — p(Azi 1 + By — b),

where g; stands for f'(wy, z;), Gy = vI — n;pAT A, and
[||%, denotes z" Gyx. ~, p, 1, are chosen such that G >

)
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I for simplicity. We initialize z; = 0, A\; = Oand By; = b.
Moreover we define \; = \; — p(Axiiq + By — b). We
assume that it is easy to compute the proximal operation
corresponding to 1, i.e., the update rule for y; is compu-
tationally easy. It is known to achieve a convergence rate
O(1/+/T) in the weakly convex case and O(In T'/T) in the
strongly convex case.

To establish a fast rate for OPG-ADMM, similarly to
OPG, we need to establish an upper bound of the Regr —
Yot Gz — 23,

Lemma 4. Let {z;}1_,, {y:}_, and {\}1_, be the se-
quence generated by algorzthm (14). Assume f is weakly
convex, then forall x € X, y € Y and 5\, we have

T T
Z(f(ift» zt) + () — Z(f(@a zt) +1(9))
=1 =1
T _ATN, N\ fa—i
+ Z —BTS\t yt - Zz
t=1 \ Ax; + By; — b At — A

T N T
e — Aexall3 Ares — M3 B R
+3° 2 4 2—Zzllxt—zu§

t=1 2p 2p
_ 21, +Z o= 5l —a:||2—|—Z gt g,
2m =2 2m
A A )\
+ £llb - Byll3 + H2¢ + Az, A

+(B(§ — yr+1)s Ar41 — A) — (B — b, )

T
B X
-3 o -
t=1
(15)

where g; denotes ['(x4,zt) for short. Here we assume
llgtll2 is bounded by L, f(x,w) is bounded by B, the sub
gradient of 1 is bounded by Ly, and X and Y are two
convex compact set with radius D.

Notice that in the RHS of (15), the term (B(y —
Yr+1)s Ar41—A) < (§—yr41, Vi (yrs1) — BT A) by the
optimality of 4,4 ;. The RHS can also be bounded by a con-
stant since Y741 and Vi (yr41) are bounded by constants
using assumptions. Furthermore, We can choose a special
A = 0 to make the third term in the LHS in (15) vanishing.
Thus, we can show the RHS is bounded by Cy In T 4 Cs if
we choose 17, = % We defer the details to the appendix.

We remark that (z¢, y;) generated by the algorithm may not
satisfy the constraint Az; + By; — b = 0. Same as Suzuki
(2013), we use y; := B~ (b — Ax;) to replace y;.

Similarly as the previous two methods, based on the regret
bound we establish the improved stochastic convergence
rate of OPG-ADMM.

Theorem 3. Set 1, = % Let {x,}1_, {w}E, and
{\}E | be the sequence generated by the algorithm. As-
sume X and Y are two convex compact set with radius
D, f(z,z2) is bounded by B, ||gt||2 is bounded by L, the
sub gradient of v is bounded by L, and F(x) is locally
strongly convex function around x* with parameter (3, then
with high probability

)<CM

G(zr,yr) — G(a"
where T = Zthl T, Yp = & thl y,, C is some
constant depending on ,B,L,Ly. G(z,y) = F(z) +
U(y), F(x) = E. f(z,2) and (x*,y*) is the optimal solu-
tion of G(z,y) with constraint Az + By — b = 0.

6. Simulation results

In this section, we perform numerical simulations to illus-
trate and validate our results. We emphasize that this pa-
per concerns providing tighter theoretical analysis of three
well-known algorithms, rather than proposing new algo-
rithms. As such, the goal of the simulation is not about
showing the superiority of the algorithms (which has been
validated in many real applications (Ouyang et al., 2013;
Suzuki, 2013; Xiao, 2009), but to show that their empirical
performance matches our theorem. In light of this, synthe-
sized data is more preferable in our experiments, as we are
able to compute the global optimum (and hence the opti-
mality gap) based on the underlying mechanism that gen-
erates the data, which is typically impossible for real data
sets.

We use LASSO as the problem to optimize, i.e.
f(w, (z,y)) + r(w) = 3lly — w=||3 + Al|wl]1, as this is
a widely used formulation in various areas such as sparse
coding, compressive sensing, and high dimensional statis-
tics. We generate the input and output pair (z, y) in the fol-
lowing way: w! is a k sparse vector of dimension d where
the no-zeros entries are generated from the standard normal
distribution, x is a d dimension vector drawn from the stan-
dard normal distribution, and y = (w’)Tz +¢, where € is a
Gaussian noise term with variance o2 = 0.25. Observe this
satisfies our setting where f(w, (z,y)) + r(w) is a weakly
convex function, but E( f (w, (x,y))) is strongly convex. In
Lasso, given all conditions above, we can calculate G(w)
analytically as follows. G(w) = 1 |lw — w'||3 + A|Jw|}1 +
%2. We set A = 0.1. The optimal solution of G(w) can
be calculated by the standard soft thresholding operation of
w'. The simulation results are reported in Figure 1 and 2.
The Y axis is the optimality gap G(wr) — G(w*) and the
X axis is the number of steps. All results are averaged over
10 trials and drawn in the log-log scale.

We observe the following: all three algorithms converge
slowly at beginning. After certain time steps Tp, they de-
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Figure 2. Stochastic convergence rates of OPG, RDA and OPG-ADMM in LASSO with dimension d=1000 and sparsity k=10. The

experimental results are averaged over 10 trials.

crease with ratio —1 on log-log scale, i.e., the convergence
rate is proportional to 1/7" for large 7', which validates our
theoretical results. In terms of the convergence speed at
the initial stages of the algorithms, we suspect that this
may be due to fact that we measure the population error
G(wr) — G(w*) rather than the empirical error. Thus,
when relatively few samples are given, overfitting may hap-
pen. Interestingly, we find that the value Tj is closely re-
lated the dimension of the problem. In the case d=300, Tj
is around 300, whereas T is around 1000 when d = 1000,
which seems to support our conjecture.

7. Conclusion

In this paper, we analyzed three widely used stochastic
optimization algorithms, namely OPG, RDA, and OPG-
ADMM, and established an O(InT/T) upper bound of
their convergence speed without the strong convexity as-
sumption on the loss function. Instead, we only require the
expectation of the loss function to be locally strongly con-
vex, a much weaker assumption that is easily satisfied in
many cases. This closed a gap between known theoretic
results and empirical performance of these algorithms on
widely used formulations such as Lasso and logistic regres-
sion. The key novelty of our analysis is that we analyze the
Dif fr — Regr directly instead of themselves separately,
which makes it possible to utilize the strong convexity of

the expectation of the loss function. We believe this is a
technique that can be easily adapted to studying other al-
gorithms, and hence provides a general recipe to obtain
improved convergence rate for stochastic optimization al-
gorithms.
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