
BISTRO: An Efficient Relaxation-Based Method for Contextual Bandits

Alexander Rakhlin RAKHLIN@WHARTON.UPENN.EDU

University of Pennsylvania

Karthik Sridharan SRIDHARAN@CS.CORNELL.EDU

Cornell University

Abstract
We present efficient algorithms for the problem
of contextual bandits with i.i.d. covariates, an
arbitrary sequence of rewards, and an arbitrary
class of policies. Our algorithm BISTRO re-
quires d calls to the empirical risk minimiza-
tion (ERM) oracle per round, where d is the
number of actions. The method uses unlabeled
data to make the problem computationally sim-
ple. When the ERM problem itself is compu-
tationally hard, we extend the approach by em-
ploying multiplicative approximation algorithms
for the ERM. The integrality gap of the relax-
ation only enters in the regret bound rather than
the benchmark. Finally, we show that the ad-
versarial version of the contextual bandit prob-
lem is learnable (and efficient) whenever the full-
information supervised online learning problem
has a non-trivial regret guarantee (and efficient).

1. Introduction
A multi-armed bandit with covariates (also known as a con-
textual bandit) is a generalization of the classical multi-
armed bandit problem (Lai & Robbins, 1985). As the name
suggests, in this natural formulation the quality of the arms
may depend on the observed set of covariates. Contextual
bandits arise in many application areas, from ad placement
and news recommendation to personalized medical care
and clinical trials. In recent years, there has been a strong
push to develop computationally efficient regret minimiza-
tion methods with respect to a given set of policies (Lang-
ford & Zhang, 2008; Dudik et al., 2011; Beygelzimer et al.,
2011; Agarwal et al., 2014). The grand goal here would
be to develop efficient and statistically optimal methods
for large (and possibly uncountable) sets of policies, just
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as machine learning and statistics succeeded in developing
methods that perform well relative to rich classes of predic-
tors (linear separators, SVMs, and so forth). Compared to
batch learning, however, the state of affairs at the moment
is quite poor. It appears to be difficult to develop scalable
methods even for a finite set of policies, as witnessed by the
papers mentioned earlier. To some extent, the reason is not
surprising: while in statistical learning the batch nature of
the problem suggests the empirical objective to optimize,
the scope of algorithms for contextual bandits is not at all
clear.

Assuming access to an ERM (empirical risk minimization)
optimization oracle, (Agarwal et al., 2014) exhibit a com-
putationally attractive method for any finite class. The ora-
cle model allows one to address the question of how much
more difficult (computationally) the bandit problem is in
comparison to the batch learning problem.

In the present paper, we introduce a family of efficient
methods (and, more generally, a new algorithmic approach
based on relaxations) for minimizing regret against a po-
tentially uncountable class F , given that the value of the
ERM objective can be computed. In addition, we require
access to i.i.d. draws of contexts (e.g. unlabeled data) —
a realistic assumption in many application areas mentioned
earlier. Our method requires only d oracle calls per round,
irrespective of the size of the policy class. Furthermore, the
results hold in the hybrid scenario where the contexts are
i.i.d. but rewards evolve according to an arbitrary process.

Let us now describe the scenario in more detail. On each
round t = 1, . . . , n, we observe covariates xt ∈ X , select an
action ŷt ∈ {1, . . . , d} ≜ [d], and observe the cost ct(ŷt) of
the chosen action. Here ct ∈ [0,1]d is a cost assignment to
all actions, chosen by Nature independently of ŷ1, . . . , ŷt
(that is, ct is oblivious to our randomization, but possibly a
function of x1, . . . , xt). This cost vector remains unknown
to us, except for the coordinate ct(ŷt). Since we include
randomized prediction methods, we denote the distribution
over the d choices on round t by qt ∈ ∆d, and draw ŷt ∼
qt. The goal is to design a prediction method with small



BISTRO

expected cumulative cost ∑nt=1 q
T
t ct.

We assume that x1, . . . , xn are drawn i.i.d. from some un-
known distribution Px on X . At the same time, we do not
place any assumption on the sequence of costs c1, . . . , cn,
which may evolve according to some arbitrary stochastic
process, or be an “individual sequence,” or even be chosen
adaptively and adversarially. As such, our setting may be
termed “hybrid i.i.d.-adversarial.” Our results also hold in
the so-called transductive setting, where the side informa-
tion is presented ahead of time.1

We have in mind machine learning applications such as on-
line ad or product placement, whereby the contextual in-
formation x1, . . . , xn of website visitors may be viewed as
an i.i.d. sequence, yet the decisions made by these cus-
tomers might be too complex to be described in a proba-
bilistic form.

A common way to encode the prior knowledge about the
problem is to take a class F of functions (or, determinis-
tic policies) X → [d], with the hope that one of the func-
tions will incur small cost on the presented contexts. With
this “inductive bias,” we then aim to make predictions as to
minimize regret

Reg =

n

∑

t=1

qT

t ct − inf
f∈F

n

∑

t=1

f(xt)
Tct, (1)

where henceforth we abuse the notation by identifying the
value f(x) ∈ [d] with the standard basis vector ef(x). This
regret formulation encodes the prior knowledge of the prac-
titioner. If the modeling choice F is good and (1) is small,
the algorithm is guaranteed to incur small loss ∑nt=1 q

T
t ct.

Modeling the set of solutions F to the problem is a more
direct approach (in the spirit of statistical learning) as com-
pared to the harder problem of positing distributional as-
sumptions on the relationship between contexts and the re-
wards. (The latter approach typically suffers from the curse
of dimensionality.)

The difficulty of the contextual bandit problem arises from
the form of the feedback. The customer seeking to buy a
product different from what is presented by the recommen-
dation engine may leave the site without revealing her val-
uation for all the items. Similarly, in personalized care, we
may only observe the effect of the drug choice selected for
the given patient. It is well recognized that exploration—or
randomization—is required in these problems. Yet, in the
contextual bandit setting the exploration-exploitation trade-
off is not simple, as the quality of the arms changes with
the context in a way that is only indirectly captured by the
benchmark term.

1In Section 6 we also discuss the fully-adversarial case (see
(Auer et al., 2002; McMahan & Streeter, 2009) for the famous
EXP4 algorithm for finite F).

Online multiclass classification with one bit (correct-or-
not) feedback can be seen as an example of our setting.
In that case ct is a standard basis vector eyt for some class
yt ∈ [d], and the feedback is ct(ŷt) = I{ŷt ≠ yt}. Un-
like (Kakade et al., 2008), we posit that side information is
i.i.d.—an assumption that will play a key role in developing
computationally efficient methods, even for the indicator
(rather than the easier hinge) loss.

The hybrid i.i.d.-adversarial scenario has been studied in
both the full information and contextual bandit settings in
(Lazaric & Munos, 2009). Their algorithm, as well as the
algorithm of (Beygelzimer et al., 2011), maintain distribu-
tions over the set of functions and, hence, computation can
be linear in the size of F .

For the case when F is finite, the upper bound for BISTRO
provided in Theorem 2 is O(n3/4

(log ∣F∣)
1/4

). The work
of (Agarwal et al., 2014) gives a betterO(n1/2

(log ∣F∣)
1/2

)

rate for the case when rewards are i.i.d. On the other hand,
our results hold for

• arbitrary F and arbitrary reward sequences,

• approximate ERM values and a way to address the
computational problem associated to ERM.

For finite F , the rate of O(n3/4
√

d log ∣F∣) is obtained in
the concurrent work (Syrgkanis et al., 2016) in the online
transductive setting. The authors also extend their result to
the semi-bandit setting.

We remark that if contexts are arbitrary as well, our setting
subsumes the problem of multiclass prediction with bandit
feedback and indicator loss, as described above. Even for
the multiclass hinge loss, it is still unclear (at least to the
authors) whether the rate O(n2/3

) for the linear classifier
considered in (Kakade et al., 2008) can be improved.2 It
is, therefore, an open question whether the O(n3/4

) rates
achieved by our method for the hybrid scenario for arbi-
trary classes F can be improved.

There are several new techniques that make it possible to
develop computationally feasible prediction methods with
nontrivial regret guarantees:

• First is the idea of relaxations, presented in (Rakhlin
et al., 2012) for the full-information setting. An exten-
sion to partial information case has been a big road-
block for developing new bandit methods. We present
this extension here.

• Second is the idea of a random playout, also employed
in (Cesa-Bianchi & Shamir, 2013; Rakhlin & Sridha-

2The O(n1/2) rate in (Hazan & Kale, 2011) is only proved for
the case of log-loss.
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ran, 2015). We show that by having access to unla-
beled contexts, the computational (and statistical) dif-
ficulty of integrating with respect to the unknown dis-
tribution simply disappears.

• We extend the notion of classical Rademacher aver-
ages to the case of vector-valued functions. The sym-
metrization technique in this case is of independent
interest.

• In many cases, the offline ERM optimization problem
(which we assume away as an “oracle call”) may be
NP hard. Building on the technique of (Rakhlin &
Sridharan, 2015), we employ optimization-based re-
laxations for integer programs. We prove that the re-
gret bound of the resulting algorithm only worsens by
a multiplicative factor that is related to the ratio of av-
erage widths of the relaxed and the original sets.

It is worth emphasizing again that the family of prediction
methods presented in this work is drived from the partial-
information extension of the relaxation framework, and the
resulting algorithms are distinct from the ones appearing in
the literature. We believe that this approach is systematic
and can partially fill the gap in our understanding of the
algorithmic possibilities for contextual bandits.

2. Notation
Denote [d] ≜ {1, . . . , d} and a1∶t ≜ {a1, . . . , at}. Let ∆d be
the probability simplex over d coordinates. The vector of
ones is denoted by 1 and an indicator of event A by I{A}.
For a matrix M , we use Mt to refer to its t-th column.

3. Setup
Let us recall the online protocol. On each round t ∈ [n], we
observe side information xt ∈ X , predict ŷt ∼ qt ∈ ∆d, and
observe feedback ct(ŷt) for some ct ∈ [0,1]d.

Given x1∶n, it is convenient to work with a matrix represen-
tation of the class F projected on these data. Each f ∈ F

yields sequence (f(x1), . . . , f(xn)), which we collect as
a d × n matrix Mf , defined as

Mf
(j, t) = I{f(xt) = j} . (2)

Let M̂ = M̂[x1∶n] = {Mf
∶ f ∈ F} denote the collection

of matrices. (The hat on M̂ will remind us of the depen-
dence of this set on x1∶n, even if not explicitly mentioned).

We may now define the oracle employed by the prediction
method:

Definition 1. Given a class F of policies X → [d], a set of
covariates x1∶n, and a real-valued d × n matrix Y , a value-

of-ERM oracle returns the value

inf
M∈M̂[x1∶n]

n

∑

t=1

M T

t Yt . (3)

The oracle is called δ-approximate if the reported value is
within an additive δ from the minimum.

We may express the comparator term in (1) as an ERM ob-
jective (3) with Y = [c1, . . . , cn]. Closely related to this
expression is a new (to the best of our knowledge) defini-
tion of Rademacher averages for vector-valued functions:
given x1∶n, define

R(F ;x1∶n) ≜R(M̂) ≜ Eε1∶n sup
M∈M̂

n

∑

t=1

M T

t εt (4)

where ε1, . . . , εn are d-dimensional vectors with inde-
pendent Rademacher random variables. We observe that
Rademacher complexity is nothing but a (negative of)
the expected ERM objective with the random matrix
[−ε1, . . . ,−εn]. Indeed, as in the classical case, correlation
of the vector-valued function class F with noise measures
its complexity.

4. Relaxations for Partial Information
Let us write the information obtained on round t as a tuple

It(xt, qt, ŷt, ct) = (xt, qt, ŷt, ct(ŷt)),

keeping in mind that xt is revealed before qt is chosen. In
full information problems, It contains the vector ct, but not
so in our bandit case. For partial information problems, it
turns out to be crucial to include qt in the definition of It,
in addition to the value ct(ŷt).

A partial-information relaxation Rel () is a function that
maps (I1, . . . , It) to a real value, for any t ∈ [n]. We say
that the partial-information relaxation Rel (I1, . . . , It) is
admissible if for any t ∈ [n], for all I1, . . . , It−1,

E
xt

inf
qt

max
ct

E
ŷt∼qt

{ct(ŷt) +Rel (I1∶t−1, It(xt, qt, ŷt, ct))}

≤Rel (I1∶t−1) (5)

and for all x1∶n,c1∶n, and q1∶n,

E
ŷ1∶n∼q1∶n

Rel (I1∶n) ≥ − inf
f∈F

n

∑

t=1

f(xt)
Tct . (6)

In the above expressions, xt follows the (unknown) distri-
bution Px, qt ranges over distributions on [d], and ct over
[0,1]d.

Any randomized strategy (qt)
n
t=1 that certifies the inequal-

ities (5) and (6) is called an admissible strategy.
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Lemma 1. Let Rel () be an admissible relaxation and
(qt)

n
t=1 an admissible strategy. Then for any c1∶n,

E[Reg] ≤Rel (∅) .

The above partial-information relaxation setup appears to
be “the right” analogue of the full-information relaxation
framework. While we do not present it here, one may
recover the EXP4 algorithm through the above approach,
with the correct regret bound.

We will now present an admissible strategy for the con-
textual bandit problem, assuming we can sample from the
distribution Px, or have access to unlabeled data.

5. The BISTRO Algorithm
For any t ∈ [n], define a d × n matrix Y (t) as

Y (t)
= [c1, . . . , ct−1, ct,2εt+1, . . . ,2εn]

with εs ∈ {±1}d a vector of independent Rademacher ran-
dom variables. At each step t ∈ [n], the randomized
method presented below calculates a distribution qt ∈ ∆d

with each coordinate at least γ > 0 (a parameter of the al-
gorithm) and defines an unbiased estimate c̃t of ct in a usual
manner as

c̃t(j) = I{ŷt = j} × ct(ŷt)/qt(j).

It is standard to verify that Eŷt∼qt c̃t = ct. We then define

Ỹ (t)
= [c̃1, . . . , c̃t−1, c̃t,2γ

−1εt+1, . . . ,2γ
−1εn], (7)

and recall that Ỹ (t)
s denotes the s-th column of this matrix.

The next theorem is the main result of the paper.

Theorem 2. The partial-information relaxation

Rel (I1∶t) = E
(x,ε)t+1∶n

sup
M∈M̂

{−

n

∑

s=1

M T

s Ỹ
(t)
s } + (n − t)dγ

(8)

is admissible. An admissible randomized strategy for this
relaxation is given by BISTRO (Algorithm 1). The expected
regret of the algorithm with γ =

√

2ER(F ;x1∶n)/(nd) is
upper bounded by

2
√

2d ⋅ n ⋅ER(F ;x1∶n).

In particular, a growth rate of ER(F ;x1∶n) = O(

√

n)
yields an overall O(n3/4

) regret bound. Techniques for
upper bounding classical Rademacher averages of par-
ticular function classes are well-established (Bartlett &
Mendelson, 2003), and these can be extended to control

the Rademacher complexity of vector-valued functions (4).
A straightforward application of Hoeffding’s inequality im-
plies an O(

√

nd log ∣F∣) bound on Rademacher complex-
ity of a finite class.

The proof of the Theorem appears in the Supplementary
Material. Let us give a high level intuition for the result.
An admissible relaxation can be thought of as a potential
function (of the observed data) that interpolates between
the comparator and the regret bound in a manner specified
by Eq. (5). In the full information case, it has been shown
that a Rademacher complexity-based potential function is
a near-optimal one (Rakhlin et al., 2012), and any upper
bound on this Rademacher-based potential is a good can-
didate for an admissible relaxation. In the partial informa-
tion case, we need to obtain a relaxation that only depends
on observations. Since we can produce unbiased estimates,
Jensen’s inequality suggests that the relaxation (8) is a good
candidate for being an admissible relaxation. Theorem 2
proves that this is indeed the case.

We now state the algorithm.

Algorithm 1 BISTRO: BandItS wiTh RelaxatiOns
input Parameter γ ∈ (0,1/d)

1: for t = 1, . . . , n do
2: Observe xt. Draw xt+1∶n ∼ Px and εt+1∶n .
3: Construct Ỹ (t) and define q∗t to be a minimizer of

max
j∈[d]

{qTej − min
M∈M̂[x1∶n]

{∑

s≠t

γMT

s Ỹ
(t)
s +M T

t ej}}

over q ∈ ∆d and set

qt = (1 − γd)q∗t + γ1. (9)

4: Predict ŷt ∼ qt and observe ct(ŷt).
5: Create an estimate c̃t:

c̃t(j) = I{ŷt = j} × ct(ŷt)/qt(j).

6: end for

The draw xt+1∶n ∼ Px can be realized by drawing from a
pool of unlabeled data.

The random signs comprising the matrix Ỹ provide a form
of “regularization”. We remark that in experiments, one
may obtain better performance by replacing the factor 2 in
(7) with a smaller value, or even with zero. A theoretical
justification for this (which is related to using a surrogate
loss) is beyond the scope of this paper.

Lemma 3. The calculation of q∗t in BISTRO3 can be done
by a water-filling argument and requires d calls to the ERM

3‘Bistro’ means ‘fast’ in Russian.
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oracle.

Proof of Lemma 3. The optimization problem in Algo-
rithm 1 is of the form minq∈∆d

maxj∈[d]{qj − ψj} where
ψj is the value of the infimum over M̂ corresponding to
ej , and it is solved by a water-filling argument which we
describe next. Each value ψj is a value-of-ERM oracle call.
Let ψ(1) ≥ . . . ≥ ψ(d) be a sorted order of these values, and
let q(1) = . . . = q(d) = 0 be the initial values of the cor-
responding coordinates of the solution q. Start with a unit
amount and assign q(1) = ψ(1)−ψ(2). Then addψ(2)−ψ(3)

to both q(1) and q(2), and proceed until either the unit mass
is exhausted, or the smallest coordinate (d) in the ordering
is reached and filled. In the former case, q is the solution,
and the latter case requires us to uniformly fill all the coor-
dinates of q until they sum to one. It is easy to see that this
procedure minimizes the maximum difference.

The algorithm only requires the value of the ERM objec-
tive, not the solution. Furthermore, this value can be δ-
approximate, and the additional error is O(nδ) over the n
rounds. This provides extra flexibility, since approximate
ERM values may be obtained via optimization methods. To
see that the errors do not propagate through the relaxation,
we point to Eq. (22) in the proof and observe that the in-
equality holds whenever we use any unbiased estimate for
the cost, even the one based on an approximate solution.

Perhaps the most unusual aspect of the algorithm is the
use of unlabeled data. It is an example of a general ran-
dom playout idea. In the setting of online linear optimiza-
tion, the Follow-the-Perturbed-Leader method is an exam-
ple of such a random playout, yet the idea extends well be-
yond this scenario. As shown in (Rakhlin et al., 2012), the
random playout technique can be applied whenever a cer-
tain worst-case-choice can be replaced with a known bad-
enough distribution. However, when side information xt is
i.i.d., the step is not even required. Furthermore, an inspec-
tion of the proof shows that we may deal with x’s coming
from a non-i.i.d. stochastic process, as long as we are able
to draw future samples from it.

We also remark that (9) may be applied only to the coor-
dinates that are close to zero, if any. The potential sub-
optimality of the O(n3/4

) bound stems from the uniform
exploration. It is an open question whether this can be im-
proved systematically for all classes F , or whether there is
a different structural property that allows one to avoid this
form of exploration.

6. Extensions
In this section, we outline several extensions of BISTRO.
Specifically, we show how to incorporate additional data-
based constraints, and how to use further optimization-

based relaxations (such as LP or SDP), to obtain polyno-
mial time methods for the ERM (or regularized ERM) so-
lution. We show that one obtains a regret bound that only
worsens by a factor related to the integrality gap of the inte-
ger program relaxation. With an eye on both computation
and prediction performance, these techniques expand the
applicability of BISTRO.

6.1. Data-dependent policy classes

An inspection of the proof reveals that all the steps go
through if we define regret in (1) with respect to a data-
dependent class F[x1∶n]:

n

∑

t=1

qT

t ct − inf
f∈F[x1∶n]

n

∑

t=1

f(xt)
Tct. (10)

In this case, given x1∶n, to each f ∈ F[x1∶n] we associate
Mf as defined in (2), and take

M̂ = {Mf
∶ f ∈ F[x1∶n]}.

The BISTRO algorithm is then identical, while the regret
upper bound of Theorem 2 now replaces ER(F ;x1∶n) with
ER(F[x1∶n];x1∶n).

The ability to change the set of policies according to the
actual data allows an extra degree of flexibility. This flex-
ibility can be realized via additional global constraints in
terms of x1∶n, as we show in the next few sections. We also
discuss a concrete example.

6.2. Data-based constraints

A particular way to define a data-dependent subset of F is
via constraints. Suppose we let C(f ;x1∶n) be the degree to
which f ∈ F violates constraints with respect to the given
data x1∶n. We then define

FK[x1∶n] = {f ∈ F ∶ C(f ;x1∶n) ≤K}, (11)

a pruning of the original class that keeps only those policies
that do not violate the constraints by more than K. Let us
give an example.

Example: Product Recommendation Suppose at each
time step we are asked to recommend one of d products to
a person, based on her covariate information xt. Let F be
a set of policies that map xt to the particular choice of the
product (e.g. the label achieving maximum projection of
xt onto d vectors wj ; here F may consist of all such unit
vector d-tuples). The payoff is whether the person decided
to buy the recommended product. However, suppose xt
also encodes the location (physical, or within a network),
and we believe it is a good idea to focus recommendations
such that near-by people are targeted with the same prod-
uct. The marketing motivation here is two-fold: first, the
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recommendations would reinforce each other when indi-
viduals communicate, or if one of them buys the product;
second, in a social network near-by individuals (friends)
tend to have similar tastes, and thus a good policy would
suggest similar items.

The objective of enforcing similarity of recommendations
is a global constraint that can only be checked once we
know all the x1, . . . , xn. We can easily incorporate the
constraint into the definition of FK[x1∶n] as follows. Let
w(xs, xr) be the cost of providing different recommenda-
tions to xs and xr (which is smaller if the two individuals
are “far”). In the case of a network, we may set, for in-
stance, w(xs, xr) = 0 if the sth person is more than a hop
away from the rth person. Define

C(f ;x1∶n) = ∑

s,r∈[n]

w(xs, xr)I{f(xs) ≠ f(xr)} , (12)

the constraint violation by f in assigning products to the
given set of individuals. Let FK[x1∶n] be defined as in
(11). Note that the constraint is not on the behavior of the
recommendation engine, but on the set of policies that we
hope will do well for the problem. If there is indeed the
effect of reinforcement of recommendations or similarity
of tastes within the local neighborhood, the restriction to a
smaller set FK[x1∶n] is justified.

Within the same setting of product recommendation, we
might instead take a set of policies ensuring that within
each neighborhood at least k individuals receive each par-
ticular product recommendation. This constraint, which
roughly corresponds to “coverage” of the relevant popu-
lation, can be written as

C(f ;x1∶n) = ∑

`

∑

j∈[d]

⎡
⎢
⎢
⎢
⎣

k − ∑
s∈T`

f(xs)[j]
⎤
⎥
⎥
⎥
⎦+

where {T`}` is a partition of [n] into neighborhoods ac-
cording to information contained in x1∶n. The above two
examples give a flavor of the constraints that can be en-
coded — the framework is flexible enough to fit a wealth
of scenarios.

From the computational point of view, it might be dif-
ficult to obtain the ERM value over a constrained set
FK[x1∶n]. Instead, we consider an additional form of re-
laxation, where the constraint is subtracted off as a La-
grangian term. We will then employ certain linear pro-
gramming relaxations to solve the product recommenda-
tion problem. Notably, by going to a regularized version of
relaxations we are not changing the regret definition, which
is still with respect to the constrained set.

6.3. Regularized relaxation

Let FK[x1∶n] = {f ∈ F ∶ C(f ;x1∶n) ≤ K} be the con-
strained set for some value K and a constraint function C,

as in the previous section. Let us write C(M ;x1∶n) for
the matrix representation of the corresponding f ∈ F . The
following form of a relaxation may be better suited for ap-
proximation algorithms than the one where the constraint
is strictly enforced.
Lemma 4. For any λ,K > 0, the partial-information re-
laxation

E
(x,ε)t+1∶n

sup
M∈M̂

{−

n

∑

s=1

M T

s Ỹ
(t)
s − λC(M ;x1∶n)}

+ λK + (n − t)dγ (13)

is admissible, where M̂ denotes the matrix representation
of the original (unconstrained) set F of policies.

Proof of Lemma 4. We check that the initial condition is
satisfied. For this purpose, let M̂K be the set of matrices
corresponding to the constrained set FK[x1∶n]. Similarly
to (18) in the proof of Theorem 2,

− inf
f∈FK[x1∶n]

n

∑

t=1

f(xt)
Tct ≤ E sup

M∈M̂K

n

∑

t=1

−M T

t Ỹ
(n)
t

≤ E sup
M∈M̂

{

n

∑

t=1

−M T

t Ỹ
(n)
t − λC(M ;x1∶n)} + λK.

The second inequality holds since all the matrices in the
former supremum have the constraint value bounded byK.
The recursive condition argument follows exactly as in the
proof of Theorem 2.

The only change required for BISTRO is to define the op-
timization objective in terms of regularized ERM values

min
M∈M̂

{∑

s≠t

γMT

s Ỹ
(t)
s +M T

t ej + γ
−1λC(M ;x1∶n)} (14)

over the unconstrained set of matrices corresponding to F .
While the required minimization problem is over an uncon-
strained set of policies, we can control the expected regret

n

∑

t=1

qT

t ct − inf
f∈FK[x1∶n]

n

∑

t=1

f(xt)
Tct (15)

of the modified BISTRO with respect to the constrained set
FK[x1∶n], which is the original goal. The regret is given
by Rel (∅), which is at most

E sup
M∈M̂

{−γ−1
n

∑

t=1

M T

t εt − λC(M ;x1∶n)} + ndγ + λK.

It is possible to optimally balance λ with respect to K and
the Rademacher averages in a data-driven manner, but we
omit this step for brevity.

As we illustrate in the next section, optimization problems
of the form (14) may admit a linear programming (or other)
relaxation, offering an alternative to the optimization prob-
lem over the constrained set.
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6.4. Optimization-based relaxations

To make the algorithm of this paper more applicable, we
discuss here the situation where the ERM oracle or the reg-
ularized ERM oracle for the class FK[x1∶n] (or the uncon-
strained setF) is a difficult or even an NP-hard integer pro-
gram. The idea is to choose a superset M̃ ⊇ M̂ for which
the linear optimization problem is easier.

Lemma 5. Let M̃ ⊇ M̂ be a set of matrices such that the
column sum ∑dj=1Mt(j) ≤ 1 for any M ∈ M̃ and t ∈ [n].
Then the partial information relaxation

Rel (I1∶t) = E
(x,ε)t+1∶n

sup
M∈M̃

{−

n

∑

s=1

M T

s Ỹ
(t)
s } + (n − t)dγ

is admissible. BISTRO (with ERM over M̃ rather than
M) is an admissible strategy for this relaxation and the
expected regret is upper bounded by

2
√

2d ⋅ n ⋅ER(M̃).

Similarly, using M̃ in (13) yields an admissible relaxation,
and BISTRO with the corresponding regularized ERM is an
admissible strategy.

The set M̃[x1∶n] may be defined via linear program-
ming or SDP relaxations for integer programs, or
via Lasserre/Parrilo hierarchies (Lasserre, 2001; Parrilo,
2003). There is a large body of literature that aims at under-
standing the integrality gap in relaxing the integer program.
These results are directly applicable to the present problem.

As a concrete example, consider the product recommenda-
tion example in the previous section, and consider the cost
(12) for each policy and the restriction FK[x1∶n] in (11).
We assume here that F is the set of all possible labelings,
since in general the optimization problem will depend on
the structure of F and its description. Let us phrase the
regularized ERM integer program (14) as a Metric Label-
ing Constraint (Kleinberg & Tardos, 2002) problem. The
general form of this integer program is given for z ∈ [d]n

by

g(z) = ∑
v∈V

d1(v, zv) + ∑

(u,v)∈E

W(u,v)d2(zu, zv) (16)

where G = (V,E,W ) is a graph with nonnegative weights,
∣V ∣ = n, the value d1 ∶ V × [d] → R is a cost of assigning
a label to a node, and the separation cost d2 ∶ [d] × [d] →
R≥0 on the edges is a metric on the space of labels. The
Metric Labeling Constraint problem asks for a solution that
minimizes g(z) over [d]n.

For our application to product recommendation we convert
the regularized minimization objective of (14) with the con-
straint (12) into the above form (16) by matching the as-
signment costs to the linear part and the separation costs to

the constraint part (12). More precisely, let G be a fully
connected graph with weights W(s,r) = γ−1λ ⋅ w(xs, xr)
between nodes corresponding to xs and xr. The indices of
vertices correspond to time steps in [n], and zv corresponds
to the coordinate chosen by the particular M at time v. We
take d1(v, zv) to be the value γeT

zv Ỹ
(t)
v if v ≠ t and eT

zvej
if v = t. Define d2(a, b) = I{a ≠ b} to be the uniform met-
ric. We may also define a metric on the space of products,
assigning smaller distance to similar items.

(Kleinberg & Tardos, 2002) give an LP relaxation for the
Metric Labeling Constraint problem. The set that defines
the relaxation is precisely the set M̃we seek. Furthermore,
the authors prove a 2-approximation ratio for the uniform
metric, which is the case here. (Chekuri et al. (2004) prove
an integrality gap of O(log k) for the general case).

Given the 2-approximation ratio result, we conclude that
the regret bound for BISTRO with the LP program as the
relaxation of the regularized ERM is only a constant worse
than the bound with the constrained set FK[x1∶n]. The ex-
act optimization over the latter set may be computationally
intractable, while we provide an efficient method to achieve
a bound, optimal to within a constant. As already noted in
(Rakhlin & Sridharan, 2015), such an approach that fuses
approximation algorithms and online relaxations is able to
produce polynomial-time methods with regret defined as
1× the benchmark, while the benchmark itself may be NP-
hard. This phenomenon can be attributed to the improper
nature of the predictions, which need not be consistent with
any particular policy in F .

More generally, by obtaining a multiplicative approxima-
tion of gap for the integer program, one may derive

ER(M̃[x1∶n]) ≤ O(gap) ×ER(M[x1∶n]). (17)

Then one obtains a method with better computational prop-
erties and a regret bound which is only O(

√
gap) worse.

Once again, the factor in front of the comparator in the def-
inition (1) of regret is still one when using M̃ as a relax-
ation.

Finally, we remark that (17) is comparing an average width
of M̃ (largest projection onto noise) with an average width
of M. Such a comparison of average widths (and, there-
fore, “average gap”) for useful sets of contextual bandit
policiesF appears to be an interesting area of further inves-
tigation. We refer to (Rakhlin & Sridharan, 2015), where
some of these ideas have been developed in the context of
cut-based constraints for node prediction on graphs.

6.5. Adversarial contexts

Suppose we place no assumption on the evolution of xt’s,
which may now be treated as worst-case. This prob-
lem subsumes the full information online classification set-
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ting, and, hence, one cannot hope to have nontrivial re-
gret against policy classes F with infinite Littlestone di-
mension. More generally, the best one can hope for is to
say that the adversarial contextual bandit problem can be
solved whenever the corresponding full information prob-
lem may be solved. We now present essentially this result:
if there is a full-information relaxation, then one may use it
to solve the adversarial contextual bandit problem. More-
over, based on the work of (Rakhlin et al., 2012; Foster
et al., 2015), all the known online learning methods appear
to be relaxation based. Hence, we essentially prove below
that

If a problem is online learnable in the full-
information adversarial setting, then it is learn-
able in the adversarial contextual bandit setting.
Furthermore, if the former is computationally
tractable, then so is the latter.

To be precise, the full information version of contextual
problem is as follows. On round t, we observe xt ∈ X ,
predict ŷt ∈ [d], and observe ct ∈ [0,1]d. The regret is
defined as before, with our cumulative cost being∑ ct(ŷt).

A full information relaxation Rel† (c1, . . . , ct) is admissi-
ble if

sup
xt

inf
qt

max
ct

E
ŷt∼qt

{ct(ŷt) +Rel† (c1∶t)} ≤Rel† (c1∶t−1)

and

Rel† (c1∶n) ≥ − inf
f∈F

n

∑

t=1

f(xt)
Tct .

Similarly, a partial information relaxation is admissible in
this adversarial case when c1∶t are replaced with I1∶t in the
above admissibility definition, as in Section 4.

Lemma 6. If Rel† () is an admissible full-information re-
laxation for the adversarial scenario, then

Rel (I1∶t) ≜ γ
−1Rel† (γc̃1, . . . , γc̃t) + (n − t)dγ

is admissible for the partial information scenario. Predic-
tion qt is obtained as qt = (1 − dγ)q∗t + γ1 where q∗t is
computed by solving for a full-information strategy with the
scaled unbiased estimates of costs. The resulting regret up-
per bound is

2
√

d ⋅ n ⋅Rel† (∅).

Proof of Lemma 6. Let us first check the initial condition

E
ŷ1∶n∼q1∶n

Rel (I1∶n) = E
ŷ1∶n∼q1∶n

γ−1Rel† (γc̃1, . . . , γc̃n)

≥ E
ŷ1∶n∼q1∶n

− inf
f∈F

n

∑

t=1

f(xt)
Tc̃t ≥ − inf

f∈F

n

∑

t=1

f(xt)
Tct

where the first inequality is due to admissibility of the full-
information relaxation, and the second is due to Jensen’s
inequality and unbiasedness of c̃t. For the recursive part,
we follow the proof of Theorem 2 and note that all the state-
ments, until the end, are done conditionally on xt. Define
the strategy q∗t as

q∗t = argmin
q∈∆d

sup
c̃∈γ−1[0,1]d

{qT
(γc̃t) +Rel† (γc̃1, . . . , γc̃t)}

and let qt = (1 − dγ)q∗t + γ1. Given xt, (23) tells us

max
ct∈[0,1]d

Eŷt∼qt{ct(ŷt) +Rel (I1, . . . , It) }

≤ sup
c̃t∈γ−1[0,1]d

{(q∗t )
Tc̃t +Rel (I1, . . . , It)} + dγ

which is equal to

γ−1 sup
c̃t

{(q∗t )
T
(γc̃t) +Rel† (γc̃1, . . . , γc̃t)} + (n − t + 1)dγ

≤ γ−1Rel† (γc̃1, . . . , γc̃t−1) + (n − t + 1)dγ

by admissibility of the full-information relaxation. Observe
that the use of the full-information relaxation on γc̃t’s is
warranted since these vectors are in [0,1]d.

We remark that time complexity of adversarial contextual
bandit solution in Lemma 6 is the same as the time com-
plexity of the corresponding full information procedure.

7. Open Problems and Future Directions
The main open problem is whether the regret upper bound
for BISTRO or a related method can be improved. In the
inequality (23) we decouple the distribution q′t from qt, and
this appears to be the source of looseness, at least in the
analysis. A more precise analysis at this step might resolve
the issue. It is unclear what kind of structure of F may be
used to improve computation and/or regret of BISTRO.

Under structural assumptions on F one may come up with
sufficient statistics for the information I1∶t and, therefore,
avoid keeping around all the estimates c̃t. Of course, this
is the case in non-contextual bandits, where the sum ∑ c̃t
is sufficient (at least as evidenced by existing near-optimal
bandit methods).

An interesting avenue of investigation is to study the more
general case when x’s are drawn from a stochastic process
with a parametrized form. One may then attempt to esti-
mate the parameters of the process on-the-go and use the
estimate to hallucinate future data for random playout.
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A. Proof of Lemma 1
In the proof, we use the shorthand ⟪. . .⟫

n
t=1 to denote repeated application of the operators within the brackets from t = 1

to n. As an example, the sequence of operators Ex1
maxc1 Ex2

maxc2[G(x1, c1, x2, c2)] acting on the function G is

abbreviated as ⟪Ext
maxct⟫

2

t=1
[G(x1, c1, x2, c2)].

Let q1, . . . , qn be an admissible strategy. The expected regret of this strategy can be upper bounded by

E[Reg] ≤ sup
c1∶n

E[Reg] ≤ ⟪E
xt

sup
ct

⟫

n

t=1

[

n

∑

t=1

qT

t ct − inf
f∈F

n

∑

t=1

f(xt)
Tct]

by Jensen’s inequality (pulling Ext
out of multiple suprema until its t-th position). The last expression is further upper

bounded by

⟪E
xt

sup
ct

⟫

n

t=1

[

n

∑

t=1

qT

t ct + E
ŷ1∶n∼q1∶n

Rel (I1∶n)]

by admissibility of the partial information relaxation. By linearity of expectation for Eŷt and Jensen’s inequality (to pull it
out through multiple suprema as before), we obtain an upper bound of

⟪E
xt

sup
ct

E
ŷt∼qt

⟫

n

t=1

[

n

∑

t=1

ct(ŷt) +Rel (I1∶n)] .

We now start from step n and observe that ∑n−1
t=1 ct(ŷt) does not depend on xn, cn, ŷn, and thus we rewrite the preceding

expression as

⟪E
xt

sup
ct

E
ŷt∼qt

⟫

n−1

t=1

[

n−1

∑

t=1

ct(ŷt) + E
xn

sup
cn

E
ŷn∼qn

{cn(ŷn) +Rel (I1∶n)}] .

By admissibility of qt and (5), we pass to the upper bound of

⟪E
xt

sup
ct

E
ŷt∼qt

⟫

n−1

t=1

[

n−1

∑

t=1

ct(ŷt) +Rel (I1∶n−1)] .

Continuing in this fashion leads to a bound of Rel (∅).

B. Proof of Theorem 2
Admissibility: initial condition For any c1∶n, q1∶n, x1∶n, it holds that

− inf
f∈F

n

∑

t=1

f(xt)
Tct = sup

M∈M[x1∶n]

−

n

∑

t=1

M T

t Y
(n)
t ≤ Eŷ1∶n∼q1∶n sup

M∈M[x1∶n]

−

n

∑

s=1

M T

s Ỹ
(n)
s = Eŷ1∶n∼q1∶nRel (I1∶n) . (18)

In the remainder of the proof we will often writeM instead ofM[x1∶n] for brevity.

Admissibility: recursion Let D ≜ {γ−1ej ∶ j ∈ [d]} ∪ {0}, the set of scaled standard basis vectors, together with the
origin. Observe that c̃t ∈ conv(D) by our definition of unbiased estimates (in fact, it is only a scaling of one coordinate).

We now reason conditionally on xt. As before, let εs ∈ {±1}d denote a vector of independent Rademacher random
variables. Let us abbreviate by ρ = (εt+1∶n, xt+1∶n), a draw of independent Rademacher variables and covariates from Px
for the “future rounds”, as part of the random playout procedure. Together with the estimates c̃s for s < t, we may now
construct Ỹ (t) and M matrices and define the randomized prediction algorithm as

q∗t (ρ) = argmin
q∈∆d

sup
c̃∈D

⎧
⎪⎪
⎨
⎪⎪
⎩

qTc̃ + sup
M∈M[x1∶n]

−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃

⎫
⎪⎪
⎬
⎪⎪
⎭

(19)

= argmin
q∈∆d

sup
ŷt,q′t

max
ct

⎧
⎪⎪
⎨
⎪⎪
⎩

qTc̃t(ct, q
′

t, ŷt) + sup
M∈M[x1∶n]

−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t(ct, q
′

t, ŷt)

⎫
⎪⎪
⎬
⎪⎪
⎭

. (20)
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We remark that xt enters the above definition of q∗t (ρ), but we leave this dependence implicit until the end of the proof.
For the purposes of the proof also define

qt(ρ) = (1 − dγ) ⋅ q∗t (ρ) + γ1, (21)

a version of q∗t (ρ) that is shifted away from the boundary of the simplex (a step that allows for estimation of ct). Also
define qt = Eρ[qt(ρ)] and q∗ = Eρ[q

∗

t (ρ)]. Observe that

Eŷt∼qt[ct(ŷt)] = q
T

t ct ≤ (q∗t )
Tct + γ1

Tct ≤ Eŷt∼qt[(q
∗

t )
Tc̃t(ct, qt, ŷt)] + dγ. (22)

Hence,

max
ct∈[0,1]d

Eŷt∼qt{ct(ŷt) +Rel (I1, . . . , It) }

≤ max
ct∈[0,1]d

Eŷt∼qt{(q
∗

t )
Tc̃t(ct, qt, ŷt) +Rel (I1∶t−1, It(xt, qt, ŷt, ct)) } + dγ

≤ sup
ŷt∈[d],q′t

max
ct∈[0,1]d

{(q∗t )
Tc̃t(ct, q

′

t, ŷt) +Rel (I1∶t−1, It(xt, q
′

t, ŷt, ct))} + dγ. (23)

In the last expression, the supremum is over q′t of the form (1−dγ) ⋅q+γ1, q ∈ ∆d. This last upper bound holds because qt
is one of such distributions. The importance of this upper bound is that it decouples the q∗t from q′t in the first term, a step
that yields a simple optimization problem that defines q∗t (ρ). Writing out the form of the relaxation, the last expression is
equal to

sup
ŷt,q′t

max
ct

{(q∗t )
Tc̃t(ct, q

′

t, ŷt) +Eρ sup
M∈M

−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t(ct, q
′

t, ŷt)} + (n − t + 1)dγ

≤ sup
c̃t∈conv(D)

{(q∗t )
Tc̃t +Eρ sup

M∈M

−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t} + (n − t + 1)dγ

since c̃t(ct, q′t, ŷt) ∈ conv(D). The expression inside the supremum is a convex function of c̃t, and thus the supremum is
achieved at a vertex, an element of D. Since q∗t = Eρ[q

∗

t (ρ)], we upper bound the last expression via Jensen’s inequality
(omitting (n − t + 1)dγ to simplify the exposition) by

Eρ sup
c̃t∈D

{q∗t (ρ)
Tc̃t + sup

M∈M

−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t} . (24)

Since q∗t (ρ) is precisely defined to be the minimizer (given ρ) of the supremum in (24), the preceding expression is equal
to

Eρ inf
q∈∆d

sup
c̃t∈D

{qTc̃t + sup
M∈M

−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t}

The rest of the upper bounds will be derived conditionally on ρ. Observe that

inf
q∈∆d

sup
c̃t∈D

{qTc̃t + sup
M∈M

−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t} = sup
pt

inf
q
Ec̃t∼pt {q

Tc̃t + sup
M∈M

−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t}

by the minimax theorem, where pt ranges over the set of distributions on D. By linearity of expectation, the preceding
expression is equal to

sup
pt

inf
q

{qTEc̃t∼pt[c̃t] +Ec̃t∼pt sup
M∈M

[−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t]}

= sup
pt

{min
j∈[d]

eT

jEc̃t∼pt[c̃t] +Ec̃t∼pt sup
M∈M

[−∑

s≠t

M T

s Ỹ
(t)
s −M T

t c̃t]} . (25)

Observe that for any M ∈ M, ∑dj=1Mj,t = 1 and the elements of Mt are nonnegative. Thus

min
j
eT

jEc̃t∼pt[c̃t] ≤M
T

t Ec̃t∼pt[c̃t].
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Therefore, (25) is equal to

sup
pt

Ec̃t∼pt sup
M∈M

{−∑

s≠t

M T

s Ỹ
(t)
s + min

j∈[d]
eT

jEc̃t∼pt[c̃t] −M
T

t c̃t}

≤ sup
pt

Ec̃t∼pt sup
M∈M

{−∑

s≠t

M T

s Ỹ
(t)
s +M T

t Ec̃t∼pt[c̃t] −M
T

t c̃t}

= sup
pt

Ec̃t,c̃′t∼pt sup
M∈M

{−∑

s≠t

M T

s Ỹ
(t)
s +M T

t (c̃
′

t − c̃t)} .

Since exchanging c̃t and c̃′t switches the sign in the last term, we may introduce an independent Rademacher random
variable δt via the standard technique of symmetrization. The last expression is then equal to

sup
pt

Ec̃t,c̃′t∼ptEδt sup
M∈M

{−∑

s≠t

M T

s Ỹ
(t)
s + δtM

T

t (c̃
′

t − c̃t)}

≤ sup
pt

Ec̃t∼ptEδt sup
M∈M

{−∑

s≠t

M T

s Ỹ
(t)
s + 2δtM

T

t c̃t} .

The above inequality follows by splitting the supremum into two parts equal parts. Let us now reason conditionally on c̃t.
There are two cases: either c̃t = 0 or c̃t = γ−1ej for some coordinate j ∈ [d]. Let us consider the second case, and the first
follows from the same reasoning. Take Z to be a random vector with independent coordinates and values in {−γ−1, γ−1

}
d.

For the jth coordinate, Zj is identically γ−1, while for all other coordinates i ≠ j the distribution Zi is symmetric. Clearly,
EZ = c̃t. By Jensen’s inequality,

Eδt sup
M∈M

{−∑

s≠t

M T

s Ỹ
(t)
s + 2δtM

T

t c̃t} ≤ EδtEZ sup
M∈M

{−∑

s≠t

M T

s Ỹ
(t)
s + 2δtM

T

t Z} .

It is not hard to see that the distribution of δtZ is uniform on {−γ−1, γ−1
}
d, and we can write it as γ−1εt, a scaled vector

of independent Rademacher random variables. The overall bound (together with the omitted term (n − t + 1)dγ) is then

max
ct∈[0,1]d

Eŷt∼qt{ct(ŷt) +Rel (I1, . . . , It) } ≤ Eρ sup
pt

{Ec̃t∼ptEεt sup
M∈M

−∑

s≠t

M T

s Ỹ
(t)
s + 2γ−1M T

t εt} + (n − t + 1)dγ

= EρEεt sup
M∈M

{−∑

s≠t

M T

s Ỹ
(t)
s + 2γ−1M T

t εt} + (n − t + 1)dγ

since the expression no longer depends on pt and c̃t. The above inequality holds for any xt. Hence, we may take expectation
on both sides, yielding

Ext max
ct∈[0,1]d

Eŷt∼qt{ct(ŷt) +Rel (I1, . . . , It) } ≤ Eεt∶n,xt∶n sup
M∈M[x1∶n]

{−∑

s≠t

M T

s Ỹ
(t)
s + 2γ−1M T

t εt} + (n − t + 1)dγ

=Rel (I1∶t−1)

because ρ = (εt+1∶n, xt+1∶n). This proves admissibility.

Omitting 0 from objective Examining the algorithm in (19), we note that the optimization problem may be taken over
c̃ ∈ {e1, . . . ,ed}; that is, the argmin over q does not change upon the removal of 0. To see this, suppose that q∗t (ρ) is the

optimal response when c̃ ∈ {e1, . . . ,ed}. Then it is also an optimal response to c̃ ∈ {e1, . . . ,ed} ∪ {0} since for c̃ = 0 the
value of q does not make any difference in terms of the value. This proves our claim, and is reflected in the definition of
Algorithm 1.

Regret bound The final bound is given by

Rel (∅) = ExEε sup
M∈M[x1∶n]

−

n

∑

t=1

M T

t Ỹ
(0)
t + ndγ =

2

γ
ER(F ;x1∶n) + ndγ = 2

√

2dnER(F ;x1∶n).


