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Abstract
Budget constrained optimal design of experi-
ments is a well studied problem. Although the
literature is very mature, not many strategies are
available when these design problems appear in
the context of sparse linear models commonly
encountered in high dimensional machine learn-
ing. In this work, we study this budget con-
strained design where the underlying regression
model involves a `1-regularized linear function.
We propose two novel strategies: the first is mo-
tivated geometrically whereas the second is alge-
braic in nature. We obtain tractable algorithms
for this problem which also hold for a more gen-
eral class of sparse linear models. We perform a
detailed set of experiments, on benchmarks and a
large neuroimaging study, showing that the pro-
posed models are effective in practice. The latter
experiment suggests that these ideas may play a
small role in informing enrollment strategies for
similar scientific studies in the future.

1. Introduction
Experimental Design (ED) is a problem with deep founda-
tions dating back at least to the early 1900s (Kempthorne,
1952; Kirk, 1982). Here, given the covariates xi’s, an ex-
perimenter must conduct an experiment in order to obtain
the value of the dependent (or response) variables yi’s. The
focus of much of the classical work on this topic is to max-
imize the amount of information that the full experiment
yields for a given (or least) amount of work. In many situa-
tions, each experiment or measurement may have a mone-
tary cost associated with it. Given a fixed budget B 2 R+,
the budgeted version of the experimental design problem
is to choose the set of xi’s for which we will conduct an
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experiment to obtain the corresponding yi’s, while satisfy-
ing the budget constraint. As a simple example, the budget
constraint may restrict the number of yi’s we may request,
i.e., the experimenter can perform at most B experiments.
As before, the selected subset must be a good prototype
for the entire dataset for model estimation purposes, e.g.,
� : xi ! yi. These problems are studied under the um-
brella of optimal design (Pukelsheim, 1993).

In recent years, there is a renewed interest in ED since
it provides a framework to study numerous adaptive data
acquisition scenarios. While randomization offers one so-
lution (Recht et al., 2011), recent results demonstrate that
optimization based schemes yield a competitive alternative
(Bertsimas et al., 2015). Solutions to a number of inter-
esting variants of the problem have been proposed, for in-
stance, (Horel et al., 2014) assumes that the “cost” of a
response yi depends on participant i and that they may lie
about these costs and develops a mechanism. In vision, the
availability of crowd-sourced platforms has led to scenar-
ios where we seek to acquire low cost reliable data; trusted
workers charge a premium per HIT (Li & Guo, 2013).

Apart from these results, active learning approaches also
make use of ED concepts, but the selection process there
is sequential. An important distinction in active learning
is that the algorithm chooses the next (subset of) examples
which the back-end machine learning algorithm needs la-
beled. The algorithm then proceeds and request labels for
more examples iteratively. Most ED formulations do not
offer this flexibility. Specifically, while these methods may
try to minimize the number of queries or labelings required
(for a pre-determined accuracy), we study a related but dis-
tinct question. If we fix the number of queries a priori, we
study the issue of choosing a subset such that the corre-
sponding estimator is close to the estimator inferred from
the full dataset (i.e., yi for all xi were available). Further,
the algorithm gets no more chances to query the experi-
menter. For this formulation to make sense, the criteria for
subset selection must be closely tied to the later statistical
estimation task that the subset of samples will be used for.
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To our knowledge, existing solutions to the general version
of this problem do not scale up to large datasets (n large),
see (Dette et al., 2011). Moreover, often we need to use
sampling schemes to approximate an integral at each step
which is a nontrivial for large p due to the high dimension-
ality (Konstantinou et al., 2011).

Application. One motivating application is conducting
cost effective imaging-based neuroscience studies; this set-
ting will be used to evaluate our proposed models. In
Alzheimer’s Disease (AD), the problem of predicting fu-
ture cognitive decline is important (Landau et al., 2010;
Hinrichs et al., 2011). Identifying decliners is of direct rel-
evance in disease progression studies and also serves the
goal of maximizing statistical power in trials (Ithapu et al.,
2015) – both of which are based on longitudinal changes
in participants (Searcey et al., 1994; Hinrichs et al., 2012).
The dependent variable of interest here is change in cogni-
tion and/or diagnostic scores, over time. The independent
variables include imaging (and imaging-derived) measures,
genetic and other data acquired at the baseline time-point
(or initial visit). Here, keeping a subject enrolled in the
study (e.g., for a second visit) is expensive, but will pro-
vide the response yi for subject i. The goal is to choose a
“subset” of all subjects that can help estimate the parame-
ters of the model, without affecting the statistical power.

Our contributions include : (a) We give two formulations
for the problem. The first model is motivated geometrically
while the second one involves certain algebraic manipula-
tions. Experimentally we show that both models yield con-
sistent results, with each other as well as with the “full”
model. (b) We evaluate our algorithms on a large neu-
roimaging dataset (⇡ 1000 subjects) using both qualitative
and quantitative performance measures. Empirical results
show that our algorithms are robust and promising for for-
mulations involving sparse linear models.

2. Preliminaries
Consider the linear model yi = xT

i � + ✏ where xi,� 2
Rp, yi 2 R and ✏ ⇠ N (0, 1). The regression task for � is,

�

⇤
:= argmin

�

1

2

||X� � y||vu + ✏g(�) (1)

where the rows of X 2 Rn⇥p correspond to samples
(or data instances, subjects). Here, g is a penalty func-
tion that specifies desired properties or characteristics of
the optimal regressor �⇤ and ✏ is the Tikhonov regulariza-
tion parameter. We assume that u = v = 2 unless oth-
erwise specified which corresponds to the standard linear
regression loss function. Recall that when g(�) = �TM�
for some M � 0, then �⇤ has a closed form solution
�⇤

=

�
XTX + ✏M

�
�1

XT y also known as ridge regres-
sion. Ridge regression is particularly useful when p > n

because XTX is singular or when the covariates are highly
correlated, where a typical regressor may overfit rather than
explaining the underlying process. So, the ability to adjust
the regularizer enables the estimation process. There are
some obvious choices for M , e.g., M = I corresponds to
the least norm least squares solution. On the other hand,
when p < n and if the rank of X is p, (Li, 2008) shows that
the ridge regression is robust to noise or outliers.

Ridge Regression ED: The ED problem for ridge regression
can be written as the following (combinatorial) problem,

S⇤

:= arg max

|S|B
f

 
X

i2S

xix
T
i + ✏I

!

where we identify S with the set of selected subjects for a
budget B. This problem can be equivalently formulated as,

S

⇤
= arg max

µ2{0,1}n
f

 
nX

i=1

µixix
T
i + ✏I

!
s.t. 1T

µ  B (2)

where 12 Rn is the vector of all 1s. The choice of f
determines the nature of the regressor from the selected
subset, for example, f(·) = log det(·) is referred to as
the D�optimality criterion. Intuitively, a D�optimal de-
sign corresponds to the set of subjects that maximizes the
information gain. There are other choices for the objec-
tive, see (Das; Pukelsheim, 1993; Chaloner & Verdinelli,
1995). A common feature of many optimality criteria is
that they lead to convex problems when the integrality con-
straints are relaxed. There are efficient ways to solve this
relaxed problem — in particular, when Frank Wolfe type
methods are employed, the number of nonzero entries of
µ has a relationship with the number of iterations (Jaggi,
2013). Once the relaxed problem is solved, pipage round-
ing schemes yield a solution without sacrificing the objec-
tive function value much (Ageev & Sviridenko, 2004).

The case for `1: While ridge regression has many attractive
properties, the solutions from ridge regression may have
many nonzero entries that are close to zero (Tibshirani,
1996). Recent results suggest that in various cases it may
be more appropriate to use the `1-norm instead – it induces
sparsity in the optimal regressor and hence the model or the
regressor may be more interpretable (Candes & Tao, 2005;
Candès & Plan, 2009). When the `1-regularization is used,
coordinates with nonzero entries in the optimal regressor
correspond to features that are responsible in the “linear-
ity” of the model, and explains the “selection” aspect of
LASSO. After this procedure, a ridge regression problem
is solved only on this reduced set of features that were se-
lected by LASSO as described in (Tibshirani, 1996). The
problem of interest is �⇤

1 2 argmin�
1
2 ||X��y||22+✏||�||1.

Under some mild conditions, we can assume that �⇤

1 is
unique and so replace the containment operator with equal-
ity. Unlike ridge regression, iterative procedures are needed
here since �⇤

1 does not have a closed form expression.
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3. Our proposed formulations
Some basic assumptions. We first clarify a few basic as-
sumptions to simplify the presentation. If necessary, we
will add ✏I to the covariance matrix so that the correspond-
ing inverse and the log det(·) operations are meaningful.
We also assume without loss of generality that ||xi||2  1,
in other words, X is divided by the maximum sample norm.
The constraint 1Tµ  B can be replaced by a more general
dTµ  B for d > 0, i.e., where the cost of selecting differ-
ent subjects is different. Finally, we fix f(·) to be log det(·)
(corresponding to the D�optimality criterion) since it is
conceptually simpler. Our algorithms remain unchanged if
f is replaced by another smooth convex function.

We now describe the two models for the ED problem (for
LASSO): the first formulation in Sec. 3.1 is motivated geo-
metrically whereas the next one in Sec. 3.2 involves certain
algebraic manipulations but offers some efficiency benefits.

3.1. ED-S: Spectral Experimental Design

The ED-S approach is driven by a simple geometric inter-
pretation of the LASSO. Consider the following two equiv-
alent formulations of ridge regression and LASSO,

�

⇤
= argmin

�

1

2

||X� � y||22 + �||�||22 (RIDGE)

⌘ argmin

�

1

2

||X� � y||22 s.t. ||�||22  ⌧

(3)

�

⇤
1 = argmin

�

1

2

||X� � y||22 + �||�||1 (LASSO)

⌘ argmin

�

1

2

||X� � y||22 s.t. ||�||1  ⌧1

(4)

for positive scalars ⌧ and ⌧1. The optimal solution in both
the cases is where the objective function (identical for both
problems) touches the feasible set: the `1 (and `2 norm)
balls respectively. The difference between the problems is
that the {� : ||�||1  ⌧1} is polyhedral (compact) and
so has a finite number of extreme points given by {±ei},
where ei is the standard basis vectors in appropriate dimen-
sions, see Fig. 3.1. In (4), the objective function is likely to
touch a vertex of the `1 ball, and so yields sparse solutions.

�⇤
1

Lasso

Ridge

k�k
1

 ⌧
1

k�k2
2

 ⌧

�⇤

Figure 1. Variable selection of Lasso estimate �

⇤
1

Our proposal is motivated by the following simple observa-
tion: consider the full setting where we have access to the
entire set of yi’s and the reduced setup where yi’s are avail-
able only for a subset. Intuitively, if the objective function
of the full and the reduced setups behave similarly, then
the corresponding regression coefficients will also be sim-
ilar. To obtain this desired property, we may ask that the
reduced objective function to have approximately the same
curvature as the full one. Recall that the Hessian carries
most of the curvature information and the optimal value.
That is, eigenvalues of the Hessian are called “principal
curvatures” in differential geometry and play a critical role
in analyzing first order methods (Kingma & Ba, 2014). So,
ED-S may offer strong guarantees directly if, the spectrum
of full and reduced sets are the same; then, the iterates gen-
erated (and optimal solutions) will be similar. To that end,
we require that the eigen vectors of the Hessian to be close
to each other which may be accomplished by making sure
that the geometry of the reduced setup is preserved relative
to the full one. The unknowns, µ, will correspond to the
selection of samples for the reduced setup. Succinctly, the
ED problem can be formulated as (� � 0),

max

µ2{0,1}n
log det

 
nX

i=1

µixix
T
i + ✏I

!
+ �R�(�µ)

s.t. 1T
µ  B

(5)

where � contains the eigen vectors of the entire XTX and
�µ represents the eigen vectors of the chosen subjects given
by µ. R�(·) is a (smooth) concave function that encourages
similarity between the eigenvectors of the full Hessian and
the reduced Hessian. While the log det term captures the
linearity (D�optimal) in the regression problem, R� cap-
tures the geometry. That is, the log det term corresponds to
D-optimality for linear regression as mentioned earlier.

We can now proceed to write the explicit formulation of
the problem. For simplicity, we only promote similarity be-
tween the top eigen vector between the Hessians noting that
the top k�eigen vectors case (k  p) is easy as well. Let �
be the eigenvector corresponding to the largest eigenvalue
and u be the decision variable for the largest eigenvector of
the reduced Hessian. With this notation, taking R(·) to be
the squared loss and (� � 0), we seek to solve,

min

µ,u
log det

 
nX

i=1

µixix
T
i + ✏I

!�1

+ �||� � u||22 (6)

s.t. 0  µ  1, 1T
µ  B,

u 2 argmax

v

(
v

T

 
nX

i=1

µixix
T
i + ✏I

!
v s.t. vT v = 1

)
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3.1.1. ALGORITHM

We will now use some simple manipulations to obtain an
equivalent formulation of the above problem for which ef-
ficient algorithms can be designed.

The largest eigenvector of a symmetric positive definite
matrix can be written as an optimization problem,

arg max

u:||u||22=1
uTMu = arg min

u:||u||22=1
uTM�1u

for a given symmetric positive definite matrix M . There-
fore, our formulation can be written as,

min

µ,u
log det

 
nX

i=1

µixix
T
i + ✏I

!�1

(7)

+ �||� � u||22 + u

T

 
nX

i=1

µixix
T
i + ✏I

!�1

u

s.t. 0  µ  1, 1T
µ  B, ||u||22 = 1

The above problem is nonconvex because of the squared
norm constraint. But we note two important aspects of (7).
First, if we fix µ, we obtain a subproblem with a convex ob-
jective with one orthogonality constraint, we will call this
problem SO. Second, when we fix u, we will get a convex
optimization problem, which we will call Sµi . We will see
that these sub-problems can be solved efficiently suggest-
ing that an Alternating Minimization or a Batch coordinate
descent algorithm (Gorski et al., 2007) can be used to solve
(7). We now provide details about the sub-problems.

Algorithm 1 Alternating Minimization Algorithm
Pick arbitrary starting point µ, initialize u such that ||u||2 = 1.
for t = 1, 2, · · · , T do

Update µ argminSµ

Update u argminSO

end for

3.1.2. SUBPROBLEM SO

For a fixed µ, we define M :=

⇣Pk
i=1 µixix

T
i + ✏I

⌘
�1

.
Our model can be written as,

min

u:||u||22=1
�||� � u||22 + uTMu (8)

Expanding the `2 penalty term, we get, ||��u||22 = �T ��
2uT � + uTu = 1� 2�Tu+ uTu. The last equality is true
since � is a unit norm eigenvector. So our subproblem is,

min

u:||u||22=1
uT

(�I +M)u� 2�Tu (9)

Note that this is almost an eigenvalue problem, that is, we
are interested in the largest eigenvalue of (�I +M)

�1 ex-
cept that we also have the �2�Tu term in the objective. In

any case, since the objective is differentiable, we can run
a projected gradient method with the projection step being
the simple normalization of the vector u at each step. When
the eigenvalue spectrum of the Hessian matrix is large, we
should make sure that the top k eigenvectors of the reduced
and the full Hessian are close. In this case, we solve,

min

U2Rp⇥k

kX

j=1

||�j � uj ||22 + tr
�
UTMU

�
s.t. UTU = I

(10)
where uj , 1  j  k is the j�th column of U . While in

medium scale datasets, projected gradient algorithms tend
to be efficient, an algorithm that stays in the feasible set
(Wen & Yin, 2013; Collins et al., 2014) is better suited for
large convex problems with orthogonality constraints.

3.1.3. SUBPROBLEM Sµ

Proposition 1. Denoting the objective function of (7) as f ,
f is convex w.r.t. µ for all µ 2 [0, 1]n.

Remark: Note that if we use A� or E�optimal designs in-
stead of the D�optimal design, we can reformulate this
subproblem Sµ as a Semidefinite programming problem
with second order cone constraints which can be solved ef-
ficiently using standard optimization solvers.
Corollary 2. Alg. (1) constructs a monotonically decreas-
ing sequence of iterates in the objective.

Synopsis: Even though the geometric formulation men-
tioned in the previous section provides a clear intuition to
the problem formulation, the number of decision variables
in (6) is pk+n whereas the ED problem for ridge regression
(2) only had n decision variables. This might become prob-
lematic especially when p � n which is typically where
variable selection is essential. To remedy this issue, we
propose an alternative formulation next.

3.2. ED-I: Incoherent Experimental Design

Our second formulation utilizes a result related to the
LASSO and the well known Restricted Isometry Property
(RIP) which we formally define here and then review the
statement of a theorem that will be useful in our model.
Definition 3 (Restricted Isometry Property (Candès &
Plan, 2009)). Let X 2 Rn⇥p. For s � 0, the s-restricted
isometry constant �s of X is the smallest nonnegative num-
ber � such that (1� �)||�||2  ||X�||2  (1 + �)||�||2 for
all s�sparse �, i.e., ||�||0  s. If �s < 1, then X is a
s�restricted isometry (s�RIP).

With this definition in hand, the next theorem provides a
guarantee on the quality of variable selection.
Theorem 4. (Candès & Plan, 2009) Suppose X has
4s�RIP constant �4s  1

4 . Let �0 2 argmin�{||�||0 :
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X� = y} and �1 2 argmin�{||�||1 : X� = y}. If
||�0||0  s, then �1 = �0.

The theorem suggests that if the matrix X satisfies the RIP,
then using `1 instead of `0 is not a relaxation — the vari-
able selection done by LASSO is exactly equal to that from
the `0 problem. Using this property, we can write a com-
binatorial form of the ED problem for the LASSO model.
More formally, we seek to solve,

arg max

µ2{0,1}n
log det

 
nX

i=1

µixix
T
i + ✏I

!

s.t. 1Tµ  B,X[µ],: is 4s� RIP

where X[µ],: denotes the selected subset of rows of X , that
is, row i is chosen if µi = 1. As before, the objective drives
the inclusion of subjects based on the D-optimality crite-
rion. But the constraints require that the data matrix for the
selected set satisfy RIP — this will ensure that the variable
selection aspect of LASSO works exactly as intended.

Unfortunately, recent results show that checking 4s�RIP is
NP-Hard (Bandeira et al., 2012). Whence, even if a black
box returns an optimal X , we cannot verify the optimality.
As a result, other measures that are easy to check have been
developed as surrogates to RIP. We will utilize a common
alternative which will lead to a tractable formulation.

Leverage scores: (Juditsky & Nemirovski, 2011; Drineas
et al., 2012) and others have noted that RIP is a strong as-
sumption and in practice, a less conservative requirement
may be as effective. As a surrogate, one typically uses In-
coherence which is easier to compute, this is defined next.

In statistics, the hat matrix and leverage scores determine
how much information a data sample carries with respect
to the linear model. The hat matrix is defined as ˆH :=

X(XTX + ✏I)�1XT . The leverage score li of a partic-
ular sample i 2 {1, .., n} is defined as the i�th diago-
nal element of ˆH . With each set of leverage scores, we
may associate a quantity known as coherence defined as
c := maxi li where a higher value of c implies that the sam-
ples are highly correlated. There are various approaches in
machine learning that use coherence, rather incoherence,
see (Chen et al., 2014) . We can now provide a formulation
(analogous to the previous section) that selects the (feasi-
ble) set of samples that have the least value of c.

min

µ
log det

 
nX

i=1

µixix
T
i + ✏I

!
�1

+ � max

i=1,...,n

8
<

:µie
T
i X

 
nX

i=1

µixix
T
i + ✏I

!
�1

XT ei

9
=

;

subject to µi 2 {0, 1}, 1Tµ  B
(11)

Observe that since µi 2 {0, 1} () µ2
i 2 {0, 1}, µ � 0,

we have an equivalent form of the selection problem as,

min

µ
log det

 
nX

i=1

µixix
T
i + ✏I

!
�1

+ � max

i=1,...,n

8
<

:µ2
i e

T
i X

 
nX

i=1

µixix
T
i + ✏I

!
�1

XT ei

9
=

;

subject to µi 2 {0, 1}, 1Tµ  B (12)

3.2.1. ALGORITHM

We may solve the optimization problem using a random-
ized coordinate descent method shown in Alg. 2, see (Bert-
sekas & Tsitsiklis, 1989) for details. Here, ⇧

C

denotes the
projection onto C := {µ : 0  µ  1,1Tµ  B}.

Algorithm 2 Randomized coordinate descent algorithm for
solving (12)

Pick an arbitrary starting point µ
for t = 1, 2, · · · , T do

for k = 1, 2, · · ·n do
i 2 {0, · · · , n}, µi  µi � ⌘rµif

end for
Update µ ⇧C(µ)

end for

Proposition 5. (12) is a convex optimization problem.

Corollary 6. Denote the objective function of (12) as f .
Given an accuracy ⇢ > 0, Alg. (2) outputs a µ̄ 2 C such
that |f(µ⇤

)� f(µ̄)|  ⇢ where µ⇤ is the optimal solution.

The above statements assert that we can find the global op-
timum of the integrality relaxed problem.

3.2.2. PIPAGE ROUNDING

Pipage rounding scheme was introduced in (Ageev & Sviri-
denko, 2004) to round fractional solutions producing a fea-
sible solution without incurring a substantial loss in the
value of the objective function (Harvey & Olver, 2014),
(Chekuri et al., 2009). For this technique to work in the
present context, we need three conditions to be satisfied:
(i) For any µ 2 C, we need a vector v and �, ⌧ > 0 such
that µ+�v or µ�⌧v have strictly more integral coordinates;
(ii) For all µ, the objective function f must be convex in the
direction of v; and (iii) Most importantly, we need a starting
fractional µ with a guarantee that f(µ)  $ ·opt where opt
is the optimal value of the (discrete) optimization problem
for a known constant $. With some work (using similar
techniques as in (Horel et al., 2014)), by choosing a suitable
algorithm to solve the relaxed form of (12), we can show an
approximation ratio for the problem. However, this needs
interior point methods and we found that the overall pro-
cedure becomes impractical for our datasets. The rounding
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scheme, if applicable, is still powerful, independent of how
the relaxed form of (12) is solved.

Applicability of Rounding. It is clear from Prop. 5 and
Cor. 6 that conditions (ii) and (iii) are satisfied by the ob-
jective f in (12). So, we only need to verify condition
(i). Suppose that µ is a non-integral vector in C. Also,
assume that there are at least two fractional coordinates
µk, µl. Then, let us set v = ek � el where ek, el are stan-
dard basis vectors in k, l coordinates respectively. Letting
� := min(1�µk, µl) and ⌧ := min(1�µl, µk) we imme-
diately have that µ + �v and µ � ⌧v are vectors in C with
strictly more integral coordinates. Observe that at least one
of the two vectors stated above is feasible. When both are
feasible, if f(µ + �v) � f(µ), we set µ  � µ + �v, other-
wise we set µ � µ� ⌧v and repeat until µ 2 {0, 1}n. The
procedure terminates in at most n steps and its complexity
is determined entirely by evaluating the objective function
which involves a determinant and an inverse computation.

Implementation. We now briefly explain the implementa-
tion using simple numerical techniques. The key observa-
tion is that each step of the procedure involves at most a
(symmetric) rank-2 update of M⇤

=

Pn
i=1 µ

⇤

i xix
T
i where

µ⇤

i is the output of Alg. (2). If the determinant and inverse
of M⇤ are computed, at each step of the rounding proce-
dure, we need to compute the determinant and inverse of
M⇤

+� where � is symmetric and has rank at most 2. Us-
ing an inductive technique described in (Saigal, 1993), the
inverse can be updated in 4n2

+ 4n + 1 operations as op-
posed to O(n3

). Then, the update of the determinant only
involves computation of four dot products between vectors
of length p (Chap. 6 in (Nocedal & Wright, 2006)).

4. Experiments
Data summary. We first evaluated the overall efficacy of
our proposed formulations and algorithms on two standard
LASSO datasets (prostate, (Tibshirani, 1996) and lars,
(Efron et al., 2004)) and compared their performance to
baseline/alternative schemes. After these proof of princi-
ple experiments, we performed a set of statistical analy-
ses related to the motivating neuroscience application in-
volving imaging and cognitive data from Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (neuro). These ex-
periments were designed to assess the extent to which sta-
tistical power will be compromised when using a smaller
fraction of the subjects for estimating linear models as-
sociating imaging/clinical covariates with cognitive out-
comes. The benchmark data, prostate and lars, include 8

and 10 features respectively with one dependent variable
each, and are well-studied for feature selection. The neuro
data contains 118 features for image-derived Region-of-
Interest (ROI) summaries from Positron Emission Tomog-
raphy (PET) images. Two cognitive scores were used as de-

pendent variables: Alzheimer’s Disease Assessment Score
(ADAS) and the diagnostic rating Clinical Dementia Rat-
ing (CDR). The appendix includes additional details.

Evaluations Setup. The evaluations were two-fold. First,
we compare the performance of ED-S and ED-I to exist-
ing baseline experimental design algorithms including: (i)
a random design where a given budget number of instances
are selected uniformly at random, and (ii) a sampling pro-
cedure that approximates the distribution of the observa-
tions (referred to as “1-mean”), where we first compute the
mean of the (current) samples and the standard deviation �
and filter the samples lying inside the ball centered at the
mean with radius %||�||2 for a given % > 0. This process
is repeated after removing the points lying inside the ball.
After k steps, we will be left with k bags of samples with
varying sizes. From each of these bags, samples are se-
lected proportionally such that they sum to the budget B.
The latter scheme is popular in optimality design where the
general idea is to cover the dataset by repeatedly selecting
‘representer’ observations. Our algorithms are compared to
these baselines in terms of their ability to consistently pick
the correct features (which are defined via the full model
i.e., LASSO on all instances).

The second set of evaluations deal with the model-fit of re-
duced models (linear models learned using ED-I and ED-S
for a given budget) versus the full model. These goodness-
of-fit criteria include consistency of zeros and signs of
model coefficients, Bayesian Information Criterion (BIC),
Akaike information criterion (AIC) and adjusted R2. Re-
call that the two linear models we seek to compare do not
use the same set of observations, and they do not neces-
sarily sparsify the same set of features. Therefore, unlike
the classical non-nested hypothesis testing there is no di-
rect way (e.g., using F or �2 statistics) to compare them
(Pesaran & Weeks, 2001). To address this problem, we
generate samples from the full and reduced setups (in a
bootstrap sense) and perform a two-sample t-test. The null
hypothesis is that the full and reduced setups give ‘similar’
responses (e.g., ADAS) for a given set of covariates (ROI
values). In the ideal case, where the reduced setup cap-
tures all the variation of the full one, a non-significant (or
high) p-value is desired. This is similar to providing “in-
significant evidence” against the null (i.e., insignificant ev-
idence that the linear models are different) (Berger & Sel-
lke, 1987). A single workstation with 8 cores and 32GB
RAM is used for experiments. We ran 1000 epochs of ED-
I, and 50 main iterations of ED-S (with 20 iterations for
each of its subproblems). For a fixed budget B, ED-I and
ED-S take approximately 7 and 10 min respectively. This
is followed by rounding µis, and if the rounding generates
an infeasible solution (i.e., 1Tµ > B) we randomly drop
some of the fractional µi subjects. In all the experiments,
1Tµ overshot B by at most 3 (i.e., most µis were binary).
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(a) (b) (c) (d)
Figure 2. Errors in consistent selection of correct features (derived from full model) for prostate (a,b) and lars (c,d) datasets.

Comparison to baseline designs. Figure 2 shows the
discrepancy in feature selection versus the baseline algo-
rithms. The y-axis in these plots measures this mismatch
where the ‘correct’ features (i.e., ground truth) are assumed
to come from the full LASSO. The x-axis lists different
budgets. Clearly, both ED-I and ED-S have consistently
smaller errors compared to the two baselines, and achieve
zero error in some cases as budget increases (Figure 2(a)).
We see that the proposed models outperform the 1-mean
baseline, although the latter approximates the modes of the
data distribution efficiently. Similar behaviour is observed
for error plots vs. number of LASSO features (see Figure
2(b,d)). We note that the increase in error as the number of
LASSO features increases is due to the correlation in the
input data. Unlike the baselines, ED-I and ED-S models
select the covariates consistently, even when the number of
LASSO features is small (left ends of the x-axis).

Do reduced models approximate the full model? Figure
3 summarizes some of the model-fit measures comparing
ED-I and ED-S to full models on neuro data (complete set
of plots are in the appendix). First observe that the zero
inconsistency in Figures 3(a,c) decrease gradually as the
budget (y-axis) and/or number of allowed nonzero coef-
ficients of LASSO (x-axis) increases. The zero inconsis-
tency refers to the proportion of nonzero coefficients in the
reduced setup that are absent in the full one. The input
ROI features in neuro are strongly correlated, and there-
fore when the number of allowed nonzero coefficients is
small (top-left in Figures 3(a,c)) LASSO picks few of the
many ‘similar looking’ features making zero inconsistency
larger. Such a monotonic trend is also evident for sign in-
consistency in Figure 3(b,d). However, unlike the previous
case, the sign inconsistencies are high for smaller budgets
with a large number of nonzero features (top-right in Fig-
ure 3(b,d)). This follows directly from the fact that, at the
top-right corners LASSO gradually approaches Ridge re-
gression where it is allowed to pick > 75% of features.
Most of these nonzero coefficients will be very small in
magnitude, and due to the correlations in the data, the signs
of these coefficients are prone to mismatch. The strong lin-
ear trends of the inconsistency plots suggest that both ED-I

and ED-S are robust to noise and behave well with chang-
ing budgets and regularizers.

We see in Figure 3(e,f) that the reduced setup has much
smaller BIC compared to the full one. The red and blue
curves correspond to ED-S and ED-I respectively and the
plots are averaged across multiple choices of model and
LASSO regularizers. Clearly, the magnitude of change de-
creases monotonically as the budget increases. Further, the
adjusted R2 of reduced setup is larger (Figures 3(f)) com-
pared to full ones, although the trends are not as mono-
tonic as was seen for BIC change. This implies a bet-
ter log-likelihood model-fit for reduced setups, which fol-
lows from the fact that D-optimality objective of ED-I (and
hence ED-S) maximizes the variation among the selected
subjects. Any input feature and/or dependent variable noise
(like corrupted observations, sampling noise) from the uns-
elected subjects (which are now linear combinations of the
selected ones), does not propagate into the linear model es-
timation. This interpretation is also supported by noticing
that the gain in R2 is higher for smaller budgets and reduces
as the budget increases (Figure 3(f)). Note that, the trend in
Figure 3(f) also implies that the optimal choices of budgets
for the neuro dataset are⇠ 400 (⇠ 40% of the total popula-
tion). The R2 change of reduced vs. full model (3(f)) was
used to pick a “good” budget. Indeed, full dataset is always
better than the reduced, but here we refer to the smallest
budget that approximates the full model in R2 change as
“optimal”. Figures 3(a-f) also show that the two proposed
algorithms (ED-I and ED-S) yield very similar results.

Building upon these model-fit measures Figure 3(g,h)
shows the ratios of 1st to 4

th moments of the samples gen-
erated from the full and reduced setups. Most of these ra-
tios (even for higher order moments) are centered around
1, suggesting that reduced setups are excellent approxima-
tions of the full one. The appendix includes a discussion of
the mismatch of selected subjects between ED-I and ED-S
and sparsistency of the algorithms, another desired prop-
erty of interest for sparse models. We also quantify the ob-
servations in Figure 3(g,h) by performing hypothesis test-
ing of the reduced vs. full models. This is shown in the
box plots of p-values in Figure 3(i,j) and 3(k,l) for ED-I
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 3. Zero (a,c) and Sign inconsistency (b,d) of ED-I. Change in BIC (e) and R

2 (f) vs. full model. (g,h) Dependent variable
moments from reduced vs. full models. p-values of ED-I vs. full (i,j) and ED-S vs. full (k,l) hypothesis testing.

and ED-S respectively for different budgets (x-axis). Re-
call that the null hypothesis is that the samples from the
two setups are similar. Since we perform multiple test-
ing (tests across different model and LASSO regularizers)
for each budget, the p-values are Bonferroni corrected (the
dotted line in each plot). The ‘red’ dots below this Bon-
ferroni threshold are the significant p-values implying that
the samples from reduced and full models are different.
Clearly, these significant ones are very few and scattered
across all budgets, and much smaller compared to the non-
significant ones (denoted by blue boxes). This means that
the number of budget and regularizer combinations that re-
ject the null is extremely small. Also, such cases are much
smaller for ED-I (Figure 3(i,j)) compared to ED-S (Figure
3(k,l)). Note that depending on the number of samples (for
computing t-statistics), these scattered red points will fur-
ther reduce. Overall, we see that the reduced setups capture
all modeling/distributional characteristics of the full one for
almost all choices of budget, LASSO and/or �’s.

5. Conclusions
We addressed the problem of experimental design in sparse
linear models common in many applications. We proposed

two novel formulations and derived efficient algorithms for
experimental design problems on a budget. We presented
detailed analysis along with the optimization schemes for
`1 regularized linear models. Our technical results hold for
a more general class of sparse linear models as well as opti-
mal design criteria other than D�optimality (as long as the
relaxation yields a convex model). We showed an extensive
set of experiments providing strong evidence for the robust-
ness and efficiency of these formulations. The ideas de-
scribed here have applications in experiment design prob-
lems in neuroscience leading to potential cost savings in
longitudinal studies aimed at clinical trials.

Acknowledgements
The authors are supported by NIH R01 AG040396 (VS),
NSF CAREER RI 1252725, NIH R01 AG027161 (SCJ),
NSF CCF 1320755, University of Wisconsin ADRC
(P50 AG033514) and UW CPCP (U54 AI117924). We
thank Karl Rohe, Paul J. Rathouz and Thomas D.
Cook for various discussions related to this work. The
code is publicly available at https://github.com/sravi-
uwmadison/Exp design sparse.

http://www.adrc.wisc.edu/
http://cpcp.wisc.edu/
https://github.com/sravi-uwmadison/Exp_design_sparse
https://github.com/sravi-uwmadison/Exp_design_sparse


Experimental Design on a Budget for Sparse Linear Models and Applications

References
Ageev, Alexander A and Sviridenko, Maxim I. Pipage

rounding: A new method of constructing algorithms
with proven performance guarantee. Journal of Com-
binatorial Optimization, 8(3):307–328, 2004.

Bandeira, Afonso S, Dobriban, Edgar, Mixon, Dustin G,
and Sawin, William F. Certifying the restricted isometry
property is hard. arXiv preprint arXiv:1204.1580, 2012.

Berger, James O and Sellke, Thomas. Testing a point
null hypothesis: the irreconcilability of p values and ev-
idence. Journal of the American statistical Association,
82(397):112–122, 1987.

Bertsekas, Dimitri P and Tsitsiklis, John N. Parallel and
distributed computation: numerical methods. Prentice-
Hall, Inc., 1989.

Bertsimas, Dimitris, Johnson, Mac, and Kallus, Nathan.
The power of optimization over randomization in de-
signing experiments involving small samples. Opera-
tions Research, 2015.

Candès, Emmanuel J and Plan, Yaniv. Near-ideal model
selection by l1 minimization. The Annals of Statistics,
37(5A):2145–2177, 2009.

Candes, Emmanuel J and Tao, Terence. Decoding by linear
programming. Information Theory, IEEE Transactions
on, 51(12):4203–4215, 2005.

Chaloner, Kathryn and Verdinelli, Isabella. Bayesian ex-
perimental design: A review. Statistical Science, pp.
273–304, 1995.
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