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Relationship to empirical Bayes and RL. The augmen-
tation with a variational prior has strong ties to empiri-
cal Bayesian methods, which use data to estimate hyper-
parameters of a prior distribution (Robbins, 1964; Efron
& Morris, 1973). In general, empirical Bayes considers
the fully Bayesian treatment of a hyperprior on the origi-
nal prior—here, the variational prior on the original mean-
field—and proceeds to integrate it out. As this is analyti-
cally intractable, much work has been on parametric esti-
mation, which seek point estimates rather than the whole
distribution encoded by the hyperprior. We avoid this at
the level of the hyperprior (variational prior) via the hier-
archical ELBO; however, our procedure can be viewed in
this framework at one higher level. That is, we seek a point
estimate of the "variational hyperprior" which governs the
parameters on the variational prior.

A similar methodology also arises in the policy search lit-
erature (Riickstief3 et al., 2008; Sehnke et al., 2008). Policy
search methods aim to maximize the expected reward for
a sequential decision-making task, by positing a distribu-
tion over trajectories and proceeding to learn its parameters.
This distribution is known as the policy, and an upper-level
policy considers a distribution over the original policy. This
encourages exploration in the latent variable space and can
be seen as a form of annealing.

Tractable bound on the entropy. Deriving an analytic
expression for the entropy of g,yy is generally intractable
due to the integral in the definition of ¢y.,. However, it is
tractable when we know the distribution ¢(A | z). This can
be seen by noting from standard Bayes’ rule that

1(z)a(X[2) = ¢(N)q(z | N), (D

and that the right hand side is specified by the construction
of the hierarchical variational model. Note also that ¢(\ | z)
can be interpreted as the posterior distribution of the origi-
nal variational parameters A given the model, thus we will
denote it as Gposr(A | Z).

In general, computing gposr (X | 2) from the specification of
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the hierarchical variational model is as hard as the integral
needed to compute the entropy. Instead, we approximate
Grosr With an auxiliary distribution r(A|z; ¢) parameter-
ized by ¢. This yields a bound on the entropy in terms of
the analytically known distributions r(X | z), ¢(z| A), and
a(A).

First note that the KL-divergence between two distributions
is greater than zero, and is precisely zero only when the
two distributions are equal. This means the entropy can be
bounded as follows:

—Eq,... 108 Guvu(2)]
= —Eq,... 108 quvui (2) — KL(Grost (A | 2)[|gros (A | 2))]
—Eq,, [108 Guvm(2) + KL(Grost (A | 2)[[7(X | 25 @))]]
= —Eg []Eqposr [log Guvm(2) 4108 Grosr (A | 2)
—logr(Alz; )]

v

= _Eq(z,)\) [IOg Quvm (Z) + 1Og QPOST()\ | Z) - IOgT(A ‘ Z; ¢)}

Then by Eq. 1, the bound simplifies to

_qulVM [log qHVM(Z)]
> —Eqzn)[log g(A) +log q(z | A) —logr(A]z; ¢)].

A similar bound in derived by Salimans et al. (2015) directly
for log p(x).

In the above derivation, the approximation r to the varia-
tional posterior geosr(A |2z) is placed as the second argu-
ment of a KL-divergence term. Replacing the first argu-
ment instead yields a different tractable upper bound as
well.

~Eg,,, [log q(z)]
= By, [~ 10g ¢(2) + KL(grost (A | 2)||grosr (A [ 2))]
< By, [~ log q(z) + KL(r(X | 25 @) |grosr (A | 2))]]

= gy [Er[=10g ¢(2) — 108 grost (A | 2) + log (A | z; @)]]

+logr(A|z; ¢)l]

_ B 2 Lo 121 XN)aN)
= Eq,, [Er[—logq(z) — log R

= Eq,.. [Er[—log g(X) —logq(z| X) +logr(A|z; ¢)]].



Hierarchical Variational Models (Appendix)

The bound is also tractable when r and gy, can be sam-
pled and all distributions are analytic. The derivation of
these two bounds parallels the development of expectation
propagation (Minka, 2001) and variational Bayes (Jordan,
1999) which are based on alternative forms of the KL-
divergence'. Exploring the role and relative merits of both
bounds we derive in the context of variational models will
be an important direction in the study of variational models
with latent variables.

The entropy bound is tighter than the trivial conditional
entropy bound of H[gyyu] > H[g|A] (Cover & Thomas,
2012). This bound is attained when specifying the recur-
sive approximation to be the prior; i.e., it is the special case
when (A | z; @) = q(X; 9).

Gradient Derivation. We derive the gradient of the hi-
erarchical Evidence Lower BOund (ELBO) using its mean-
field representation:

L(0, ) = Eq[LIN)] + Ey[(log (A | 2; ) —logg(A; 0))].

Using the reparameterization A(e; 0), where € ~ s, this
is

Z<67 ¢) = IEs(e) [‘C()‘(‘E? 0))]

Applying the product rule to the inner derivative
gives

Va {/ q(z|A)logr(A(e; 0) | z; ¢) dz
— [ Vaalz| X logr(A(ei6) | ¢) dz
+ [ atz| W Valogr(Ae6) | ¢) dz
— [ Valoga(a | Na(a | A logr(A(e:6) 2:6) da

4 / 4z AV log r(A(€; 0) | z; ¢) dz
= By(a [V Iogr(A(e; 0) | z; &)
+ Eqez 12 [Valogr(A(e; 0) | z; 9)].

Substituting this back into the previous expression gives the
gradient of the second term

Es(e)[VoA(€)Eq(z | 2)[V logr(A(€; 6) | z; )]
+ Ese) [VoA(€)Eqz| 2) [V log 7(A(€; 0) | z; 9)]]
The third term also follows by the chain rule
Vo, (e [log g(A(€; 0); 0)]
=Es(¢)[VoA(€)Valog q(A; 0) + Ve log g(X; 0)]
= Ey)[VoA(€)Valogg(A; 0)]

+ Es()[Eq(z| ») [(log T(A(€; 0) | 2; )] — log q(A(€; 0); 0))].where the last equality follows by

We now differentiate the three additive terms with respect
to 6. As in the main text, we suppress 6 in the definition of
A when clear and define the score function

V =Vaialogq(z|A).
By the chain rule the derivative of the first term is
VoE () [L(A(€0))] = Es(e) [VoA(€)VAL(A)].
We now differentiate the second term:

VoEs(e) [Eqz| ) [log T(A(€; 0) | z; )]

— Voo | [ ata| N oer(N(e:0) | 6)dz

~ B0 | Vo | [z N ogr(A(es6) 2:6) da|

~ B | VoAV | [ ata | N logr(A(es6) [7:9)da] |

"Note that the first bound, which corresponds to the objec-
tive in expectation propagation (EP), directly minimizes KL(g/||r)
whereas EP only minimizes this locally.

Es(e) [VB IOg q(A7 0)] = Eq(A;G) [Ve log Q(}‘7 0)] = 0.

Combining these together gives the total expression for the
gradient

VoL(0,0) = Ey)[VoA(€)VaLur(N)]
+ Ey(e) [VoA(€)Vallog (X | z; ¢) — log g(X; 0)]]
+ Eg(e)[VoA(€)Eqz| n) [V log (A | z; )]].

Introducing 7; to the gradient. One term of the gradi-
ent involves the product of the score function with all of
/',.7

Ege)[VoA(€)Eqez | 2)[V logr(X|z; 9)]].

Localizing (Rao-Blackwellizing) the inner expectation as in
Ranganath et al. (2014); Mnih & Gregor (2014) can drasti-
cally reduce the variance. Recall that

d
a(zA) =[] a=i |2,

Next, we define V; to be the score functions of the factor.
That is

Vi = Vixlogq(zi | Ai).
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This is a vector with nonzero entries corresponding to
;. Substituting the factorization into the gradient term
yields

d
VoA(€) Y By a)[Vilogr(A|z; ¢)]] )
i=1

Now we define r; to be the terms in log  containing z; and
r_; to be the remaining terms. Then the inner expectation
in the gradient term is

Z]Equ Vi

d

i(logri(A|z; @) +logr—i(A|z; ¢))]

= By, 0 [ViEg(a_, | 0 [log 7i(A] 2; ¢) + logr_i(A|

i=1
d

= " Eqax [Vilogri(X |z 8)],
=1

where the last equality follows from the expectation of the
score function of a distribution is zero. Substituting this
back into Eq. 2 yields the desired result

Ese)[VoA(€;0)Eqz | x)[V 1ogr(A|z; @)]]

d
Z‘/élogm(MZ;d))H-

i=1

= ES(E) V@)\(E; B)Eq(z [X)

Equality of Two Gradients. We now provide a direct
connection between the score gradient and the reparame-
terization gradient. We carry this out in one-dimension for
clarity, but the same principle holds in higher dimensions.
Let () be the cumulative distribution function (CDF) of ¢
and let z = T'(zg; A) be reparameterizable in terms of a
uniform random variable z, (inverse-CDF sampling). We
focus on the one dimensional case for simplicity. Recall in-
tegration by parts computes a definite integral as

= )o@ lpoin ~ [

supp(z)

v(z) dw(z),

where the | - | notation indicates evaluation of a portion of
the integral. In the subsequent derivation, we let w(z) =
log p(x,z) — log q(z), and let dv(z) = V log q(z)q(z) =
Vaq(z).

Recall that we assume that we can CDF-transform z and
that the transformation is differentiable. That is, when u
is a standard uniform random variable, z = Q~!(u, \).

Then
vscoreL: — Eq(z I2) [V)\ log q(Z ‘ )\) (lng(X, Z)

- / | Vaale N osp(x.2) ~ logata| N)]ds
_ ‘ [ [ ata dz] (logp(x.2) — logq(z| N))

- [[| [ 7ata1%) da] V.ttogpix.2) ~ 0sata A0z
— [VAQ(z] A)(10g p(x, 2) ~ 108 4(2 | A))]spp(ay
~ [ Vr 101N Vallog plx.2) - loga(z| V) da
= [VAQ(z| X)(log p(x, 2) -
7 ¢)lly / 2| AV [2] Va[log p(x. 2)

= |VaQ(z| A)(log p(x,z) —
+ VL,

log q(z| A))'supp(z)
—logq(z | A)] dz

log q(z| A))'supp(z)

where the second to last equality follows by the derivative
of the CDF function (Hoffman & Blei, 2015). By looking
at the Monte Carlo expression of both sides, we can see the
reduction in variance that the reparameterization gradient
has over the score gradient comes from the analytic com-
putation of the gradient of the definite integral (which has
value 0).

Hyperparameters and Convergence. We study one,
two, and three layer deep exponential familys (DEFs) with
100, 30, and 15 units respectively and set prior hyperpa-
rameters following Ranganath et al. (2015). For hierarchi-
cal variational models (avmMms), we use Nesterov’s acceler-
ated gradient with momentum parameter of 0.9, combined
with RMSProp with a scaling factor of 10~2, to maximize
the lower bound. For the mean-field family, we use the
learning rate hyperparameters from the original authors’.
The Hvms converge faster on Poisson models relative to
Bernoulli models. The one layer Poisson model was the
fastest to infer.

Multi-level ¢(\; 6) and Optimizing with Discrete Vari-
ables in the Variational Prior. As mentioned in the main
text Hierarchical variational models with multiple layers
can contain both discrete and differentiable latent variables.
Higher level differentiable variables follow directly from
our derivation above. Discrete variables in the prior pose
a difficulty due to high variance, as the learning signal con-
tains the entire model. Local expectation gradients (Tit-
sias, 2015) provide an efficient gradient estimator for vari-
ational approximations over discrete variables with small
support—done by analytically marginalizing over each dis-
crete variable individually. This approach can be combined

—logq(z|A))]

supp(z)
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with the gradient in Equation 8 of the main text to form an
efficient gradient estimator.

In the setting where the prior has discrete variables, opti-
mization requires a little more work. First we note that in
a non-degenerate mean-field setup that the A’s are differen-
tiable parameters of probability distributions. This means
they will always, conditional on the discrete variables, be
differentiable in the variational prior. This means that we
can both compute the gradients for these parameters using
the technique from above and that the discrete variables ex-
ist at a higher level of the hierarchical variational model;
these discrete variables can be added to r conditional on
everything else. The gradients of discrete variables can be
computed using the score gradient, but Monte Carlo esti-
mates of this will have high variance due to no simplifi-
cation of the learning signal (like in the mean-field). We
can step around this issue by using local expectation gradi-
ents (Titsias, 2015) which marginalize out one variable at a
time to get low variance stochastic gradients. This is gener-
ally tractable when the discrete variables have small support
such as the binary variables in the factorial mixture
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