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Abstract

We consider the problem of optimizing the
strongly convex sum of a finite number of convex
functions. Standard algorithms for solving this
problem in the class of incremental/stochastic
methods have at most a linear convergence rate.
We propose a new incremental method whose
convergence rate is superlinear — the Newton-
type incremental method (NIM). The idea of the
method is to introduce a model of the objec-
tive with the same sum-of-functions structure and
further update a single component of the model
per iteration. We prove that NIM has a superlin-
ear local convergence rate and linear global con-
vergence rate. Experiments show that the method
is very effective for problems with a large num-
ber of functions and a small number of variables.

1. Introduction

In this paper we consider the following strongly convex un-
constrained optimization problem:

min [«m D O R C0] )

Rd
€ i—1

where all f; : R? — R are twice continuously differen-
tiable convex functions and 4 : R¢ — R is convex, but not
necessarily differentiable. We also assume that for func-
tion h(x) we have access to some efficient implementation
of its proximal mapping

. 1
prox,, (z) := argmin |h(y) + §||y — 96||2 . )
yeRA
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A typical example of problem (1) is regularized empiri-
cal risk minimisation for training a machine learning al-
gorithm. In this case the variables x are the parameters of
the model, f;(x) measures the error of the model on the ith
training sample and h(z) is a regularizer, e.g. ;- or Iy /lo-
norm. Since the objective ¢ is supposed to be strongly con-
vex, it has the unique minimizer which we denote by x*.

We consider the case when the number of functions n may
be very large. In this situation for minimizing ¢ it is conve-
nient to use incremental optimization methods (Bertsekas,
2011) since the complexity of their iteration does not de-
pend on n. Unlike classical optimization methods which
process all the n functions at every iteration, incremental
methods in each iteration work only with a single com-
ponent f;'. If each incremental iteration tends to make
reasonable progress in some “average” sense, then an in-
cremental method may significantly outperform its non-
incremental counterpart (Bertsekas, 2011).

There is a large body of work in the field of incremental op-
timization methods (Byrd et al., 2014; Bordes et al., 2009;
Schraudolph et al., 2007). They all can be divided into two
groups depending on their rate of convergence.

The first group contains the stochastic gradient method
(SGD) and other methods with iterations of the form,
ZTp+1 = prox, (zx — axBpV fi, (z1)), where By is some
scaling matrix. For instance, in SGD By, is just the iden-
tity matrix; in methods oBFGS and oLBFGS (Schrau-
dolph et al., 2007), the matrix By is set to a quasi-
Newton estimate of the inverse Hessian; in method SGD-
QN (Bordes et al., 2009) the matrix By, is a diagonal ma-
trix whose entries are estimated from the secant equation;
method SQN (Byrd et al., 2014) is an advanced version
of oLBFGS; instead of estimating the gradient difference
V f(xg4+1) — V f(xr) by subtracting two stochastic gradi-

'Usually all the functions f; are grouped in small subsets
called mini-batches with further processing of one mini-batch per
incremental iteration
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ents, SQN estimates it by multiplying a stochastic Hessian
by the deterministic difference xy.1 — ;. Compared to
SGD, all these methods may have better practical perfor-
mance. However, none of them qualitatively improves on
the rate of convergence—any method from this group has
a slow sublinear rate of convergence, including the method
with B, = V2f(x;)~! (Bousquet & Bottou, 2008). Al-
though not all of these methods support proximal mapping.

The second group contains methods such as SAG (Schmidt
et al., 2013), IAG (Blatt et al., 2007), SVRG (Johnson &
Zhang, 2013), FINITO (Defazio et al., 2014b), SAGA (De-
fazio et al., 2014a), MISO (Mairal, 2015) etc. The com-
mon property of these methods is that they use such esti-
mates of the objective gradient V f(x) whose error tends
to zero as the iterate xj approaches the optimum z*. As
a result, these methods may converge with constant step
lengths, and their rate of convergence is linear.

Several recent works (Kolte et al., 2015; Lucchi et al., 2015;
Moritz et al., 2015) try to incorporate a second-order in-
formation into linear-convergent incremental methods, es-
pecially SVRG. These methods are more robust to choice
of parameters and may give better results for poorly con-
ditioned problems. However, for all of them the rate of
convergence remains linear.

The goal of this paper is to introduce an incremen-
tal optimization method with a fast superlinear local
rate of convergence—the Newton-type incremental method
(NIM). To the best of our knowledge, this is the first
method in the class of incremental methods whose rate of
convergence is superlinear. The idea of the method is to
consider a model of the objective with the same sum-of-
functions structure and further update a single component
of the model per iteration. We provide a theoretical analy-
sis of the convergence rates of NIM, both local and global.
Besides, we introduce and analyze inexact version of NIM
in spirit of inexact Newton method and inexact proximal
Newton method (Lee et al., 2012).

In the recent work (Giirbiizbalaban et al., 2015) the incre-
mental Newton (IN) method was proposed. Despite the
similar name, the IN method is completely different from
NIM. This method belongs to the first group of incremental
methods with By equal to a partial sum of V2 f;. The rate
of convergence for IN is sublinear.

The most closely-related method to NIM is SFO (Sohl-
Dickstein et al., 2014). This method also uses a second-
order model for each function f;, but, instead of the true
Hessian V?2f;(vF), it works with its approximation ob-
tained with the aid of an L-BFGS-like technique. Although
no convergence analysis of SFO is given in (Sohl-Dickstein
et al., 2014), experiments show that SFO has a linear rate
of convergence. This shows that the Hessian approxima-

tion of SFO is not accurate enough to ensure a superlinear
rate. Besides, SFO does not support a proximal mapping.

The paper is organized as follows. First we introduce the
method NIM for the general case of the strongly convex
objective ¢ with arbitrary convex twice differentiable func-
tions f;. Also we consider an inexact version of the method
and discuss in particular a new stopping criterion for the
inner optimization problem that is eligible for incremental
setting. Then in section 3 we make theoretical analysis of
the proposed method both for local and global convergence.
For the sake of clarity all technical proofs are moved to sup-
plementary material. The next section considers the special
case of linear models where method NIM has sufficiently
less memory and iteration costs. We conclude with experi-
ments and some discussion.

2. Method NIM
2.1. Model of the Objective

We begin the derivation of NIM by constructing a model of
the objective ¢ at the current iteration k. First, we form the
following convex quadratic model of each f;:

fila) ~ mi(w) = fi(eh) + VAR (@ — o)+
S =)V ez o))

for some point v,i € R?. Once we have a model of each fis
we can naturally build a model of the objective ¢:

o(x) ~ my(z) := % > mi(x) + h(x). 3)
i=1

In what follows we assume that the model (3) is strongly
convex and thus has a unique minimum

Ty, = argmin mg(x). 4)
zeR4
To obtain the new iterate xg,1, NIM first minimizes the
current model (3) and then makes a step in the direction of
the found minimum:

Tt = QT + (]. — ak)xk,

where oy, € (0, 1] is the step length. After the step is done,
NIM updates the model m or, equivalently, the centers v.
To keep the iteration complexity low, only one component
of the full model is updated at every iteration:

i o Th+1 ifi = ’ik,
Uk+1 = i A
v, otherwise,
where i, € {1,...,n} is the index of the component to

update.
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In what follows we will use the notion of scaled proximal
mapping:

. 1
proxf(x) = argmin |h(y) + iHy - xH% ,

yeR4
where H is some positive definite matrix and ||z|% =
x " Hz. Using simple rearrangement the problem (4) for
the model (3) can be equivalently written as follows:

z), = proxy, " (H, " (ux — gr)),

where we use the notation

1™ o 1 _
up = Z V2fi(vi)vk,  gr = - Z V fi(vy,), (6)
i=1 i=1

1 &
H;, = - ZVin(Uk).
i=1

Note that in case n = 1 NIM becomes equivalent to proxi-
mal Newton method (Lee et al., 2012).

2.2. Model Update

Since we update only one component of the full model m at
every iteration we need not compute the sums in (6) every
time. Instead, we keep track of the quantities Hy, ug, gi
and update them as follows (here ¢ denotes the index of the
selected component at iteration k):

1 , ,
Hy = H + - [Vin(UIch) - Vin(”llc)} ) (7
1 ‘ . o
U1 = Up + (V2 fi(Vig1)Vhgr — V2 fi(v)ok]
1 ) ,
Jk+1 = gk + o [Vfi(vfcﬂ) - Vfi(vllc)] .

In order to do this, we need to store all the centers v,i in
memory. Taking into account the cost of storing Hy, uy,
gk the total storage cost of NIM is O(nd + d?). Note that
we do not store the separate Hessians V2 f;(v!) in mem-
ory because it would cost O(nd?). Therefore, to update the
model, we need to compute the selected f; twice—once
at the new point 1 and once at the previous point v}
Below (section 4.3) we analyze the special case of the ob-
jective ¢ for linear models. In this case memory costs of
NIM can be sufficiently reduced.

2.3. Inexact Model Minimization

Unfortunately, even if the proximal mapping (2) is given in
analytic form or can be efficiently estimated, the result of
the scaled proximal mapping (5) is much harder to com-
pute. Here we need to use a separate iterative optimization
routine. Fortunately, there is a bunch of methods partic-
ularly tailored to the problem (5). Some of them are in-
tended for specific functions h(z), e.g. glmnet (Fried-
man et al., 2010) and OWL-QN (Andrew & Gao, 2007).

Others can be applied for any convex h(x) with efficient
proximal mapping (2), e.g. Fast gradient method
(FGM) (Nesterov, 2013). In what follows we will always
use Conjugate Gradient Method forsolving (5)in
case h(x) is ls-norm and FGM in all other cases. We will
refer any iterative method for solving subproblem (5) as IS
(Inexact Solver).

In classic Newton method and proximal Newton
method (Lee et al., 2012) it is common to consider
inexact search for the next optimization direction. Since
here we have chosen to use an iterative scheme for
solving the subproblem (5), it seems natural to consider
inexact solution for the inner optimization problem of
NIM as well. However, in incremental optimization we
do not have access to the full gradient of the function
f, and hence we need to find a new stopping criterion
for inexact model minimization in NIM. This criterion,
from the one hand, must be eligible for calculation in the
incremental setting and, from the other hand, must provide
the rate of convergence similar to NIM with exact model
minimization. Now we derive such criterion using notions
from (Nesterov, 2013) and leave its theoretical analysis to
section 3.

Problem (5) can be viewed as the minimization of a com-
posite function: minyecga [s(y) + h(y)], where s(y) :=
iz — y||% is a smooth function whose gradient is
Lipschitz-continuous with constant A< (H). Denote

L
Tp(z) := argmin |Vs(z) y + = [ly — z]|* + h(y)| .
yeRY 2
(®)

Note that problem (8) can be solved exactly due to our ini-
tial assumptions on proximal mapping (2). Now let us con-
sider the value

gr(x) := L(x — T (x)),

which is an analogue of the gradient of a smooth function.
If h = 0, then gz, (z) becomes Vs(x) and does not depend
on L. We propose the following stopping criterion for IS:
if z satisfies

gz (@) < min{l, (Ar)”} A,

Ay = ||og — proxy, (Up — gr)|l,

©))

then stop and return the point &) := T (x) as an approx-
imate minimizer of the model m. Here L is any number
suchthat L > Lo = 1, vy := % 2?21 vi, g is calculated
using (6) and «y € (0, 1] is some parameter. Particular value
of v determines the local rate of convergence for inexact
NIM method (see Section 3). Note that all the quantities
in expression (9) are accessible for NIM since T, () can
be calculated for any IS, gj is calculated in an incremen-
tal way (7) and v can also be tracked in an incremental
way (7).
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Algorithm 1 NIM: a Newton-type Incremental Method
1: Input: g, ..., z,_1 € R% initial points;
o > 0: step length.
2: Initialize model:
H o« (1/n) 3300 V2 fi(wi1)
u < (1/n) 3or ) V2 fi(xi1)wia
g9+ (1/n) iy Vii(wio)
Vi Ti—1, 1 =1,...,n
3: fork >n—1do
4:  Minimize model using IS with stopping crite-
rion (9): & ~ proxZ [H~(u — g)]
5:  Make a step: z11 < af + (1 — a)xg
Update model:
i< (k+1)modn+1
H — H+ (1/n)[V?fi(ar11) — V2£i(v,)]
w4 u+ (1/n) [V fi(@pir)zner — V2 fi(vi)vi]
9 g+ A/n)[Vfi(zre) = Vfi(vi))]
Vi < Th+1
7: end for

a

The general scheme of NIM in given in Algorithm 1.

3. Convergence analysis
3.1. Local rate of convergence

Here we briefly introduce main ideas which lead to the the-
orem on local convergence rate for both exact and inexact
variants of NIM. Full set of lemmas and theorems and their
proofs are given in supplementary material.

We assume x*
Hessian:

is a solution of (1) with positive definite

ZV%

We analyze NIM with unit step size o, = 1 and cyclic or-
der of component selection. Besides, we suppose all func-
tions f; have Lipschitz-continuous gradients with constant
L and Lipschitz-continuous Hessians with constant M.

) = pgd, g >0

At every iteration inexact NIM makes the step zpy1 =
Iy = argminmy () + ey, where ey, is some nonzero vec-
tor due to the stopping criterion (9). Lemma 3 from the
theoretical analysis in (Nesterov, 2013) connects the cur-
rent error ||e|| with ||gr (x)|| from the last step of IS:

lewll < Ak (H) (1 n L) loz(@).

Then the stopping criterion (9) guarantees

(14+7)/2
ler]] < Ank (Hy)(2+Ly) ””( Zm—wf) '

Lemma 1 (main estimate). Let k > n — 1 be the num-
ber of the current iteration. Assume the last n points

Thy -y Lk—n+1 are close enough to x*:
ka—z’—de_QM i=0,...,n—1.

Then for the next generated point Tj,1:

M n—1
* 12
fewer — 2] < 5 (n > llesi —a| ) +

i i=0
e (144)/2
* (|2
(15 ima-ar)
i=0

where . = 0 when the subproblem (5) is solved exactly

8(24+L;)5+2
and B = | 32FETY f;) !
stopping criterion (9).

when it is solved using IS with

This lemma shows that the local convergence rate of NIM
is determined by the convergence rate of the following (re-
current) sequence:

L L& (1+7)/2
zp = A (n Zziz) +E (n Zziz> , k>mn,
i=1 i=1

where A > 0, E > 0,0 < v < 1 are some constants.

For the sequence {z;} it is possible to show that, being
properly initialized close enough to zero, it converges to
zero at a Q-superlinear rate. Thus we come to the following
main result on the local convergence rate of NIM:

Theorem 1 (local convergence rate). Suppose that all the
initial points x, . .., x,—1 are close enough to x*:

|lz; —2*|| <R, i=0,...,n—1.
Then the sequence of iterates {xy },>0, generated by NIM
with the unit step size and cyclic order of component selec-
tion, converges to x* at an R-superlinear rate, i. e. there
exists {zy } k>0 such that

||I’k71'*|| gzk, k
kg1 < QrZk, k>mn,
where q, — 0 and

max

= e e e Pppp— *
0= 0<i<n-—1 i =27

= Zp_1:=

If the subproblem (5) is solved exactly, then

3 glk/nl—1
My

R:i=— =(1-—
g " ( 4n>
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Otherwise, if it is solved inexactly using I1.S with termina-
tion condition (9), then

3 1/(2v)
13 Hy
2M; \ 128(2 + Ly)5+27 ’

7\ (2
=(1—-—— .
I ( 16n>

R := min

3.2. Global convergence

Theorem 2 (global rate of convergence). Suppose that the
gradients V f;, i = 1,... n, are Lipschitz-continuous. Let
{zk } x>0 be the sequence of iterates generated by NIM with
a constant step length o, = o, where « is small enough,
and cyclic order of component selection. Then for any ini-
tialization of x;, i =0, ...,n — 1, the sequence {x}} con-
verges to x* at a linear rate:

|2k — .||y < const-c® ||zg — 2%, , k=0,1,...,

where ¢ € (0,1).

The details are given in supplementary material.

4. Implementation details
4.1. Model initialization

One way to initialize the model is to set all the initial points
equal: 1 = --- = z,—1 = xo. However, this approach
is quite ineffective because the method will not make any
progress during the computation of the initial values for H,
u and g (which takes a full pass over all the functions). A
better strategy is to perform n — 1 iterations of any other
incremental method (such as SGD) from x( to obtain the
points z1,...,x,_1 and build up the quantities H, u and
g during the process. Another possibility is to start from
H =0, u =0, g = 0 and then perform n — 1 iterations of
the main loop of NIM but without subtracting the quantities
V2 fi(vi), V2fi(vi)vs, Vfi(v;) during the model updates.
In our experiments we use the third strategy.

4.2. Order of component selection

We have experimented with two standard strategies of
choosing the component 7, to update: 1) cyclic when
i = (kmodn) + 1, and 2) randomized when at every
iteration 45, € {1,...,n} is chosen uniformly at random.
In all our experiments we observed that NIM always con-
verges faster under the cyclic order. This result differs NIM
from many other incremental methods where the random-
ized order usually works better (see also the discussion in
Section 5.2 of (Defazio, 2014)).

It is possible to prove that in case of randomized order NIM
convergence rate cannot be faster than linear. For this let us

consider a particular function ¢(x):
1< Lo 1 s
o) = - 3 i) = gl + gl

1 1
fr@) = Sl + Slal, @) = 5l > 1

Using NIM with randomized order for this function leads
to the following lower bound:

1 1\*
Blloall 2 5 (1- 1) Bl o

proving that NIM can have at most a linear convergence
rate. Meanwhile using NIM with cyclic order for this func-
tion gives the following upper bound:

l@rsall < llogll?, (11)

that is equivalent to Q-quadratic convergence w.r.t epochs
and R-superlinear convergence w.r.t. iterations. Details of
derivations (10) and (11) are given in supplementary ma-
terial. In case of random order some components of the
model my(x) may not be updated for a reasonable amount
of time. This may lead to quite inaccurate models that spoil
the convergence rate of NIM.

4.3. Linear models

In many machine learning problems the functions f;
have the following linearly-parameterized form: f;(z) :=
¢i(a] x), where ¢; : R — R is a univariate function
and a; € RY is some known vector. In this case, by ex-
ploiting the structure of the functions f;, we can substan-
tially reduce the storage cost of NIM. Namely, denoting
vi = a vi, we can rewrite (7) as follows:

1 , ,
Hyy1 = Hp + o [0 (V1) — 97 (V)] aia; ,

%

1 , ) ,
Ukl = Up + I [¢§/(Vi+1)1/fc+1 - ¢§/(V;1)Vk] Qs
1 ) )
Jk+1 = Gk + o (01 (V1) — di(vk) ] @i
Thus, instead of storing n vectors v};, we need to store only
n scalars v¢. This reduces the memory requirements of
NIM from O(nd + d?) to O(n + d?).

The stopping criterion (9) in IS uses o = £ 37 v}, Cal-
culating this value requires storage of all vectors v;,. In
order to reduce the memory cost in this case we use xj
instead of v in the stopping criterion (9). In practice we
found that this stopping criterion works well.

5. Experiments

We compare the empirical performance of NIM with that of
several other methods for solving (1) on the binary logistic
regression problem.
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10° a%a (n=32561, d=123)
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Figure 1. Empirical performance of different optimization methods w.r.t. epochs. Left: dataset a9a, right: dataset covtype.

We use the following methods in our comparison:

e NIM: the proposed method NIM (the version for lin-
ear models with the unit step size and cyclic order of
component selection).

e SGD: a stochastic (proximal) gradient method (with
step size oy, = n/(10k)) as a representative of sublin-
early convergent incremental methods.

e SAG: a proximal variant of the stochastic average gra-
dient method of (Schmidt et al., 2013) (the version
for linear models with constant step size « = 1/L,
where L is the analytically calculated Lipschitz con-
stant) as a representative of linearly convergent incre-
mental methods.

e Newton: an (inexact) proximal Newton method (Lee
et al., 2012) (with the unit step size and true Hessian)
as a non-incremental version of NIM.

When the objective is smooth, i.e. h(x) is continuously
differentiable, we also consider the following methods:

e L-BFGS: the limited-memory BFGS method (Liu &
Nocedal, 1989) (with the history of size 10).

e SFO: the sum of functions optimizer (Sohl-Dickstein
et al., 2014) (with default parameters).

All the methods except SFO are implemented in C++; for
SFO we use its public implementation in Python?.

As training data, we use 6 datasets (a9a, covtype, protein,
SUSY, mnistSm) including 2 datasets with n of order of
several millions. These datasets can be obtained from the

2SFO operates with (1) through big mini-batches, thus SFO
python implementation may be fast enough due to fast vector op-
erations in numpy

LIBSVM website® and from Pascal Large Scale Learning
Challenge 2008*. To binarize the original mnistSm dataset,
we group digits with labels 0, 1, 2, 3, 4 into the first class,
and other digits into the second class.

We set the regularization coefficient A\ to 1/n and run all
methods from xy = 0.

5.1. /5-regularized logistic regression

In this case our optimization problem is as follows:

min

1 & T A 2
min Z:21111(1 +exp(a; x)) + 3 |5 - (12)

This problem corresponds to (1) with

A
=3
Since h(z) is a quadratic function we use here for IS a con-
jugate gradient method.

fi(x) = 1n(1 + exp(a; ), h(z) [l

Figure 1 shows empirical performance of different methods
w.r.t. iterations (epochs) on two datasets. From this figure it
is clear that superlinearly-convergent methods (NIM, New-
ton) outperform others by far in terms of number of itera-
tions. We observe the similar picture on all other datasets,
so due to the lack of space we do not include these results
into the paper. Also it should be noted that for NIM only
5 epochs was enough for convergence with very high accu-
racy in all datasets in our experiments. Besides, the average
number of IS iterations was in the interval [1.25, 2]. These
observations give us a good preliminary estimation for the
total amount of time needed for solving a particular prob-
lem using NIM.

We have experimented with different mini-batch sizes for
NIM and SAG. Bigger mini-batches usually increase the

*http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/
‘nttp://largescale.ml.tu-berlin.de/about/
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Table 1. Calculation time of different methods for the problem (12). In the first column optimization accuracy is shown. Symbol ,,—*
means that the corresponding calculation time sufficiently exceeds the calculation time for NIM with accuracy 10~ °.

a9a (n=32561, d=123) covtype (n=581012, d=54) protein (n=145751, d=74)
Res [[NIM SAG Newton LBFGS SFO [|[NIM SAG Newton LBFGS SFO |INIM SAG Newton LBFGS SFO
1071 [[.01s .01s 3ls .05s  .03s||.19s .33s .84s S54s .04s |[.02s .15  .66s .66s  .03s
1072{.02s .05s .56s 10s  .08s || .51s .96s 1.78s 1.77s .25s ||.04s .33s 132s .93s .13s
1074 ||.15s .19s  .8ls 43s  98s || .86s 2.45s 3.09s 10.73s 3.80s || .41s 3.38s 2.16s 1.99s .96s
1076 | .24s .66s .93s  1.1l1s 1.57s|[1.49s 4.12s 4.57s 31.84s 6.81s ||.59s 14.26s 2.43s 4.52s 1.55s
1078 | .31s 1.46s 1.04s 1.82s 2.18s|[1.92s 5.90s 6.52s — 9.86s||.71s —  2.67s 594s 2.01s
10719{.34s 2.38s 1.04s 2.61s 2.81s|[2.12s 9.97s 8.84s —  12.44s||.77s — — 7.45s 2.49s
SUSY (n=5000000, d=18) alpha (n=500000, d=500) mnist8m (n=8100000, d=784)
Res |INIM SAG Newton LBFGS|| NIM SAG Newton LBFGS|| NIM SAG Newton LBFGS
1071 [[.09s 2.71s 2.48s 1.78s || 1.91s 1.36s 1.6m 4.01s [|57.68s 34.91s 47.8m 1.Im
1072 || .13s 3.84s 4.30s 2.52s ||13.37s 6.72s 2.6m 17.68s| 1.m 2.lm 1.4h 5.2m
1074 {[1.36s 1.3m 11.33s 2.60s ||36.65s 36.04s 3.4m 58.35s(16.7m 7.lm — 1.6h
1075 {(2.78s 1.9m 14.43s 4.09s ||46.66s 1.0m 3.6m 1.4m [26.7m 1.0h — —
1076 |[3.95s 2.2m 16.71s 5.26s [53.92s 1.5m 4.0m 19m |[33.5m — — —
1078 {[5.30s 2.6m 19.41s 843s || 1.0m 27m 4.1m 2.8m |[46.0m — — —
10710(|5.95s 3.4m 20.80s 9.01s || 1.2m 43m 4.7m 3.4m |[533m — — —
number of iterations needed for convergence since the In this case
model my () in NIM and similar model for SAG are up-
dated less often w.r.t. iterations. However, bigger mini- T
batches may lead to faster convergence w.r.t. time since fiz) :=In(1 +exp(a; 2)),  h(z) =z,

the scaled proximal mapping (5) is computed less often.
For the problem (12) the optimal mini-batch size for SAG
is 10, while for NIM the optimal mini-batch size is 100.
With these mini-batch sizes the calculation time needed for
model update and for the scaled proximal mapping (5) are
comparable.

Table 1 shows the calculation time of different methods
for the problem (12). Since SGD requires a huge num-
ber of iterations for convergence with high accuracy, it is
not shown in the table. We also do not show SFO results
for big datasets because its Python implementation is quite
slow in this case.

Table 1 shows that NIM converges faster than other meth-
ods in almost all the cases. Here high iteration cost for NIM
(at best O(d?)) is compensated with very small number of
iterations required for convergence. However, this is true
only for datasets with relatively small d. Higher values of
d lead to much higher iteration cost and prohibitive mem-
ory cost.

5.2. {1-regularized logistic regression
We consider the following optimization problem:

1 n
min = In(l +exp(a) z)) + Aff, .  (13)
1=1

zeR4 1N 4

Since h(x) is a non-differentiable function we use here
FGM method for IS.

Methods L-BFGS and SFO do not support a proximal op-
erator. Therefore we excluded them from experiments for
the problem (13).

Concerning the number of iterations for the problem (13)
empirical performance of different methods is quite similar
to the previous case of [y-regularizer. Again superlinearly-
convergent methods (NIM, Newton) require much less it-
erations for convergence with high accuracy in comparison
with other methods. However, here the average number of
FGM iterations lies in rather big interval. Hence predic-
tion for the total amount of time needed for NIM becomes
a more challenging problem.

Also we have experimented with different mini-batch sizes
for NIM and SAG. Here the scaled proximal mapping (5)
requires more calculation time comparing to the case of l5-
regularizer. As a result, the optimal mini-batch size for
NIM is 5000, while for SAG the optimal mini-batch size
remains equal to 10.

Table 2 shows the calculation time of different methods for
the problem (13). Here we see that for the problem (13)
NIM as before converges faster than other methods in al-
most all the cases.
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Table 2. Calculation time of different methods for the problem (13). In the first column optimization accuracy is shown. Symbol ,,—*
means that the corresponding calculation time sufficiently exceeds the calculation time for NIM with accuracy 10~ °.

a9a covtype protein alpha mnistSm
Res [[NIM SAG Newton||NIM SAG Newton||NIM SAG Newton|| NIM SAG Newton|| NIM SAG Newton
1071 ][.12s .03s .46s | .48s .42s 1.00s || .04s .12s .66s [[26.76s 1.31s 1.lm [[15.7m 33.62s 53.6m
1073 || .38s .13s 1.24s ||1.51s 3.67s 2.87s || .85s 2.48s 2.07s ||55.56s 17.26s 2.3m |[46.9m 4.0m 2.5h
104 || 44s .22s 1.40s ||2.20s 4.49s 4.55s ||[1.09s — 2.79s || I.lm 35.51s 2.5m || 1.0h 7.3m 3.l1h
1075 || .49s .64s 1.51s ||4.03s 6.47s 6.53s ||[1.22s — 3.07s || 1.3m 1.0m 29m || 1.2h 1.4h —
1076 ||.55s .95s 1.63s ||4.89s 11.07s 824s |[1.36s — 3.49s | 13m 15m 3.lm || 1.5h — —
1078 .63s 2.26s 1.78s ||5.64s 21.03s 9.95s ||[1.59s — 396s || 1.5m 29m 3.5m |[23h — —
1019/ .69s 4.09s 1.97s ||5.97s 29.65s 10.86s ||1.74s — 4.42s || 1.6m 4.8m 4.5m || 3.4h — —

6. Discussion

In case n = 1 the proposed method NIM reduces to the
proximal Newton method (Lee et al., 2012) and with addi-
tional condition h(z) = 0 reduces to the classical Newton
method. For the class of strongly convex functions with
Lipschitz-continuous Hessians these methods are known to
have local quadratic convergence and their inexact versions
are known to have local superlinear convergence for proper
choice of the forcing sequence 7;,. Also these methods are
globally convergent for small enough step size. Theorems 1
and 2 show that the same results are true for the proposed
incremental version of Newton method. Moreover, con-
vergence radius R for NIM is almost the same as that for
classical Newton (Nesterov, 2004), in particular, it does not
depend on number of functions n. These facts support NIM
to be a proper extension of Newton-like methods in incre-
mental setting.

From global convergence perspective, theorem 2 suggests
taking a step size proportional to (1¢/L¢)3. Unfortunately,
for practical purposes this value is usually too small. How-
ever, this result should be considered mostly as a qualita-
tive one (the method is globally convergent with a linear
rate). In practice, NIM successfully converges with much
larger step sizes (for example, unity step size is uniformly
appropriate for logistic regression). The reasons for such
a small step size in the theorem are the following. The
standard global convergence analysis of the classical New-
ton method (in terms of 1 and L) tells us that the step size
should be of order y/L in comparison with 1/L for the
classical gradient method (see e.g. (Boyd & Vandenberghe,
2004)). The problem here is that the analysis does not
use the fact that the matrix in the method is the Hessian;
it only considers some matrix with eigenvalues bounded
between 1 and L. As soon as the true Hessian is consid-
ered (like in cubic regularization from (Nesterov & Polyak,
2006)) Newton method becomes more effective in compar-
ison with gradient method even in the first stage of opti-
mization (far from solution). Our analysis of NIMs global

convergence is based on IAG analysis from (Gurbuzbala-
ban et al., 2015), and we use only some scaling matrix with
bounded eigenvalues instead of a true average estimate for
the Hessian. As a result, we get a step size of several orders
less than one for IAG, which in turn is less than step size
for SAG. Hence, a small step size for NIM global conver-
gence is mostly an issue of the current theoretical analysis
than a reflection of a true NIM behavior.

Although in all our experiments with logistic regression
NIM with unit step length always converged starting from
xo = 0, in other settings a step size adaptation were vital
for convergence. However, in incremental situation a step
size adaptation procedure is a challenging problem, since
we do not have access to the true objective ¢ and thus can-
not use the Armijo condition or trust-region approach. The
possible way-out here is to consider a cubic regularization
in model my(x) similar to (Nesterov & Polyak, 2006). In
this case the model my(x) becomes a strict upper bound
for the objective ¢, and hence the algorithm with unit step
size becomes globally-convergent. Moreover, cubic regu-
larization gives possibility to solve problems (1) with non-
convex objective. We refer this as one of directions for
future research.
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