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Abstract
This paper presents a new randomized approach
to high-dimensional low rank (LR) plus sparse
matrix decomposition. For a data matrix D ∈
RN1×N2 , the complexity of conventional decom-
position methods is O(N1N2r), which limits
their usefulness in big data settings (r is the rank
of the LR component). In addition, the existing
randomized approaches rely for the most part on
uniform random sampling, which may be ineffi-
cient for many real world data matrices. The pro-
posed subspace learning-based approach recov-
ers the LR component using only a small subset
of the columns/rows of data and reduces com-
plexity to O(max(N1, N2)r

2). Even when the
columns/rows are sampled uniformly at random,
the sufficient number of sampled columns/rows
is shown to be roughly O(rµ), where µ is the
coherency parameter of the LR component. In
addition, efficient sampling algorithms are pro-
posed to address the problem of column/row
sampling from structured data.

1. Introduction
Suppose we are given a data matrix D ∈ RN1×N2 , which
can be expressed as

D = L + S, (1)

where L is a low rank (LR) matrix and S is a sparse matrix
with arbitrary unknown support. In many machine learning
and data analysis applications, the given data can be natu-
rally modeled using (1). It was shown in (Chandrasekaran
et al., 2011) that if the column space (CS) and row space
(RS) of L are sufficiently incoherent with the standard ba-
sis and the non-zero elements of S are sufficiently diffused,
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the convex program

min
L̇,Ṡ

λ‖Ṡ‖1 + ‖L̇‖∗

subject to L̇ + Ṡ = D
(2)

yields the exact decomposition, where ‖.‖1 is the `1-norm
and ‖.‖∗ is the nuclear norm.

For the LR matrix L with rank r and compact SVD L =
UΣVT (where U ∈ RN1×r, Σ ∈ Rr×r and V ∈ RN2×r),
the incoherence condition is typically defined through the
requirements (Candès et al., 2011; Chandrasekaran et al.,
2011)

max
i
‖UTei‖22 ≤

µr

N1
, max

i
‖VTei‖22 ≤

µr

N2

and ‖UVT ‖∞ ≤
√

µr

N2N1

(3)

for some parameter µ that bounds the projection of the stan-
dard basis {ei} onto the column and row subspaces. Other
useful measures for the coherency of subspaces are given
in (Candès & Romberg, 2007) as,

γ(U)=
√
N1 max

i,j
|U(i, j)|, γ(V)=

√
N2 max

i,j
|V(i, j)|, (4)

where γ(U) and γ(V) bound the coherency of the column
space and the row space, respectively. It is not hard to show
that max (γ(V), γ(U)) ≤ √µ.

In (Candès et al., 2011), the sparsity pattern of the sparse
matrix is selected uniformly at random to ensure that the
sparse matrix is not a LR matrix (the non-zero elements
are sufficiently diffused) with overwhelming probability.
In this model, termed the Bernoulli model, each element
of the sparse matrix can be non-zero independently with
a constant probability. In this paper, we also use the
Bernoulli model for the sparsity pattern of the sparse ma-
trix.

The optimization problem (2) is convex. Similar to the it-
erative shrinking algorithms for `1-norm and nuclear norm
minimization, a family of iterative algorithms for solving
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(2) were proposed (Lin et al., 2010; Yuan & Yang, 2009),
albeit they have complexity O(N1N2r) per iteration and
require saving the entire (big) data in the working memory.

Since the LR and the sparse matrices are low-dimension ge-
ometrical structures, the robust principal component analy-
sis (PCA) and matrix decomposition problems can be con-
ceivably solved using small data sketches, i.e., a small set
of random observations of the data (Halko et al., 2011; Li
& Haupt, 2015; Mackey et al., 2011a; Rahmani & Atia,
2015a;b; Wright et al., 2013). In (Wright et al., 2013),
it was shown that the LR and the sparse components can
be precisely recovered using a small set of random linear
measurements of D. A convex program was proposed in
(Wright et al., 2013) to recover these components using
random matrix embedding with a polylogarithmic penalty
factor in sample complexity, albeit the formulation requires
solving a high-dimensional optimization problem.

The divide-and-conquer approach proposed in (Mackey
et al., 2011b) can achieve super-linear speedups over full-
scale matrix decomposition. This approach forms an esti-
mate of L by combining two low-rank approximations ob-
tained from submatrices formed from sampled rows and
columns of D using the generalized Nyström method. Our
approach also achieves super-linear speedups in decompo-
sition, yet is fundamentally different from (Mackey et al.,
2011b) and offers several advantages for the following
reasons. First, our approach is a subspace-pursuit ap-
proach that focuses on subspace learning in a structure-
preserving data sketch. Once the column space is learned,
each column of the data is decomposed independently us-
ing a proposed randomized vector decomposition algo-
rithm. Second, unlike (Mackey et al., 2011b), which is
a batch approach that requires to store the entire data,
the structure of the proposed approach naturally lends it-
self to online implementation. Third, while the analy-
sis provided in (Mackey et al., 2011b) requires roughly
O(r2µ2 max(N1, N2)) random observations to ensure ex-
act decomposition with high probability (whp), we show
that the order of sufficient number of random observations
depends linearly on the rank and the coherency parame-
ter even if uniform random sampling is used. Fourth, the
structure of the proposed approach allows us to leverage
efficient sampling methods for challenging real world sce-
narios in which the columns and rows of L are not uni-
formly distributed in their respective subspaces, or when
the data exhibits additional structures (e.g. clustering struc-
tures) (c.f. Sections 3.2, 3.3). In such settings, the uniform
random sampling used in (Mackey et al., 2011b) requires
significantly larger amounts of data to carry out the decom-
position.

2. Structure of the Proposed Approach
Let us rewrite (1) as D = UQ + S, where Q = ΣV.
We call Q ∈ Rr×N2 the representation matrix which con-
tains the expansion of the columns of L in the basis U. Let
Ds1 ∈ RN1×m1 denote a matrix consisting of m1 columns
sampled from D, and Ds2 ∈ Rm2×N2 a matrix ofm2 sam-
pled rows. The table of Algorithm 1 presents the structure
of the proposed method. The main idea is to exploit the
low dimensionality of span(U) to learn the CS of L using
a small subset of the columns of D (matrix Ds1). Once
the CS of L is obtained, each column can be viewed as a
summation of an unknown vector from a known subspace
and an unknown sparse vector. The representation matrix is
then obtained using a small subset of the rows of D (matrix
Ds2).

Algorithm 1 Structure of Proposed Approach
Input: Data matrix D ∈ RN1×N2

1. CS Learning
1.1 Column sampling: Matrix Ds1 ∈ RN1×m1 containsm1 sam-
pled columns of D.
1.2 Decompose Ds1 via

min
L̇s1,Ṡs1

1√
N1

‖Ṡs1‖1 + ‖L̇s1‖∗

subject to L̇s1 + Ṡs1 = Ds1,

(5)

and define L̂s1 and Ŝs1 as the optimal point of (5).
1.3 CS calculation: Matrix Û is obtained as an orthonormal basis
for the CS of L̂s1.
2. Representation Matrix Learning
2.1 Row sampling: Matrix Ds2 ∈ Rm2×N2 containsm2 sampled
rows of D. Define S2 ∈ RN1×m2 as the row sampling matrix,
Ds2 = ST

2 D.
2.2 Representation learning: The representation matrix with re-
spect to Û is obtained as the optimal point of

min
Q̇
‖Ds2 − ST

2 ÛQ̇‖1 . (6)

Output: If Q̂ is the optimal point of (9), L̂ = ÛQ̂ is the obtained
LR matrix.

The following theorem establishes that the sufficient values
for m1 and m2 scale linearly with the rank. To simplify the
analysis, it is assumed that the CS of the LR matrix is sam-
pled from the random orthogonal model (Candès & Recht,
2009), i.e., the columns of U are selected uniformly at ran-
dom among all families of r-orthonormal vectors. Due to
space limitations, the proof of Theorem 1 is deferred to an
extended version of this paper (Rahmani & Atia, 2015b).

Theorem 1. Suppose the CS of the LR matrix is sampled
from the random orthogonal model and the support set of S
follows the Bernoulli model with parameter ρ. In addition,
it is assumed that Algorithm 1 samples the columns and



A Subspace Learning Approach for High Dimensional Matrix Decomposition with Efficient Column/Row Sampling

rows uniformly at random. If for any small δ > 0,

m1 ≥ max

(
rγ2(V)max

(
c2 log r, c3 log

3

δ

)
,

r

ρ r
µ

′
(logN1)

2

)
,

m2 ≥ max

(
r logN1 max

(
c
′

2 log r, c
′

3 log
3

δ

)
,

2rβ(β − 2) log
(
N2

δ

)
3(β − 1)2

(
c6κ log

N1N2

δ
+ 1

)
,

c5(log
N1N2

δ
)2,

7

√
3

δ

)

ρ ≤ min

(
ρs,

0.5

rβ
(
c6κ log

N1N2

δ + 1
))

(7)

where

µ
′
= max

(
c7 max(r, logN1)

r
, 6γ2(V),

(c9γ(V) logN1)
2

)
, κ =

log(N1)

r
,

(8)

{ci}9i=1, ρr, ρs, c
′

2 and c
′

3 are constant numbers and β any
real number greater that one, then the proposed approach
(Algorithm 1) yields the exact decomposition with proba-
bility at least (1− 5δ − c8N−31 ).

Theorem 1 confirms the intuition that the sufficient num-
ber of observations is linear with the rank and coherency
parameter. We note that we have used a random model for
the CS of L. The analysis in (Mackey et al., 2011b) – which
requires O(r2µ2) randomly samples columns/rows – does
not assume a random model for the LR component. The
proposed approach hasO(max(N1, N2)×max(m1,m2)×
r) per-iteration running time complexity, which is signif-
icantly lower than O(N1N2r) per iteration for full scale
decomposition (2) (Lin et al., 2010) implying remarkable
speedups for big data because the sufficient values for m1

and m2 scale linearly with r. For instance, consider U
and Q sampled from N (0, 1), r = 5, and S follow-
ing the Bernoulli model with ρ = 0.02. For values of
N1 = N2 equal to 500, 1000, 5000, 104 and 2 × 104, if
m1 = m2 = 10r, the proposed approach yields the cor-
rect decomposition with 90, 300, 680, 1520 and 4800 - fold
speedup, respectively, over directly solving (2). In addition,
the randomized method merely needs to save a small set of
the columns and rows of the data in the working memory.

Once the CS of L is learned (i.e., Û is obtained), each col-
umn can be decomposed independently. Specifically, for di
(the ith column of D) the ith column of Q is obtained as a
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Figure 1. The rank of a set of uniformly random sampled columns
for different number of clusters.

solution to

min
q̇i

‖ST2 di − ST2 Ûq̇i‖1 . (9)

As a result, the presented approach is amenable to online
implementation. The CS can be obtained from a small
batch of the data and each new data column can be de-
composed based on the learned CS. Also, if the underly-
ing subspace is changing, an alternating minimization ap-
proach can be used to update the learned CS. For brevity,
we defer the discussion of online implementation to an ex-
tended version of this work (Rahmani & Atia, 2015b).

3. Efficient Column/Row Sampling
In sharp contrast to randomized algorithms for matrix ap-
proximations (Halko et al., 2011), in matrix decomposition
and robust PCA we do not have direct access to the LR ma-
trix to measure how informative particular columns/rows
are. As such, the existing randomized algorithms for ma-
trix decomposition and robust PCA (Li & Haupt, 2015;
Mackey et al., 2011a) have predominantly relied upon uni-
form random sampling of columns/rows. In Section 3.1,
we briefly describe the implications of non-uniform data
distribution and show that uniform random sampling may
not be favorable for data matrices exhibiting some struc-
tures that prevail much of the real datasets. In Section 3.2,
we demonstrate an efficient column sampling strategy to be
used in the proposed decomposition method. The proposed
decomposition method with efficient column/row sampling
is presented in Sections 3.3 and 3.4.

3.1. Non-uniform data distribution

Uniform random sampling is only effective when the
columns/rows of L are distributed uniformly in the CS/RS
of L. In practice, the data points in a low-dimensional sub-
space may not be uniformly distributed and could exhibit
some additional structures. A prevailing structure in many
modern applications is clustered data (e.g. computer vision
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(Rahmani & Atia, 2015c; Vidal, 2011), recommendation
systems (Liu & Li, 2014)). For instance, consider a matrix
G ∈ R2000×6150 generated as G = [G1 G2 ...Gn], i.e., by
concatenating the columns of matrices Gi, i = 1, . . . , n.
For 1 ≤ i ≤ n

2 , Gi = UiQi , where Ui ∈ R2000× r
n ,

Qi ∈ R r
n×

200r
n . For n/2 + 1 ≤ i ≤ n, Gi = UiQi ,

where Ui ∈ R2000× r
n , Qi ∈ R r

n×
5r
n . The elements of Ui

and Qi are sampled independently from a normal N (0, 1)
distribution. The parameter r is set equal to 60, thus, the
rank of G is equal to 60 whp. Fig. 1 illustrates the rank of
the randomly sampled columns versus the number of sam-
pled columns for different number of clusters n. As n in-
creases, so does the required number of uniformly sampled
columns. When n = 60, it turns out that we need to sam-
ple more than half of the columns to span the CS. As such,
we cannot evade high-dimensionality with uniform random
column/row sampling.

3.2. Efficient column sampling

Column sampling is a well-known dimensionality reduc-
tion and feature selection technique (Halko et al., 2011).
In the column sampling problem, the LR matrix (or the
matrix whose span is to be approximated with a small set
of its columns) is available. Thus, the columns are sam-
pled based on their importance, measured by the so-called
leverage scores, as opposed to blind uniform sampling.
We refer the reader to (Deshpande & Rademacher, 2010;
Halko et al., 2011) and references therein for more infor-
mation about efficient column sampling methods. In this
subsection, we present a sampling approach which will be
used in the next subsection where the proposed decompo-
sition algorithm with efficient sampling is presented. The
proposed sampling strategy is inspired by the approach in
(Deshpande & Rademacher, 2010) in the context of vol-
ume sampling. The table of Algorithm 2 details the pro-
posed column sampling procedure. Given a matrix A
with rank rA, the algorithm aims to sample a small sub-
set of the columns of A that span its CS. The first column
is sampled uniformly at random or based on a judiciously
chosen probability distribution (Boutsidis et al., 2009). The
next columns are selected sequentially so as to maximize
the novelty to the span of the selected columns. As shown
in step 2.2 of Algorithm 2, a design threshold τ is used
to decide whether a given column brings sufficient nov-
elty to the sampled columns by thresholding the `2-norm
of its projection on the complement of the span of the sam-
pled columns. The threshold τ is naturally set to zero in a
noise-free setting. Once the selected columns are believed
to span the CS of A, they are removed from A. This pro-
cedure is repeated C times (using the remaining columns).
In each time, the algorithm finds r columns which span the
CS of A. After every iteration, the rank of the matrix of
remaining columns is bounded above by rA. As such, the

Figure 2. Visualization of the matrices defined in Section 3.3. Ma-
trix Dw is selected randomly or via Algorithm 3.

algorithm samples approximately m1 ≈ CrA columns in
total. In the proposed decomposition method with efficient
column/row sampling (presented in Section 3.3), we set C
large enough to ensure that the selected columns form a low
rank matrix.

Algorithm 2 Efficient Sampling from LR Matrices
Input: Matrix A.
1. Initialize
1.1 Set C as an integer greater than or equal to 1. The algorithm
finds C sets of linearly dependent columns.
1.2 Set I = ∅ as the index set of the sampled columns and set
v = τ , B = A and C = [ ].
2. Repeat C times
2.1 Let b be a non-zero randomly sampled column from B with
index ib. Update C and I as C = [C b], I = {I , ib}.
2.2 While v ≥ τ
2.2.1 Set E = PcB , where Pc is the projection matrix onto the
complement space of span(C).
2.2.2 Define f as the column of E with the maximum `2-norm
with index if . Update C, I and v as C = [C f ] , I =

{I , if} and v = ‖f‖2 .
2.2 End While
2.3 Set C = [ ] and set B equal to A with the columns indexed
by I set to zero.
2. End Repeat
Output: The set I contains the indices of the selected columns.

3.3. Proposed decomposition algorithm with efficient
sampling

In this section, we develop a modified decomposition al-
gorithm that utilizes efficient information sampling as op-
posed to uniform random sampling. In Section 4, it is
shown that the proposed technique can remarkably reduce
the sampling requirement. We consider a setting wherein
the columns of L are not uniformly distributed, rather they
admit an additional structure (such as clustering), where-
fore a small subset of uniformly sampled columns is not
likely to span the CS. However, we assume that the rows
of L are distributed well enough such that Crr rows of L
sampled uniformly at random span its RS whp, for some



A Subspace Learning Approach for High Dimensional Matrix Decomposition with Efficient Column/Row Sampling

constant Cr. In Section 3.4, we dispense with this assump-
tion. The proposed decomposition algorithm rests on three
key ideas detailed next.

3.3.1. INFORMATIVE COLUMN SAMPLING

The first key idea underlying the proposed sampling ap-
proach is to start sampling along the dimension that has the
better distribution. For instance, in the example of Section
3.1, the columns of G admit a clustering structure. How-
ever, since the CS of G is a random r-dimensional sub-
space, the rows of G are distributed uniformly at random
in the RS of G. Thus, in this case we start with row sam-
pling. The main intuition is that while almost 60 randomly
sampled rows of G span the RS, a considerable portion of
the columns (almost 4000 columns) should be sampled to
capture the CS as shown in Fig. 1. As another example,
consider an extreme scenario where only two columns of
G ∈ R1000×1000 are non-zero. In this case, random sam-
pling would sample almost all the columns to ensure that
the sampled columns span the CS of G. But, if the non-
zero columns are non-sparse, a small subset of randomly
chosen rows of G will span its row space.

Let r̂ denote a known upper bound on r. We sample Cr r̂
rows of D uniformly at random. For visualization, Fig. 2
provides a simplified illustration of the matrices defined in
this section. Let Dw ∈ R(Cr r̂)×N2 denote the matrix of
sampled rows. We choose Cr sufficiently large to ensure
that the non-sparse component of Dw is a LR matrix.
Define Lw, assumably with rank r, as the LR component
of Dw. If we locate a subset of the columns of Lw that
span its CS, the corresponding columns of L would span
the CS of L. To this end, the convex program (2) is applied
to Dw to extract a low rank component denoted L̂w. Then,
Algorithm 2 is applied to the recovered LR component L̂w
to find a set of informative columns by sampling m1 ≈ Cr̂
columns. In the following remark, we discuss how to
choose C here in the algorithm. Define L̂sw as the matrix
of columns selected from L̂w. The matrix Ds1 is formed
using the columns of D corresponding to the sampled
columns of L̂w.

3.3.2. CS LEARNING

Similar to the CS learning step of Algorithm 1, we can ob-
tain the CS of L by decomposing Ds1. However, we pro-
pose to leverage valuable information in the matrix L̂sw in
decomposing Ds1. In particular, if Dw is decomposed cor-
rectly, the RS of L̂sw would be the same as that of Ls1 given
that Lw has rank r. Let Vs1 be an orthonormal basis for
the RS of L̂sw. Thus, in order to learn the CS of Ds1, we
only need to solve

min
Û
‖Ds1 − ÛVT

s1‖1 . (10)

Remark 1. Define dis1 as the ith row of Ds1. According to
(10), Ui (the ith row of U) is obtained as the optimal point
of

min
Ûi

‖(dis1)T −Vs1(Û
i)T ‖1 . (11)

Define Sis1 as the ith row of Ss1 and ‖Sis1‖0 as the num-
ber of non-zero elements of Sis1. Based on the analysis
provided in the compressive sensing literature (Candès &
Romberg, 2007), in order to ensure that (11) yields cor-
rect decomposition (the optimal point of (11) is equal to
Ui), (m1 − r) has to be sufficiently greater than ‖Sis1‖0,
i.e., m1 ≥ r + η‖Sis1‖0 for some sufficiently large con-
stant number η where the required value for η depends on
the coherency of the subspace spanned by Vs1 (Candès &
Romberg, 2007; Candès & Tao, 2005). Thus, here C is de-
termined based on the rank of L and the sparsity of S, i.e.,
Cr−r has to be sufficiently greater than the expected value
of the number of non-zero elements of the rows of Ss1.

Remark 2. Let Ds
w be the matrix of the columns of Dw

corresponding to the columns of L̂sw (which were selected
from L̂w). According to our investigations, an improved
Vs1 can be obtained by applying the alternating decompo-
sition algorithm presented in (Ke & Kanade, 2005) to Ds

w

using the RS of L̂sw as an initial guess for the RS of the non-
sparse component of Ds

w. Since Ds
w is low-dimensional,

this extra step is a low-complexity operation.

3.3.3. REPRESENTATION MATRIX LEARNING

Suppose that the CS of L was learned correctly, i.e., the
span of the optimal point of (10) is equal to the span of
U. Thus, we use U as a basis for the learned CS. Now
we leverage the information embedded in U to select the
informative rows. Algorithm 2 is applied to UT to locate
m2 ≈ Cr rows of U. We form the matrix Ds2 from the
rows of D corresponding to the selected rows of U (Fig.
2). Thus, the representation matrix is learned as

min
Q̂
‖Ds2 −Us2Q̂‖1 , (12)

where Us2 ∈ Rm2×r is the matrix of the selected rows of
U. Subsequently, the LR matrix can be obtained from the
learned CS and the representation matrix.

3.4. Column/Row sampling from corrupted LR
matrices

In Section 3.3, we assumed that the LR component of Dw

has rank r. However, if the rows are not well-distributed, a
reasonably sized random subset of the rows may not span
the RS of L. Here, we present a sampling approach which
can locate informative columns/rows even when both the
columns and the rows exhibit clustering structures such that
a small random subset of the columns/rows of L cannot
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Algorithm 3 Efficient Column/Row Sampling from
Sparsely Corrupted LR Matrices
1. Initialization
Form Dw ∈ RCr r̂×N2 by randomly choosing Cr r̂ rows of D.
Initialize k = 1 and set T equal to an integer greater than 1.
2. While k > 0

2.1 Sample the most informative columns
2.1.1 Obtain L̂w via (2) as the LR component of Dw.
2.1.2 Apply Algorithm 2 to L̂w with C = Cr .
2.1.3 Form the matrix Dc from the columns of D corresponding
to the sampled columns of L̂w.
2.2 Sample the most informative rows
2.2.1 Obtain L̂c via (2) as the LR component of Dc.
2.2.2 Apply Algorithm 2 to L̂T

c with C = Cr .
2.2.3 Form the matrix Dw from the rows of D corresponding to
the sampled rows of L̂c.
2.3 If the dimension of the RS of L̂w is not increased in T con-
secutive iterations, set k = 0 to stop the algorithm.
2. End While
Output: The matrix Dw and L̂w can be used for column sam-
pling in the first step of the Algorithm presented in subsection
3.3.

span its CS/RS. Algorithm 3 presented in this section can
be independently used as an efficient sampling approach
from big data. In this paper, we use Algorithm 3 to form
Dw if both the columns and rows exhibit a clustering struc-
ture.

Algorithm 3, Fig. 3 and its caption provide the details of
the proposed sampling approach and the definitions of the
used matrices. We start the cycle from the position marked
“I” in Fig. 3 with Dw formed according to the initializa-
tion step of Algorithm 3. For ease of exposition, assume
that L̂w = Lw and L̂c = Lc, i.e., Dw and Dc are decom-
posed correctly. The matrix L̂sw is the informative columns
of L̂w. Thus, the rank of L̂sw is equal to the rank of L̂w.
Since L̂w = Lw, L̂sw is a subset of the rows of Lc. If
the rows of L exhibit a clustering structure, it is likely that
rank(L̂sw) < rank(Lc). Thus, rank(Lw) < rank(Lc). We
continue one cycle of the algorithm by going through steps
1, 2 and 3 of Fig. 3 to update Dw. Using a similar argu-
ment, we see that the rank of an updated Lw will be greater
than the rank of Lc. Thus, if we run more cycles of the
algorithm – each time updating Dw and Dc – the rank of
Lw and Lc will increase. As detailed in the table of Algo-
rithm 3, we stop if the rank of the obtained LR component
does not change in T consecutive iterations. While there is
no guarantee that the rank of Lw will converge to r (it can
converge to a value smaller than r), our investigations have
shown that Algorithm 3 performs quite well and the RS of
Lw converges to the RS of L in few steps. We have also
found that adding some randomly sampled columns (rows)
to Dc(Dw) can effectively avert converging to a lower di-

Figure 3. Visualization of Algorithm 3. One cycle of the algo-
rithm starts from the point marked “I” and proceeds as follows. I:
Matrix Dw is decomposed and L̂w is the obtained LR component
of Dw. II: Algorithm 2 is applied to L̂w to select the informative
columns of L̂w. L̂s

w is the matrix of columns selected from L̂w.
III: Matrix Dc is formed as the columns of D corresponding to
the columns used to form L̂s

w. 1: Matrix Dc is decomposed and
L̂c is the obtained LR component of Dc. 2: Algorithm 2 is ap-
plied to L̂T

c to select the informative rows of L̂c. L̂s
c is the matrix

of rows selected from L̂c. 3: Matrix Dw is formed as the rows of
D corresponding to the rows used to form L̂s

c.

Figure 4. Phase transition plots for various rank values and data
matrix dimensions. White designates successful decomposition
and black designates incorrect decomposition.

mensional subspace. For instance, some randomly sampled
columns can be added to Dc, which was obtained by Ap-
plying Algorithm 2 to L̂w.

We have found that Algorithm 3 converges in a very small
number of iterations (usually less than 4 iterations). Thus,
even when we use Algorithm 3 to form the matrix Dw, the
order of complexity of the proposed decomposition method
with efficient column/row sampling (presented in Section
3.3) is roughly O(max(N1, N2) r

2).

4. Numerical Simulations
In this section, we present some numerical simulations con-
firming the provided analysis to study the performance of
the proposed scalable approach. In all simulations, the
Augmented Lagrange multiplier (ALM) algorithm (Boyd
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et al., 2011; Candès et al., 2011; Lin et al., 2010; Minaee &
Wang, 2015) is used to solve the optimization problems.

4.1. Phase transition plots

In this section, we investigate the required number of ran-
domly sampled columns/rows. The LR matrix is gener-
ated as a product L = UrQr, where Ur ∈ RN1×r and
Qr ∈ Rr×N2 . The elements of Ur and Qr are sampled in-
dependently from a standard normal N (0, 1) distribution.
The sparse matrix S follows the Bernoulli model with ρ =
0.02. In this experiment, Algorithm 1 is used and the col-
umn/rows are sampled uniformly at random. Fig. 4 shows
the phase transition plots for different numbers of randomly
sampled rows/columns. For each (m1,m2), we generate
10 random realizations. A trial is considered successful if
the recovered LR matrix L̂ satisfies ‖L−L̂‖F‖L‖F ≤ 5× 10−3.

In the first row of Fig. 4, the data is a 1000× 1000 matrix.
The required number of sampled columns/rows increases
as the rank increases. In this experiment, the CS and RS of
L are sampled from the random orthogonal model. Thus,
the CS and RS have small coherency whp (Candès & Recht,
2009). Therefore, the important factor governing the sam-
ple complexity is the rank of L. The second row of Fig.
4 shows the phase transition for different sizes of the data
matrix when the rank of L is fixed. In agreement with our
analysis, the required values for m1 and m2 are almost in-
dependent of the size of the data.

4.2. Efficient column/row sampling

In this experiment, the algorithm presented in Section 3.3
is compared to the randomized decomposition algorithm in
(Mackey et al., 2011b). It is shown that the proposed sam-
pling strategy can effectively reduce the required number
of sampled columns/rows, and makes the proposed method
remarkably robust to structured data. In this experiment, D
is a 2000 × 4200 matrix. The LR component is generated
as L = [G1 G2 ... Gn]. For 1 ≤ i ≤ n

2 , Gi = UiQi ,

where Ui ∈ R2000× r
n , Qi ∈ R r

n×
130r
n and the elements of

Ui and Qi are sampled independently from a normal dis-
tribution N (0, 1). For n/2 + 1 ≤ i ≤ n, Gi = 13UiQi ,

where Ui ∈ R2000× r
n , Qi ∈ R r

n×
10r
n , and the elements

of Ui and Qi are sampled independently from an N (0, 1)
distribution. We set r equal to 60; thus, the rank of L is
equal to 60 whp. The sparse matrix S follows the Bernoulli
model and each element of S is non-zero with probabil-
ity 0.02. In this simulation, we do not use the alternating
method presented in Section 3.4 to form Dw. The matrix
Dw is formed from 300 uniformly sampled rows of D.

We evaluate the performance of the algorithm for differ-
ent values of n, i.e., different number of clusters. Fig. 5
shows the performance of the proposed approach and the

Figure 5. Performance of the proposed approach and the random-
ized algorithm in (Mackey et al., 2011b). A value 1 indicates
correct decomposition and a value 0 indicates incorrect decompo-
sition.

approach in (Mackey et al., 2011b) for different values of
m1 and m2. For each value of m1 = m2, we compute the
error in LR matrix recovery ‖L−L̂‖F‖L‖F averaged over 10 in-
dependent runs, and conclude that the algorithm can yield
correct decomposition if the average error is less than 0.01.
In Fig. 5, the values 0, 1 designate incorrect and correct de-
composition, respectively. It can be seen that the presented
approach requires a significantly smaller number of sam-
ples to yield the correct decomposition. This is due to the
fact that the randomized algorithm (Mackey et al., 2011b)
samples both the columns and rows uniformly at random
and independently. In sharp contrast, we use L̂w to find the
most informative columns to form Ds1, and also leverage
the information embedded in the CS to find the informative
rows to form Ds2.

4.3. Vector decomposition for background subtraction

The LR plus sparse matrix decomposition can be effec-
tively used to detect a moving object in a stationary back-
ground (Candès et al., 2011). The background is modeled
as a LR matrix and the moving object as a sparse matrix.
Since videos are typically high dimensional objects, stan-
dard algorithms can be quite slow for such applications.
Our algorithm is a good candidate for such a problem as
it reduces the dimensionality effectively. The decomposi-
tion problem can be further simplified by leveraging prior
information about the stationary background. In particu-
lar, we know that the background does not change or we
can construct it with some pre-known dictionary. For ex-
ample, consider the video from (Li et al., 2004), which was
also used in (Candès et al., 2011). Few frames of the sta-
tionary background are illustrated in Fig. 6. Thus, we can
simply form the column subspace of the LR matrix using
these frames which can describe the stationary background
in different states. Accordingly, we just need to learn the
representation matrix and the background subtraction prob-
lem is simplified to a vector decomposition problem. Fig. 7
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Figure 6. Stationary background.

Figure 7. Two frames of a video taken in a lobby. The first column
displays the original frames. The second and third columns dis-
play the LR and sparse components recovered using the proposed
approach.
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Figure 8. The rank of the matrix of sampled columns.

shows that the proposed method successfully separates the
background and the moving objects. In this experiment,
500 randomly sampled rows are used (i.e., 500 randomly
sampled pixels) for the representation matrix learning (9).
While the running time of our approach is just few millisec-
onds, it takes about half an hour if we use (2) to decompose
the video file (Candès et al., 2011).

4.4. Alternating algorithm for column sampling

Finally, we investigate the performance of Algorithm 3 for
column sampling. It is shown that the CS (RS) of the se-
lected columns (rows) converges to the CS of L (RS of
L) even when both the rows and columns of L exhibit a
highly structured distribution. To generate the LR matrix
L, we first generate a matrix G as in Section 3.1 but setting
r = 100. Then, we construct the matrix Ug from the first

r right singular vectors of G. Again, we generate G in a
similar way and set Vg equal to the first r right singular
vectors of G. Let the matrix L = UgV

T
g . For example,

for n = 100, L ∈ R10250×10250. Note that the resulting LR
matrix is nearly sparse since in this simulation we consider
a very challenging scenario in which both the columns and
rows of L are highly structured and coherent. In this ex-
periment we set the sparse matrix equal to zero and use
Algorithm 3 as follows. The matrix Dc is formed using
300 columns sampled uniformly at random and the follow-
ing steps are performed iteratively:
1. Apply Algorithm 2 to DT

c withC = 3 to sample approx-
imately 3r columns of DT

c and form Dw from the rows of
D corresponding to the selected rows of Dc.
2. Apply Algorithm 2 to Dw withC = 3 to sample approx-
imately 3r columns of Dw and form Dc from the columns
of D corresponding to the selected columns of Dc.
Fig. 8 shows the rank of Dc after each iteration. It is ev-
ident that the algorithm converges to the rank of L in less
than 3 iterations even for n = 100 clusters. For all values
of n, i.e., n ∈ {2, 50, 100}, the data is a 10250 × 10250
matrix.
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