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Abstract

Boolean matrix factorization and Boolean ma-
trix completion from noisy observations are de-
sirable unsupervised data-analysis methods due
to their interpretability, but hard to perform due
to their NP-hardness. We treat these problems
as maximum a posteriori inference problems in
a graphical model and present a message pass-
ing approach that scales linearly with the num-
ber of observations and factors. Our empiri-
cal study demonstrates that message passing is
able to recover low-rank Boolean matrices, in
the boundaries of theoretically possible recovery
and compares favorably with state-of-the-art in
real-world applications, such collaborative filter-
ing with large-scale Boolean data.

1. Introduction
A body of problems in machine learning, communication
theory and combinatorial optimization involve the product
form Z = X �Y where � operation corresponds to a type
of matrix multiplication and

Z = {Zm,n}M×N , X = {Xm,k}M×K , Y = {Yk,n}K×N .

Here, often one or two components (out of three) are (par-
tially) known and the task is to recover the unknown com-
ponent(s). A subset of these problems, which are most
closely related to Boolean matrix factorization and matrix
completion, can be expressed over the Boolean domain –
i.e., Zm,n, Xm,k, Yk,n ∈ {false, true} ∼= {0, 1}. The
two most common Boolean matrix products used in such
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applications are

Z = X • Y ⇒ Zm,n =

K∨
k=1

Xm,k ∧ Yk,n

Z = X ∗ Y ⇒ Zm,n ≡
( K∑
k=1

Xm,k ∧ Yk,n
)

mod 2

(1a)

(1b)

where we refer to Equation (1a) simply as Boolean product
and we distinguish Equation (1b) as exclusive-OR (XOR)
Boolean product. One may think of Boolean product as
ordinary matrix product where the values that are larger
than zero in the product matrix are set to one. Alternatively,
in XOR product, the odd (even) numbers are identically set
to one (zero) in the product matrix.

This model can represent Low Density Parity Check
(LDPC) coding using the XOR product, with N = 1. In
LDPC, the objective is to transmit the data vector Y ∈
{0, 1}K though a noisy channel. For this, it is encoded by
Equation (1b), where X ∈ {0, 1}m×k is the parity check
matrix and vector Z{0, 1}M is then sent though the chan-
nel with a noise model pO(O | Z), producing observation
O. Message passing decoding has been able to transmit
Z and recover Y from O at rates close to the theoretical
capacity of the communication channel (Gallager, 1962).

LDPC codes are in turn closely related to the compressed
sensing (Donoho, 2006) – so much so that successful bi-
nary LDPC codes (i.e., matrix X) have been reused for
compressed sensing (Dimakis et al., 2012). In this set-
ting, the column-vector Y is known to be `-sparse (i.e., `
non-zero values) and approximate message passing (AMP;
Donoho et al., 2009) is used to recover Y using few noisy
measurements O – that is M � K and similar to LDPC
codes, the measurement matrix X is known. When the
underlying domain and algebra is Boolean (i.e., Equa-
tion (1a)), the compressed sensing problem reduces to the
problem of (noisy) group testing (Du & Hwang, 1993) 1

where message passing has been successfully applied in

1The intuition is that the non-zero elements of the vector Y
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this setting as well (Atia & Saligrama, 2012; Sejdinovic
& Johnson, 2010).

These problems over Boolean domain are special instances
of the problem of Boolean factor analysis in which Z is
given, but not X nor Y . Here, inspired by the success
of message passing techniques in closely related problems
over “real” domain, we derive message passing solutions
to a graphical model for “Boolean” factorization and ma-
trix completion (i.e., XOR Boolean product is not covered
here), and show that simple application of Belief Propa-
gation (BP; Pearl, 1982) to this graphical model favorably
compares with the state-of-the-art in both Boolean factor-
ization and completion.

In the following, we briefly introduce the Boolean factor-
ization and completion problems in Section 1.1 and Sec-
tion 2 reviews the related work. Section 3 formulates both
of these problems in a Bayesian framework using a graph-
ical model. The ensuing message passing solution is in-
troduced in Section 4. Experimental study of Section 5
demonstrates that message passing is an efficient and ef-
fective method for performing Boolean matrix factorization
and noisy completion.

1.1. Boolean Factor Analysis

The umbrella term “factor analysis” refers to the unsuper-
vised methodology of expressing a set of observations in
terms of unobserved factors (McDonald, 2014).2 In con-
trast to LDPC and compressed sensing, in factor analysis,
only (a partial and/or distorted version of) the matrix Z is
observed, and our task is then to findX and Y whose prod-
uct is close to Z. When the matrix Z is partially observed,
a natural approach to Boolean matrix completion is to find
sparse and/or low-rank Boolean factors that would lead us
to missing elements of Z. In the following we focus on
the Boolean product of Equation (1a), noting that message
passing derivation for factorization and completion using
the XOR product of Equation (1b) is similar.

The “Boolean” factor analysis – including factorization and
completion – has a particularly appealing form. This is
because the Boolean matrix Z is simply written as dis-
junction of Boolean matrices of rank one – that is Z =∨K
k=1X:,k • Yk,:, where X:,k and Yk,: are column vector

and row vectors of X and Y respectively.

identify the presence or absence of a rare property (e.g., a rare dis-
ease or manufacturing defect), therefore Y is sparse. The objec-
tive is to find these non-zero elements (i.e., recover Y ) by screen-
ing a few (M � K) “subsets” of elements of Y . Each of these
Y -bundles corresponds to a row of X (in Equation (1a)).

2While some definitions restrict factor analysis to variables
over continuous domain or even probabilistic models with Gaus-
sian priors, we take a more general view.

1.1.1. COMBINATORIAL REPRESENTATION

The combinatorial representation of Boolean factorization
is the biclique cover problem in a bipartite graph G = (A∪
B, E). Here a bipartite graph has two disjoint node sets A
(s.t. |A| = M ) and B (s.t. |B| = N ) where the only edges
are between these two sets – i.e., E ⊆ {(a, b) | a ∈ A, b ∈
B}. In our notationZ ∈ {0, 1}M×N represents the incident
matrix of G and the objective of factorization is to cover
(only) the edges using K bicliques (i.e., complete bipartite
sub-graphs of G). Here the kth biclique is identified with a
subset of A, corresponding to X:,k, the kth column of X ,
and a subset of B, Yk,:, corresponding to the kth row of Y
the Boolean product of which is a Boolean matrix of rank
1. The disjunction of these rank 1 matrices is therefore a
biclique covering of the incident matrix Z.

2. Applications and Related Work
Many applications of Boolean factorization are inspired
by its formulation as tiling problem (Stockmeyer, 1975).3

Examples include mining of Boolean databases (Geerts
et al., 2004), role mining (Vaidya et al., 2007; Lu et al.,
2008), bi-clustering of gene expression data (Zhang et al.,
2010) and approximate lifted inference with binary evi-
dence (Van den Broeck & Darwiche, 2013). Several of
these applications are accompanied by a method for ap-
proximating the Boolean factorization problem.

The most notable of these is the “binary” factorization4

of Zhang et al. (2010) that uses an alternating optimization
method to repeatedly solve a penalized non-negative matrix
factorization problem over real-domain, where the penalty
parameters try to enforce the desired binary form. Note
that a binary matrix factorization is generally a more con-
strained problem than Boolean factorization and therefore
it also provides a valid Boolean factorization.

Among the heuristics (e.g., Keprt & Snásel, 2004; Be-
lohlavek et al., 2007) that directly apply to Boolean factor-
ization, the best known is the Asso algorithm of Miettinen
et al. (2006). Since Asso is incremental in K, it can effi-
ciently use the Minimum Description Length principle to
select the best rank K by incrementing its value (Miettinen
& Vreeken, 2011).

An important application of Boolean matrix completion is

3Since rows and columns in the rank one Boolean product
X:,k • Y T

:,k can be permuted to form a “tile” – i.e., a sub-matrix
where all elements are equal and different from elements outside
the sub-matrix – the Boolean factorization can be seen as tiling of
matrix Z with tiles of rank one.

4 Binary factorization is different from Boolean factorization
in the sense that in contrast to Boolean factorization 1 + 1 6= 1.
Therefore the factors X and Y are further constrained to ensure
that Z does not contain any values other than zeros and ones.
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in collaborative filtering with Boolean (e.g., like/dislike)
data, where the large-scale and sparsely observed Boolean
matrices in modern applications demands a scalable and
accurate Boolean matrix completion method.

One of the most scalable methods for this problem is ob-
tained by modeling the problem as a Generalized Low
Rank Model (GLRM; Udell et al., 2014), that uses proxi-
mal gradient for optimization. Using logistic or hinge loss
can enforce binary values for missing entries. Using the
hinge loss, GLRM seeks

arg min
X,Y

∑
(m,n)∈Ω

(
1− (

∑
k

Xm,kYk,n)(2Om,n − 1)
)

+

, where (2Om,n − 1) changes the domain of observations
to {−1,+1} and Ω is index-set of observed elements.

In the 1-Bit matrix completion of Davenport et al. (2014),
the single bit observation Om,n from a hidden real-
valued matrix Q is obtained by sampling from a distri-
bution with the cumulative distribution function f(Qm,n)
– e.g., f(Qm,n) = (1 + exp(−Qm,n))−1. For applica-
tion to Boolean completion, our desired Boolean matrix is
Z = I(f(Q)≥.5). 1-Bit completion then minimizes the
likelihood of observed entries, while constraining the nu-
clear norm of Q

arg min
Q

∑
(m,n)∈Ω

(
Om,n log(f(Qm,n))+ (2)

Om,n log(1− f(Qm,n))

)
s.t. ‖Q‖∗ ≤ β

√
KMN,

where β > 0 is a hyper-parameter.

In another recent work, Maurus & Plant (2014) introduce
a method of ternary matrix factorization that can handle
missing data in Boolean factorization through ternary logic.
In this model, the ternary matrix Z is factorized to ternary
product of a binary matrix X and a ternary basis matrix Y .

3. Bayesian Formulation
Expressing factorization and completion problems as a
Marginal or MAP inference problem is not new (e.g., Mnih
& Salakhutdinov, 2007), neither is using message pass-
ing as an inference technique for these problems (Krza-
kala et al., 2013; Parker et al., 2013; Kabashima et al.,
2014; Matsushita & Tanaka, 2013). However, these meth-
ods operate on the real-domain matrices, where AMP as-
sumes a Gaussian distribution for BP messages. This
gives an (asymptotically exact) approximation to BP up-
dates. Here, we apply BP to solve the “Boolean” factoriza-
tion/completion problem. In this setting, exact BP remains
tractable, however, one needs to define the factor-graph to
enforce Boolean product; see Section 3.1.

To formalize approximate decompositions for Boolean
data, we use a communication channel, where we assume
that the product matrix Z is communicated through a noisy
binary erasure channel (Cover & Thomas, 2012) to produce
the observation O ∈ {0, 1,null}M×N where Om,n = null,
means this entry was erased in the channel. This allows us
to model matrix completion using the same formalism that
we use for low-rank factorization.

For simplicity, we assume that each element of Z is in-
dependently transmitted (that is erased, flipped or remains
intact) through the channel, meaning the following condi-
tional probability completely defines the noise model:

pO(O | Z) =
∏
m,n

pOm,n(Om,n | Zm,n) (3)

Note that each of these conditional probabilities can be
represented using six values – one value per each pair of
Om,n ∈ {0, 1,null} and Zm,n ∈ {0, 1}. This setting al-
lows the probability of erasure to depend on the value of
m, n and Zm,n.

The objective is to recover X and Y from O. However,
due to its degeneracy, recovering X and Y is only up to a
K ×K permutation matrix U – that is X • Y = (X •U) •
(UT •Y ). A Bayesian approach can resolve this ambiguity
by defining non-symmetric priors

pX(X) =
∏
m,k

pXm,k(Xm,k)

pY (Y ) =
∏
k,n

pY k,n(Yk,n)

(4a)

(4b)

where we require the a separable product form for this
prior. Using strong priors can enforce sparsity of X and/or
Y , leading to well-defined factorization and completion
problems where K > M,N .

Now, we can express the problem of recovering X and Y
as a maximum a posteriori (MAP) inference problem
arg maxX,Y p(X,Y | O), where the posterior is

p(X,Y | O) ∝ pX(X) pY (Y ) pO(O | X • Y ) (5)

Finding the maximizing assignment for Equation (5) is
NP -hard (Stockmeyer, 1975). Here we introduce a graph-
ical model to represent the posterior and use a simplified
form of BP to approximate the MAP assignment.

An alternative to finding the MAP assignment is that of
finding the marginal-MAP – i.e.,

arg max
Xm,k

p(Xm,k | O) = arg max
Xm,n

∑
X\Xi,Y

p(X,Y | O).

While the MAP assignment is the optimal “joint” assign-
ment to X and Y , finding the marginal-MAP corresponds
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Figure 1. The factor-graph and the message exchange between
variables and factors.

to optimally estimating individual assignments for each
variable, while the other variable assignments are marginal-
ized. We also provide the message passing solution to this
alternative in Appendix B.

3.1. The Factor-Graph

Figure 1 shows the factor-graph (Kschischang et al., 2001)
representation of the posterior Equation (5). Here, vari-
ables are circles and factors are squares. The factor-graph
is a bipartite graph, connecting each factor/function to
its relevant variables. This factor-graph has one variable
Xm,k ∈ {0, 1} for each element of X , and a variable
Yk,n ∈ {0, 1} for each element of Y . In addition to these
K × (M +N) variables, we have introduced K ×M ×N
auxiliary variables Wm,n,k ∈ {0, 1}. For Boolean ma-
trix completion the number of auxiliary variables is K|Ω|,
where Ω = {(m,n)|Om,n 6= null} is the set of observed
elements (see Section 4.1).

We use plate notation (often used with directed models) in
representing this factor-graph. Figure 1 has three plates for
1 ≤ m ≤ M , 1 ≤ n ≤ N and 1 ≤ k ≤ K (large transpar-
ent boxes in Figure 1). In plate notation, all variables and
factors on a plate are replicated. For example, variables on
the m-plate are replicated for 1 ≤ m ≤ M . Variables and
factors located on more than one plate are replicated for all
combinations of their plates. For example, since variable
X is in common between m-plate and k-plate, it refers to
M ×K binary variables – i.e., Xm,k ∀m, k.

3.1.1. VARIABLES AND FACTORS

The auxiliary variable Wm,n,k represents the Boolean
product of Xm,k and Yk,n – i.e., Wm,n,k = Xm,k ∧ Yk,n.
This is achieved throughM×N×K hard constraint factors

fm,n,k(Xm,k, Yk,n,Wm,n,k) = I(Wm,n,k = Xm,k ∧ Yk,n)

where I(.) is the identity function on the inference semir-
ing (see Ravanbakhsh & Greiner, 2014). For the max-sum
inference Imax-sum(true) = 0 and Imax-sum(false) = −∞.

Local factors hm,k(Xm,k) = log(pX(Xm,k)) and
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Figure 2. Comparison of message passing and NIMFA for
Boolean matrix factorization

hk,n(Yk,n) = log(pY (Yk,n)) represent the logarithm of
priors over X and Y in Equation (5).

Finally, the noise model in Equation (5) is represented by
M ×N factors over auxiliary variables

gm,n({Wm,n,k}1≤k≤K) = log

(
pOm,n(Om,n |

∨
k

Wm,n,k)

)
.

Although our introduction of auxiliary variables is essen-
tial in building our model, the factors of this type have
been used in the past. In particular, factor g is generalized
by a high-order family of factors with tractable inference,
known as cardinality-based potentials (Gupta et al., 2007).
This factor is also closely related to noisy-or models (Pearl,
2014; Middleton et al., 1991); where MCMC (Wood et al.,
2012) and variational inference (Šingliar & Hauskrecht,
2006) has been used to solve more sophisticated probabilis-
tic models of this nature.

The combination of the factors of type g and f, represent
the term p(Om,n |

∨K
k=1Xm,k ∧ Yk,n) in Equation (5) and

the local factors h, represent the logarithm of the priors. It
is easy to see that the sum of all the factors above, evaluates
to the logarithm of the posterior

log(p(X,Y | O) =
∑
m,k

hm,k(Xm,k) +
∑
k,n

hk,n(Xk,n)

+
∑
m,n

gm,n({Xm,k ∧ Yk,n}1≤k≤K)

if Wm,n,k = Xm,k ∧ Yk,n ∀m,n, k and −∞ otherwise.
Therefore, maximizing the sum of these factors is equiva-
lent to MAP inference for Equation (5).

4. Message Update
Max-sum Belief Propagation (BP) is a message passing
procedure for approximating the MAP assignment in a
graphical model. In factor-graphs without loops, max-sum
BP is simply an exact dynamic programming approach that
leverages the distributive law. In loopy factor-graphs the
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Algorithm 1: message passing for Boolean matrix
factorization/completion

Input: 1) observed matrix O ∈ {0, 1}M×N ∀m,n;
2) K ∈ N;
3) priors pXm,k, p

Y
n,k ∀m,n, k;

4) noise model pOm,n ∀m,n, k
Output: X ∈ {0, 1}M×K and Y ∈ {0, 1}K×N .
t := 0
init Φ

(t)
m,n,k,Ψ

(t)
m,n,k, Φ̂

(t)
m,n,k, Ψ̂

(t)
m,n,k, Γ̂

(t)
m,n,k and

Γ
(t)
m,n,k ∀m,n, k

while t < Tmax and not converged for all m,n, k do

Φ
(t+1)
m,n,k :=

(
Γ

(t)
m,n,k + Ψ̂

(t)
m,n,k

)
+
−
(
Ψ̂

(t)
m,n,k

)
+

Ψ
(t+1)
m,n,k :=

(
Γ

(t)
m,n,k + Φ̂

(t)
m,n,k

)
+
−
(
Φ̂

(t)
m,n,k

)
+

Φ̂
(t+1)
m,n,k := log

(
pXm,k(1)

pXm,k(0)

)
+
∑
n′ 6=n

Φ
(t)

m,n′,k

Ψ̂
(t+1)
m,n,k := log

(
pY n,k(1)

pY n,k(0)

)
+
∑

m′ 6=m

Ψ
(t)

m′,n,k

Γ̂
(t+1)
m,n,k := min

{
Φ̂

(t)
m,n,k + Ψ̂

(t)
m,n,k,

Φ̂
(t)
m,n,k, Ψ̂

(t)
m,n,k

}
Γ

(t+1)
m,n,k := min

{(
−max

k′ 6=k
Γ̂

(t)

m,n,k′
)

+
,

∑
k′ 6=k

(
Γ̂

(t)

m,n,k′
)

+
+ log

(
pOm,n(Om,n | 1)

pOm,n(Om,n | 0)

)}

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

end
calculate log-ratio of the posterior marginals

Ξm,k := log

(
pXm,k(1)

pXm,k(0)

)
+
∑
n

Φ
(t)
m,n,k

Υk,n := log

(
pY k,n(1)

pY k,n(0)

)
+
∑
m

Ψ
(t)
m,n,k

(7a)

(7b)

calculate X and Y

Xm,k :=

{
1, if Ξm,k > 0

0, otherwise

Yk,n :=

{
1, if Υk,n > 0

0, otherwise

(8a)

(8b)

return X ,Y

approximations of this message passing procedure is justi-
fied by the fact that it represents the zero temperature limit
to the sum-product BP, which is in turn a fixed point iter-
ation procedure whose fixed points are the local optima of
the Bethe approximation to the free energy (Yedidia et al.,
2000); see also (Weiss et al., 2012). For general factor-

graphs, it is known that the approximate MAP solution ob-
tained using max-sum BP is optimal within its “neighbor-
hood” (Weiss & Freeman, 2001).

We apply max-sum BP to approximate the MAP assign-
ment of the factor-graph of Figure 1. This factor-graph is
very densely connected and therefore, one expects BP to
oscillate or fail to find a good solution. However, we report
in Section 5 that BP performs surprisingly well. This can be
attributed to the week influence of majority of the factors,
often resulting in close-to-uniform messages. Near-optimal
behavior of max-sum BP in dense factor-graph is not with-
out precedence (e.g., Frey & Dueck, 2007; Ravanbakhsh
et al., 2014).

The message passing for MAP inference of Equation (5)
involves message exchange between all variables and
their neighboring factors in both directions. Here,
each message is a Bernoulli distribution. For example
mXm,k→fm,n,k

(Xm,n) : {0, 1} → <2 is the message from
variable node Xm,n to the factor node fm,n,k. For binary
variables, it is convenient to work with the log-ratio of mes-

sages – e.g., we use Φ̂m,n,k = log
(mXm,k→fm,n,k

(1)

mXm,k→fm,n,k
(0)

)
and

the log-ratio of the message is opposite direction is de-
noted by Φ̂. Messages Ψ, Ψ̂, Γ̂ and Γ in Figure 1 are
defined similarly. For a review of max-sum BP and the
detailed derivation of the simplified BP updates for this
factor-graph, see Appendix A. In particular, a naive ap-
plication of BP to obtain messages Γm,n from the likeli-
hood factors gm,n({Wm,n,k}1≤k≤K) ∀m,n to the auxil-
iary variables Wm,n,k has a O(2K) cost. In Appendix A,
we show how this can be reduced to O(K). Algorithm 1
summarizes the simplified message passing algorithm.

At the beginning of the Algorithm, t = 0, messages are
initialized with some random value – e.g., using log(U) −
log(1 − U) where U ∼ Uniform(0, 1). Using the short
notation

(
a
)

+
= max{0, a}, at time t + 1, the messages

are updated using 1) the message values at the previous
time step t; 2) the prior; 3) the noise model and observa-
tion O. The message updates of Equation (6) are repeated
until convergence or a maximum number of iterations Tmax

is reached. A possibility that we do not explore here is in
using convergent alternatives of BP. We decide the conver-
gence based on the maximum absolute change in one of the

message types e.g., maxm,n,k |Φ(t+1)
m,n,k − Φ

(t)
m,n,k|

?
≤ ε.

Once the message update converges, at iteration T , we
can use the values for Φ

(T)
m,n,k and Ψ

(T)
m,n,k to recover the

log-ratio of the marginals p(Xm,k) and p(Yn,k). These
log-ratios are denoted by Ξm,k and Υk,n in Equation (7).
A positive log-ratio Ξm,k > 0 means p(Xm,k = 1) >
p(Xm,k = 0) and the posterior favors Xm,k = 1. In this
way the marginals are used to obtain an approximate MAP
assignment to both X and Y .



Boolean Factorization and Completion via Message Passing

For better convergence, we also use damping in practice.
For this, one type of messages is updated to a linear com-
bination of messages at time t and t + 1 using a damping
parameter λ ∈ (0, 1]. Choosing Φ̂ and Ψ̂ for this purpose,
the updates of Equations (6c) and (6d) become

Φ̂
(t+1)
m,n,k := (1− λ)Φ̂

(t)
m,n,k+ (9)

λ

(
log

(
pXm,k(1)

pXm,k(0)

)
+
∑
n′ 6=n

Φ
(t)
m,n′,k

)
,

Ψ̂
(t+1)
m,n,k := (1− λ)Ψ̂

(t)
m,n,k+

λ

(
log

(
pY n,k(1)

pY n,k(0)

)
+
∑
m′ 6=m

Ψ
(t)
m′,n,k

)
.

4.1. Further Simplifications

Partial knowledge. If any of the priors, p(Xm,k) and
p(Yn,k), are zero or one, it means thatX and Y are partially
known. The message updates of Equations (6c) and (6d)
will assume ±∞ values, to reflect these hard constrains. In
contrast, for uniform priors, the log-ratio terms disappear.

Matrix completion speed up. Consider the case where
log
(pO(Om,n|1)
pO(Om,n|0)

)
= 0 in Equation (6f) – i.e., the probabil-

ities in the nominator and denominator are equal. An im-
portant case of this happens in matrix completion, when the
probability of erasure is independent of the value of Zm,n
– that is pO(null | Zm,n = 0) = pO(null | Zm,n = 1) =
pO(null) for all m and n.

It is easy to check that in such cases, Γm,n,k = min
((
−

maxk′ 6=k Γ̂
(t)
m,n,k

)
+
,
∑
k′ 6=k

(
Γ̂

(t)
m,n,k

)
+

)
is always zero.

This further implies that Φ̂m,n,k and Ψ̂m,n,k in Equa-
tions (6c) and (6d) are also always zero and calculating
Γ̂m,n,k in Equation (6f) is pointless. The bottom-line is that
we only need to keep track of messages where this log-ratio
is non-zero. Recall that Ω = {(m,n) | Om,n 6= null} de-
note the observed entries of O. Then in the message pass-
ing updates of Equation (6) in Algorithm 1, wherever the
indices m and n appear, we may restrict them to the set Ω.

Belief update. Another trick to reduce the complex-
ity of message updates is in calculating {Φ̂m,n,k}n and
{Ψ̂m,n,k}m in Equations (6c) and (6d). We may calcu-
late the marginals Ξm,k and Υk,n using Equation (7), and
replace the Equation (9), the damped version of the Equa-
tions (6c) and (6d), with

Φ̂
(t+1)
m,n,k := (1− λ)Φ̂

(t)
m,n,k + λ

(
Ξ

(t)
m,k − Φ

(t)
m,n,k

)
Ψ̂

(t+1)
m,n,k := (1− λ)Ψ̂

(t)
m,n,k + λ

(
Υ

(t)
k,n −Ψ

(t)
m,n,k

) (10a)

(10b)

where the summation over n′ and m′ in Equations (6c)
and (6d) respectively, is now performed only once (in pro-
ducing the marginal) and reused.

Recycling of the max. Finally, using one more com-
putational trick the message passing cost is reduced to
linear: in Equation (6e), the maximum of the term

(
−

maxk′ 6=k Γ̂
(t)
m,n,k

)
+

is calculated for each of K messages
{Γm,n,k}k∈{1,...,K}. Here, we may calculate the “two”
largest values in the set {Γ̂(t)

m,n,k}k only once and reuse
them in the updated for all {Γm,n,k}k – i.e., if the largest
value is Γ̂

(t)
m,n,k∗ then we use the second largest value, only

in producing Γm,n,k∗ .

Computational Complexity. All of the updates in
(6a,6b,6f,6e,10) have a constant computational cost. Since
these are performed for K|Ω| messages, and the updates
in calculating the marginals Equations (7a) and (7b) are
O(K|Ω|), the complexity of one iteration is O(K|Ω|).

5. Experiments
We evaluated the performance of message passing on ran-
dom matrices and real-world data.5 In all experiments,
message passing uses damping with λ = .4, T = 200 it-
erations and uniform priors pXm,k(1) = pY k,n(1) = .5.
This also means that if the channel is symmetric – that is
pO(1 | 1) = pO(0 | 0) > .5 – the approximate MAP re-
construction Ẑ does not depend on pO, and we could sim-
ply use pOm,n(1 | 1) = pOm,n(1 | 1) = c for any c > .5.
The only remaining hyper-parameters are rankK and max-
imum number of iterations T .

5.1. Random Matrices

Matrix Factorization. We compared our method against
binary matrix factorization method of (Zhang et al., 2007),
which was implemented by NIMFA (Zitnik & Zupan,
2012) as well as (sparse) Asso of Miettinen et al. (2006).
Here, all methods receive the correct K as input.

Figure 2 compares the reconstruction error of different
methods at different noise levels. The results are for
1000 × 1000 random matrices of rank K = 5 where X
and Y were uniformly sampled from binary matrices. The
results for different K show a similar trend.6 The recon-
struction error is

d(Z, Ẑ)
def
=

1

MN

∑
m,n

|Zm,n − Ẑm,n|. (11)

The results suggests that message passing and NIMFA
are competitive, with message passing performing better

5The Python implementation is available at https://
github.com/mravanba/BooleanFactorization

6Both message passing and NIMFA use the same number of
iterations T = 200. For NIMFA we use the default parameters
of λh = λw = 1.1 and initialize the matrices using SVD. For
Asso we report the result for the best threshold hyper-parameter
τ ∈ {.10, .31, .52, .74, .95}.

https://github.com/mravanba/BooleanFactorization
https://github.com/mravanba/BooleanFactorization
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Figure 3. The matrix completion error for Message Passing, 1-Bit matrix completion and GLRM (with and without regularization) as
a function of matrix rank and portion of observed elements |Ω| for M = N = 1000. The dashed black line indicates the tentative
information bottleneck.

Figure 4. The prediction error using Boolean matrix completion
(by message passing) versus using GLRM with hinge loss for bi-
nary matrix completion using real factors. Each panel has a dif-
ferent observed percentage of entries |Ω|

MN
∈ {.05, .2, .5}. Here

the horizontal axis identifies senator×issue matrices and the y-
axis is the average error in prediction of the unobserved portion
of the (yes/no) votes.

at higher noise levels. The experiments were repeated 10
times for each point. The small variance of message pass-
ing performance at low noise-levels is due to the multiplic-
ity of symmetric MAP solutions, and could be resolved by
performing decimation, albeit at a computational cost. We
speculate that the symmetry breaking of higher noise levels
help message passing choose a fixed point, which results in
lower variance. Typical running times for a single matrix in
this setting are 2, 15 and 20 seconds for NIMFA, message
passing and sparse Asso respectively.7

Despite being densely connected, at lower levels of noise,
BP often converges within the maximum number of itera-
tions. The surprisingly good performance of BP, despite
the large number of loops, is because most factors have
a weak influence on many of their neighboring variables.
This effectively limits the number of influential loops in
the factor-graph; see Appendix C for more.

7Since sparse Asso is repeated 5 times for different hyper-
parameters, its overall run-time is 100 seconds.

Matrix Completion. The advantage of message passing
to its competition is more evident in matrix “completion”
problem, where the complexity of BP grows with the num-
ber of observed elements, rather than the size of matrix Z.
We can “approximate” a lower-bound on the number of ob-
served entries |Ω| = MN(1 − pO(null)) required for re-
covering Z by

|Ω| > K(M +N − log(K) + 1) +O(log(K)). (12)

To derive this approximation, we briefly sketch an infor-
mation theoretic argument. Note that the total number of
ways to define a Boolean matrix Z ∈ {0, 1}M×N of rank
K is 2K(M+N)

K! , where the nominator is the number of dif-
ferent X and Y matrices and K! is the irrelevant degree of
freedom in choosing the permutation matrix U , such that
Z = (X • U) • (UT • Y ). The logarithm of this num-
ber, using Sterling’s approximation, is the r.h.s. of Equa-
tion (12), lower-bounding the number of bits required to
recover Z, in the absence of any noise. Note that this is
assuming that any other degrees of freedom in producing
Z grows sub-exponentially withK – i.e., is absorbed in the
additive term O(log(K)). This approximation also resem-
bles the O(KNpolylog(N)) sample complexity for vari-
ous real-domain matrix completion tasks (e.g., Candes &
Plan, 2010; Keshavan et al., 2010).

Figure 3 compares message passing against GLRM and
1-Bit matrix completion. In all panels of Figure 3, each
point represents the average reconstruction error for ran-
dom 1000 × 1000 Boolean matrices. For each choice of
observation percentage |Ω|

MN and rank K, the experiments
were repeated 10 times.8 The dashed black line is the
information theoretic approximate lower-bound of Equa-
tion (12). This result suggests that message passing outper-

8This means each figure summarizes 20 (rank) ×
20 (number of observations) × 10 (repeats) = 4000 experi-
ments. The exception is 1-Bit matrix completion, where due to
its longer run-time the number of repetition was limited to two.
The results for 1-Bit completion are for best β ∈ {.1, 1, 10}.
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Table 1. Matrix completion performance for MovieLense dataset.
time (sec) binary observed percentage of available ratings
min-max input? 1% 5% 10% 20% 50% 95%

1M
-d

at
as

et message passing 2-43 Y 56% 65% 67% 69% 71% 71%
GLRM (ordinal hinge) 2-141 N 48% 65% 68% 70% 71% 72%
GLRM (logistic) 4-90 Y 46% 63% 63% 63% 63% 62%

10
0K

-d
at

as
et message passing 0-2 Y 52% 60% 63% 65% 67% 70%

GLRM (ordinal hinge) 0-2 N 48% 58% 63% 67% 69% 70%
GLRM (logistic) 0-2 Y 45% 50% 62% 63% 62% 67%
1-bit completion 30-500 Y 50% 53% 61% 65% 70% 72%

forms both of these methods and remains effective close
to this bound. Figure 3 also suggests that, when using
message passing, the transition from recoverability to non-
recoverability is sharp. Indeed the variance of the recon-
struction error is always close to zero, but in a small neigh-
borhood of the dashed black line.9

5.2. Real-World Applications

This section evaluates message passing on two real-world
applications. While there is no reason to believe that the
real-world matrices must necessarily decompose into low-
rank Boolean factors, we see that Boolean completion us-
ing message passing performs well in comparison with
other methods that assume Real factors.

MovieLens Dataset. We applied our message passing
method to MovieLens-1M and MovieLens-100K dataset10

as an application in collaborative filtering. The Movie-
Lense-1M dataset contains 1 million ordinals (1-5) ratings
from 6000 users on 4000 movies (i.e., 1/24 of all the rat-
ings are available). Here we say a user is “interested” in
the movie iff her rating is above the global average of rat-
ings. The task is to predict this single bit by observing a
random subset of the available user×movie rating matrix.
For this, we use α ∈ (0, 1) portion of the 106 ratings to
predict the one-bit interest level for the remaining (1 − α
portion of the) data-points. Note that here |Ω| = αM N

24 .
The same procedure is applied to the smaller Movie-Lens-
100K dataset. The reason for including this dataset was
to compare message passing performance with 1-Bit ma-
trix completion that does not scale as well. We report the
results using GLRM with logistic and ordinal hinge loss
(Rennie & Srebro, 2005) and quadratic regularization of
the factors. 11 Here, only GLRM with ordinal hinge loss

9The sparsity of Z is not apparent in Figure 3. Here, if we
generate X and Y uniformly at random, as K grows, the ma-
trix Z = X • Y becomes all ones. To avoid this degener-
acy, we choose pXm,k(Xm,k) and pY k,n(Yk,n) so as to enforce
p(Z = 1) ≈ p(Z = 0). It is easy to check that pXm,k(1) =

pY k,n(1) =
√

1− K
√
.5 produces this desirable outcome. Note

that these probabilities are only used for random matrix “genera-
tion” and the message passing algorithm is using uniform priors.

10http://grouplens.org/datasets/movielens/
11The results reported for 1-Bit matrix completion are for best

β ∈ {.1, 1, 10} (see Equation (2)). The results for GLRM are for
the regularization parameter in {.01, .1, 1, 10} with the best test

uses actual ratings (non-binary) to predict the ordinal rat-
ings which are then thresholded.

Table 1 reports the run-time and test error of all methods
for K = 2, using different α ∈ {.01, .05, .1, .2, .5, .95}
portion of the available ratings. It is surprising that only
using one bit of information per rating, message passing
and 1-bit completion are competitive with ordinal hinge
loss that benefits from the full range of ordinal values. The
results also suggest that when only few observations are
available (e.g., α = .01), message passing performs better
than all other methods. With larger number of binary obser-
vations, 1-bit completion performs slightly better than mes-
sage passing, but it is orders of magnitude slower. Here, the
variance in the range of reported times in Table 1 is due to
variance in the number of observed entries – i.e., α = .01
often has the smallest run-time.

Reconstructing Senate Voting Records. We applied our
noisy completion method to predict the (yes/no) senate
votes during 1989-2003 by observing a randomly selected
subset of votes.12 This dataset has 7 Boolean matrices (cor-
responding to voting sessions for 101st − 107th congress),
where a small portion of entries are missing. For exam-
ple, the first matrix is a 634 × 103 Boolean matrix record-
ing the vote of 102 senators on 634 topics plus the out-
come of the vote (which we ignore). Figure 4 compares
the reconstruction error of message passing and GLRM
(with hinge loss or binary predictions) for the best choice
of K ∈ {1, . . . , 10} on each of 7 matrices. 13 In each case
we report the prediction accuracy on the unobserved en-
tries, after observing |Ω|

MN ∈ {5%, 20%, 50%} of the votes.
For sparse observations ( |Ω|MN = .05), the message passing
error is almost always half of the error when we use real
factors. With larger number of observations, the methods
are comparable, with GLRM performing slightly better.

Conclusion
This paper introduced a simple message passing technique
for approximate Boolean factorization and noisy matrix
completion. While having a linear time complexity, this
procedure favorably compares with the state-of-the-art in
Boolean matrix factorization and completion. In particular,
for matrix completion with few entries, message passing
significantly outperforms the existing methods that use real
factors. This makes message passing a useful candidate
for collaborative filtering in modern applications involving
large datasets of sparse Boolean observations.

error.
12The senate data was obtained from http://www.stat.

columbia.edu/˜jakulin/Politics/senate-data.zip prepared
by Jakulin et al. (2009).

13GLRM is using quadratic regularization while message pass-
ing is using uniform priors.

http://grouplens.org/datasets/movielens/
http://www.stat.columbia.edu/~jakulin/Politics/senate-data.zip
http://www.stat.columbia.edu/~jakulin/Politics/senate-data.zip
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