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Abstract
Hypothesis testing is a useful statistical tool in
determining whether a given model should be re-
jected based on a sample from the population.
Sample data may contain sensitive information
about individuals, such as medical information.
Thus it is important to design statistical tests that
guarantee the privacy of subjects in the data. In
this work, we study hypothesis testing subject to
differential privacy, specifically chi-squared tests
for goodness of fit for multinomial data and in-
dependence between two categorical variables.

1. Introduction
Hypothesis testing provides a systematic way to test given
models based on a sample, so that with high confidence a
data analyst may conclude that the model is incorrect or
not. However, these data samples may contain highly sen-
sitive information about the subjects and so the privacy of
individuals can be compromised when the results of a data
analysis are released. For example, in the area of genome-
wide associaton studies (GWAS) Homer et al. (2008) have
shown that it is possible to identify subjects in a data set
based on publicly available aggregate statistics.

A way to address this concern is by developing new tech-
niques to support privacy-preserving data analysis. An
approach that is gaining more and more attention by the
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statistics and data analysis community is differential pri-
vacy (Dwork et al., 2006b), which originated in theoretical
computer science. In this work, we seek to develop hypoth-
esis tests that are differentially private and that give conclu-
sions similar to standard, non-private hypothesis tests.

We focus here on two classical tests for data drawn from
a multinomial distribution: goodness of fit test, which de-
termines whether the data was in fact drawn from a multi-
nomial distribution with probability vector p0; and inde-
pendence test, which tests whether two categorical random
variables are independent of each other. Both tests depend
on the chi-squared statistic, which is used to determine
whether the data is likely or not under the given model.

To guarantee differential privacy, we consider adding
Laplace and Gaussian noise to the counts of categorical
data. Using the noisy data we can form a private chi-
squared statistic. It turns out that the classical hypothesis
tests perform poorly when used with this modified statistic
because they ignore the fact that noise was added. To im-
prove this situation, we develop four new tests that account
for the additional noise due to privacy. In particular, we
give two tests based on a Monte Carlo approach to testing
the null hypothesis and two tests based on an asymptotic
distribution of the private chi-squared distribution factor-
ing in the noise distribution.

Our four differentially private tests achieve a target level
1−α significance, i.e. they reject with probability at most α
when the null hypothesis holds (in some cases, we provide
a rigorous proof of this fact and in others, it is experimen-
tally verified). This guarantees limited Type I errors. How-
ever, all of our tests do lose power; that is when the null
hypothesis is false, they correctly reject with lower proba-
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bility than the classical hypothesis tests. This corresponds
to an increase of Type II errors. We empirically show that
we can recover a level of power similar to the one achieved
by the classical versions by adding more samples.

2. Related Work
There has been a myriad of work dealing with the applica-
tion of differential privacy in statistical inference. One of
the first works that put differential privacy in the language
of statistics is Wasserman and Zhou (2010), which stud-
ies rates of convergence of distributions based on differen-
tially private data released from the exponential mechanism
(McSherry and Talwar, 2007). In a result of great general-
ity, Smith (2011) shows that for a wide class of statistics
T , there is a differentially private statistic that converges
in distribution to the same asymptotic distribution as T .
However, having the correct asymptotic distribution does
not ensure that only statistically significant conclusions are
drawn at finite sample sizes, and indeed we observe that
this fails dramatically for the most natural differentially pri-
vate algorithms. Thus, we study how to ensure significance
and optimize power at small sample sizes by focusing on
two basic statistical tests.

A tempting first approach to developing a hypothesis test
for categorical data that is also differentially private is to ei-
ther add noise directly to the chi-squared statistic that will
ensure differential privacy or to add noise to each cell count
(as we do in this work) and use a classical test with the pri-
vate counts. For the former method, the amount of noise
that must be added to ensure privacy can be unbounded
in the worst case. However, motivated by applications
to genome-wide association studies (GWAS), Uhler et al.
(2013) and Yu et al. (2014) place restrictions on the form of
the data or what is known to the data analyst to reduce the
scale of the noise that needs to be added. The work of John-
son and Shmatikov (2013) adds noise to each cell of a con-
tingency table, but then uses classical statistical tests on the
private version of the data, which we show can have very
poor significance (see Figures 1 and 2). Additionally, Uhler
et al. (2013) look at 3×2 contingency tables that are evenly
split between the two columns, and study releasing differ-
entially private χ2-statistics of the most relevant SNPs for
certain diseases by perturbing the table of counts, the χ2-
statistic itself, and the p-values for the underlying test. The
only one of these works that explicitly examine significance
and power in hypothesis testing (as we do here) is (Uhler
et al., 2013), which shows that perturbing the p-values in
independence testing does not perform much better than a
random test, independent of a selected threshold, e.g. α.
In fact, (Uhler et al., 2013) goes as far as to say that bas-
ing inference on perturbed p-values “seems impossible.”
An interesting direction for future work would be to apply

the distance-score mechanism introduced by (Johnson and
Shmatikov, 2013) and later improved by (Yu et al., 2014;
Yu and Ji, 2014; Simmons and Berger, 2016), to achieve
a target level of significance and high power in hypothesis
testing for GWAS data.

If we assume that there is some prior estimates for the con-
tingency table cell probabilities, Vu and Slavkovic (2009)
determine the sample size adjustment for the Pearson chi-
squared independence test that uses the private counts to
achieve the same power as the test with the original counts.
Several other works have shown negative experimental re-
sults for using classical inference on statistics that have
been altered for differential privacy (Fienberg et al., 2010;
Karwa and Slavković, 2012; Karwa and Slavković, 2016).

Another problem that arises when noise is added to the cells
in a contingency table is that the entries may neither be
positive nor sum to a known value n. Several works have
focused on this problem, where they seek to release a con-
tingency table in a differentially private way that also sat-
isfies some known consistency properties of the underlying
data (Barak et al., 2007; Li et al., 2010; Hardt et al., 2012;
Li and Miklau, 2012; Gaboardi et al., 2014). For indepen-
dence testing, we use techniques from Lee et al. (2015) to
find the most likely contingency table given the noisy ver-
sion of it so that we can then estimate the cell probabilities
that generated the table. This two step procedure to es-
timate parameters given a differentially private statistic is
inspired by the work of Karwa and Slavković (2016) for
estimating parameters in the β-model for random graphs.

Independent of our work, Wang et al. (2015) also look
at hypothesis testing with categorical data subject to dif-
ferential privacy. They mainly consider adding Laplace
noise to the data but point out that their method also gen-
eralizes to arbitrary noise distributions. However, in or-
der to compute critical values, they resort to Monte Carlo
methods to sample from the asymptotic distribution. Our
Monte Carlo approach samples from the exact distribution
from the underlying null hypothesis, which, unlike sam-
pling from the asymptotic distribution, guarantees signifi-
cance at least 1− α in goodness of fit tests at finite sample
sizes. We only focus on Gaussian noise in our asymptotic
analysis due to there being existing methods for finding
tail probabilities (and hence critical values) for the result-
ing distributions, but our approaches can be generalized for
arbitrary noise distributions. Further, we also consider the
power of each of our differentially private tests.

3. Differential Privacy Preliminaries
We start with a brief overview of differential privacy. In or-
der to define differential privacy, we first define neighbor-
ing databases d,d′ from some class of databasesDn where
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they differ in an individual’s data but are equal among
the rest of the data, e.g. d = (d1, · · · , di, · · · dn) and
d′ = (d1, · · · , d′i, · · · , dn) where di 6= d′i. We will con-
sider n to be known and public.
Definition 3.1 (Differential Privacy (Dwork et al., 2006b)).
Let M : Dn → O be some randomized mechanism For
ε, δ > 0 we say that M is (ε, δ)-differentially private if for
any neighboring databases d,d′ ∈ Dn and any subset of
outcomes S ⊆ O we have

Pr [M(d) ∈ S] ≤ eε Pr [M(d′) ∈ S] + δ.

If δ = 0, then we simply say M is ε-differentially private.
As is common in the privacy literature, we will think of
ε as a small constant, e.g. 0.1, and δ � 1/n as crypto-
graphically small, where we sometimes write δn to explic-
itly show its dependence on n.

A typical differentially private mechanism is to add care-
fully calibrated noise to some quantity that a data analyst
is interested in. We can release a differentially private an-
swer to a function φ : Dn → Rd by adding independent
noise to each component of φ. The scale of the noise we
add depends on the impact any individual can have on the
outcome. We use the global sensitivity of φ to quantify this
impact, which we define for i = 1, 2 as:

GSi(φ) = max
d,d′neighboring inDn

{||φ(d)− φ(d′)||i} .

Lemma 3.2 (Dwork et al. (2006a;b)). Let φ : Dn → Rd
have global sensitivity GSi(φ) for i = 1, 2. Then the
mechanism MD : Dn → Rd where MD(d) = φ(d) +

(Z1, · · · , Zd)T {Zi}
i.i.d.∼ D is ε-differentially private

if D = Laplace
(
GS1(φ)

ε

)
or (ε, δ)-differentially private if

D = N(0, σ2) with σ =
GS2(φ)

√
2 ln(2/δ)

ε .

There are many useful properties of differentially private
mechanisms. The one we will use in this paper is re-
ferred to as post-processing, which ensures privacy no mat-
ter what we do with the outcome of M .
Lemma 3.3. (Dwork et al., 2006b)Let M : Dn → O be
(ε, δ)-differentially private and ψ : O → O′ be some ar-
bitrary mapping from O to O′. Then ψ ◦M : Dn → O′

remains (ε, δ)-differentially private.

The tests that we present will be differentially private,
assuming n is known and public, because we will add
Laplace or Gaussian noise as in Lemma 3.2 to the vector
of counts in goodness of fit testing

4. Hypothesis Testing Preliminaries
Given sampled data from a population, we wish to test
whether the data came from a specific model, which is

given as a null hypothesis H0. We will denote our test as
an algorithm A that takes a dataset X, significance level
1 − α and null hypothesis H0 and returns a decision of
whether to reject H0 or not. We would like to design
our test so that we achieve Type I error at most α, that is
Pr [A(X;α,H0) = Reject|H0] ≤ α while also achieving
a small Type II error β = Pr [A(X;α,H0) = Reject|H1]
when the model is actually some alternate H1 6= H0. Note
that the probability is taken over the randomness from the
data generation and the possible randomness from the al-
gorithm A itself. It is common to refer to 1 − α as the
significance of test A and 1 − β as the power of A. We
think of bounding Type I error as a hard constraint in our
tests and then hope to minimize Type II error.

5. Goodness of Fit Test
We consider X = (X1, · · · , Xd)

T ∼ Multinomial(n,p)

where p = (p1, · · · , pd) and
∑d
i=1 pi = 1. For a good-

ness of fit test, we want to test the null hypothesis H0 :
p = p0. A common way to test this is based on the chi-

squared statistic Q2 where Q2 =
∑d
i=1

(Xi−np0i )
2

np0i
. We

present the classical chi-squared goodness of fit test in Al-
gorithm 1, which compares the chi-squared statistic Q2 to
a threshold χ2

d−1,1−α that depends on a desired level of
significance 1 − α as well as the dimension of the data.
The threshold χ2

d−1,1−α satisfies the following relation-

ship: Pr
[
χ2
d−1 ≥ χ2

d−1,1−α

]
= α. where χ2

d−1 is a chi-
squared random variable with d− 1 degrees of freedom.

Algorithm 1 Goodness of Fit Test for Multinomial Data
procedure GOF(x, α,H0 : p = p0)

Compute Q2.
if Q2 > χ2

d−1,1−α then Decision← Reject
else Decision← Fail to Reject
return Decision.

The reason why we compare Q2 with the chi-squared dis-
tribution is because of the following classical result.

Theorem 5.1. (Bishop et al., 1975) AssumingH0 : p = p0

holds, the statistic Q2 converges in distribution to a chi-
squared with d − 1 degrees of freedom, i.e. Q2 D→ χ2

d−1.

Note that this does not guarantee that
Pr
[
Q2 > χ2

d−1,1−α

]
≤ α for finite samples, never-

theless the test works well and is widely used in practice.

5.1. Differentially Private Chi-Squared Statistic

To ensure differential privacy, we add independent noise to
each component of X, which we will either use Laplace
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or Gaussian noise. The function g that outputs the counts
in the d cells has global sensitivity GS1(g) = 2 and
GS2(g) =

√
2 because one individual may move from one

cell count (decreasing the count by 1) to another (increasing
the cell count by 1). We then form the private chi-squared
statistic Q2

D based on the noisy counts,

Q2
D =

d∑
i=1

(
Xi + Zi − np0i

)2
np0i

, {Zi}
i.i.d.∼ D (1)

where the distributions for the noise that we consider in-
clude D = Laplace(2/ε) and D = N(0, σ2) where σ ≡
σ(ε, δn) =

2
√

ln(2/δn)

ε . We will denote the ε-differentially
private statistic as Q2

Lap and the (ε, δ)-differentially pri-
vate statistic as Q2

Gauss based on whether we use Laplace
or Gaussian noise, respectively. Recall that in the origi-
nal goodness of fit test without privacy in Algorithm 1 we
compare the distribution of Q2 with that of a chi-squared
random variable with d − 1 degrees of freedom. We show
in the supplementary materials that Q2

D still has the same
asymptotic distribution, with certain conditions on δn.

It then seems natural to use GOF on the private chi-squared
statistic as if we had the actual chi-squared statistic that did
not introduce noise to each count since both private and
nonprivate statistics have the same asymptotic distribution.
We will show in our results in Section 7 that if we were
to simply compare the private statistic to the critical value
χ2
d−1,1−α, we will typically not get a good significance

level even for relatively large n. In the following lemma
we show that for every realization of data, the statistic Q2

D
is expected to be larger than the actual chi-squared statistic
Q2. See the supplementary materials for the proof.
Lemma 5.2. For each realization X = x, we have
ED
[
Q2
D|x
]
≥ Q2, where D has mean zero.

This result suggests that the significance threshold for the
private version of the chi-squared statistic Q2

D should be
higher than the standard one. Otherwise, we would reject
H0 too easily using the classical test, which we show in our
experimental results. This motivates the need to develop
new tests that account for the distribution of the noise.

5.2. Monte Carlo Test: MCGOFD

Given some null hypothesis p0 and statistic Q2
D, we want

to determine a threshold τα such that Q2
D > τα at most an

α fraction of the time when the null hypothesis is true. As
a first approach, we determine threshold τα using a Monte
Carlo (MC) approach by sampling from the distribution of
Q2
D, where X ∼ Multinomial(n,p0) and {Zi}

i.i.d.∼ D for
both Laplace and Gaussian noise. We give our MC based
test MCGOF in Algorithm 2. We show in the supplementary
materials that MCGOF achieves at least our target signifi-
cance 1− α when we choose k > 1/α many samples.

Algorithm 2 MC Goodness of Fit
procedure MCGOFD(x, (ε, δ), α,H0 : p = p0)

Compute q = Q2
D (1).

Select k > 1/α.
Sample q1, · · · , qk i.i.d. from the distribution of Q2

D.
Sort the samples q(1) ≤ · · · ≤ q(k).
Compute threshold q(t) where t = d(k + 1)(1− α)e.
if q > q(t) then Decision← Reject
else Decision← Fail to Reject
return Decision

Theorem 5.3. The test MCGOFD(·, (ε, δ), α,p0)
has significance at least 1 − α, i.e.
Pr
[
MCGOFD(X, (ε, δ), α,p0) = Reject |H0

]
≤ α.

In Section 7, we present the empirical power results for
MCGOFD (along with all our other tests) when we fix an
alternative hypothesis.

5.3. Asymptotic Approach: PrivGOF

In this section we attempt to determine a more analyt-
ical approximation to the distribution of Q2

Gauss. We
focus on Gaussian noise because it is more compati-
ble with the asymptotic analysis of GOF, as opposed
to Laplace noise. Consider the random vector U =

(U1, · · · , Ud) where Ui =
Xi−np0i√

np0i
for any i ∈ [d].

We then introduce the Gaussian noise random vector as
V = (Z1/σ(ε, δn), · · · , Zd/σ(ε, δn))T ∼ N(0, Id). Let
W ∈ R2d be the concatenated vector defined as W =

(
U
V

)
.

Note that W D→ N(0,Σ′) where the covariance matrix is
the 2d by 2d block matrix

Σ′ =

[
Σ 0
0 Id

]
, where Σ = Id −

√
p0
√

p0
T

(2)

Since Σ is idempotent, so is Σ′. We next define the 2d x 2d
positive semi-definite matrix A (composed of four d by d
block matrices) as

A =

[
Id Λ
Λ Λ2

]
where Λ = Diag

(
σ(ε, δn)√
np0

)
(3)

We can then rewrite our private chi-squared statistic as a
quadratic form Q2

Gauss = WTAW.

Remark 5.4. If we have σ(ε, δn)/
√
np0 → constant then

the asymptotic distribution ofQ2
Gauss would be a quadratic

form of multivariate normals.

Similar to the classical goodness of fit test we consider the
limiting case that the random vector U is actually a mul-



Differentially Private Chi-Squared Hypothesis Testing

tivariate normal, which will result in W being multivari-
ate normal as well. We next want to be able to calculate
the distribution of the quadratic form of normals WTAW.
Note that we will write {χ2,i

1 }ri=1 as a set of r independent
chi-squared random variables with one degree of freedom.

Theorem 5.5. Let W ∼ N(0,Σ′) where Σ′ is idempotent
and has rank r ≤ 2d. Then the distribution of WTAW
where A is positive semi-definite is

∑r
i=1 λiχ

2,i
1 where

{λi}ri=1 are the eigenvalues of BTAB where B ∈ R2d×r

such that BBT = Σ′ and BTB = Ir.

Note that in the non-private case, the coefficients {λi} in
Theorem 5.5 become the eigenvalues for the rank d − 1
idempotent matrix Σ, thus resulting in a χ2

d−1 distribution.
We use the result of Theorem 5.5 in order to find a threshold
that will achieve the desired significance level 1− α, as in
the classical chi-squared goodness of fit test. We then set
the threshold τα to satisfy the following:

Pr

[
r∑
i=1

λiχ
2,i
1 ≥ τα

]
= α (4)

for {λi} found in Theorem 5.5. Note, the threshold τα is a
function of n, ε, δ, α and p0, but not the data.

We present our modified goodness of fit test when we are
dealing with differentially private counts in Algorithm 3.

Algorithm 3 Private Chi-Squared Goodness of Fit Test
procedure PrivGOF(x, (ε, δ), α,H0 : p = p0)

Set σ = 2
√

log(2/δ)/ε.
Compute Q2

Gauss from (1) and τα that satisfies (4).
if Q2

Gauss > τα then Decision← Reject
else Decision← Fail to Reject
return Decision

6. Independence Testing
We now consider the problem of testing whether two ran-
dom variables Y(1) ∼ Multinomial(1, π(1)) and Y(2) ∼
Multinomial(1, π(2)) are independent of each other. We
then form the null hypothesis H0 : Y(1)⊥Y(2), i.e. they
are independent. One approach to testing H0 is to sample
n joint outcomes of Y(1) and Y(2) and count the num-
ber of observed outcomes, Xi,j which is the number of
times Y (1)

i = 1 and Y (2)
j = 1 in the n trials, so that we

can summarize all joint outcomes as a contingency table
X = (Xi,j) ∼ Multinomial(n,p), where pi,j is the prob-
ability that Y (1)

i = 1 and Y (2)
j = 1. We will write the full

contingency table of counts X = (Xi,j) as a vector with
the ordering convention that we start from the top row and
move from left to right across the contingency table.

We want to calculate the chi-squared statistic as in the
goodness of fit section (where now the summation is over

all joint outcomes i and j), but now we do not know the
true proportion p = (pi,j) which depends on π(1) and
π(2). However, we can use the maximum likelihood esti-
mator (MLE) p̂ for the probability vector p subject to H0

to form the statistic Q̂2 =
∑
i,j

(Xi,j−np̂i,j)2
np̂i,j

. Note that un-

der the null hypothesis we can write p as a function of π(1)

and π(2),

p = f(π(1), π(2)) where fi,j(π(1), π(2)) = π
(1)
i ·π

(2)
j . (5)

Further, we can write the MLE p̂ as described below.
Lemma 6.1 ((Bishop et al., 1975)). Given X, which is n
samples of joint outcomes of Y(1) ∼ Multinomial(1, π(1))
and Y(2) ∼ Multinomial(1, π(2)), if Y(1)⊥Y(2), then the
MLE for p = f(π(1), π(2)) for f given in (5) is the follow-
ing: p̂ = f(π̂(1), π̂(2)) where

π̂
(1)
i = Xi,·/n, π̂

(2)
j = X·,j/n for i ∈ [r], j ∈ [c] (6)

where Xi,· =
∑r
j=1Xi,j and X·,j =

∑c
i=1Xi,j .

We then state another classical result that gives the asymp-
totic distribution of Q̂2 given H0.
Theorem 6.2. (Bishop et al., 1975) Given the assumptions
in Lemma 6.1, the statistic Q̂2 D→ χ2

ν for ν = (r−1)(c−1).

Algorithm 4 Pearson Chi-Squared Independence Test
procedure Indep(x, α)
p̂←MLE calculation in (6)
Compute Q̂2 and set ν = (r − 1)(c− 1).
if Q̂2 > χ2

ν,1−α and all entries of x are at least 5 then
Decision← Reject
else Decision← Fail to Reject
return Decision.

The chi-squared independence test is then to compare the
statistic Q̂2, with the value χ2

ν,1−α for a 1− α significance
test. We formally give the Pearson Chi-Squared test in Al-
gorithm 4. An often used “rule of thumb” (Triola, 2014)
with this test is that it can only be used if all the cell counts
are at least 5, otherwise the test Fails to Reject H0. We will
follow this rule of thumb in our tests.

Similar to our prior analysis for goodness of fit, we aim to
understand the asymptotic distribution from Theorem 6.2.
First, we can define Û in terms of the MLE p̂ given in (6):

Ûi,j = (Xi,j − np̂i,j)/
√
np̂i,j . (7)

The following classical result gives the asymptotic distri-
bution of Û under H0, which also proves Theorem 6.2.
Lemma 6.3. (Bishop et al., 1975) With the same hypothe-
ses as Lemma 6.1, the random vector Û

D→ N (0,Σind)
where Σind = Irc −

√
p · √pT − Γ(ΓTΓ)−1ΓT with f

given in (5), and Γ = Diag(
√
p)−1 · ∇f(π(1), π(2)).
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In order to do a test that is similar to Indep given in Algo-
rithm 4, we need to determine an estimate for π(1) and π(2)

where we are only given access to the noisy cell counts.

6.1. Estimating Parameters with Private Counts

We now assume that we do not have access to the counts
Xi,j in a contingency table but instead we have Wi,j =
Xi,j + Zi,j where Zi,j ∼ D for Laplace or Gaussian noise
given in (1) and we want to perform a test for indepen-
dence. We consider the full likelihood of the noisy r × c
contingency table Pr

[
X + Z = w|H0, π

(1), π(2)
]

to find
the best estimates for {π(i)} given the noisy counts.

Algorithm 5 Two Step MLE Calculation
procedure 2MLE(X + Z = w)

x̃← Solution to (8).
if D = Gauss then set γ = 1
if D = Lap then set 0 < γ � 1 .
if Any cell of x̃ is less than 5 then π̃(1), π̃(2) ← NULL

else π̃(1), π̃(2) ←MLE with x̃ given in (6).
return π̃(1) and π̃(2).

We will follow a two step procedure similar to the work
of (Karwa and Slavković, 2016). We will first find the
most likely contingency table given the noisy data w and
then find the most likely probability vectors under the null
hypothesis that could have generated that denoised contin-
gency table (this is not equivalent to maximizing the full
likelihood, but it seems to work well as our experiments
later show). For the latter step, we use Equation (6) to get
the MLE for π(1) and π(2) given a vector of counts x. For
the first step, we need to minimize ||w − x|| subject to∑
i,j xi,j = n and xi,j ≥ 0 where the norm in the objec-

tive is either `1 for Laplace noise or `2 for Gaussian noise.

Note that for Laplace noise, the above optimization prob-
lem does not give a unique solution and it is not clear which
contingency table x to use. One solution to overcome this
is to add a regularizer to the objective value. We will fol-
low the work of (Lee et al., 2015) to overcome this problem
by using an elastic net regularizer (Zou and Hastie, 2005):

argmin
x

(1− γ) · ||w − x||1 + γ · ||w − x||22 (8)

s.t.
∑
i,j

xi,j = n, xi,j ≥ 0.

where if we use Gaussian noise, we set γ = 1 and if we
use Laplace noise then we pick a small γ > 0 and then
solve the resulting program. Our two step procedure for
finding an approximate MLE for π(1) and π(2) based on our
noisy vector of counts w is given in Algorithm 5, where we
take into account the rule of thumb from Indep and return
NULL if any computed table has counts less than 5.

We will denote p̃ to be the probability vector of f from (5)
applied to the result of 2MLE(X+Z). We now write down
the private chi-squared statistic when we use the estimate
p̃ in place of the actual (unknown) probability vector p:

Q̃2
D =

∑
i,j

(Xi,j + Zi,j − np̃i,j)2

np̃i,j
{Zi,j}

i.i.d.∼ D. (9)

Algorithm 6 MC Independence Testing
procedure MCIndepD(x, (ε, δ), α)

w← x + Z, where {Zi,j}
i.i.d.∼ D and D given in (1).

(π̃(1), π̃(2))← 2MLE(w) and p̃← f(π̃(1), π̃(2)).
if (π̃(1), π̃(2)) == NULL then

return Fail to Reject
else
q̃ ← Q̃2

D using w and p̃.
Set k > 1/α and q ← NULL.
for t ∈ [k] do

Generate contingency table x̃ using
(
π̃(1), π̃(2)

)
.

w̃← x̃ + Z, where {Zi,j}
i.i.d.∼ D.

(˜̃π1
, π(2))← 2MLE(w̃).

if (˜̃π1
, ˜̃π2

) == NULL then
return Fail to Reject.
else Compute Q̃2

D from (9), add it to array q.
τ̃α ← the d(k + 1)(1− α)e ranked statistic in q.
if q̃ > τ̃α then return Reject H0.
else return Fail to Reject H0.

6.2. Monte Carlo Test: MCIndepD

We first follow a similar procedure as in Section 5.2 but us-
ing the parameter estimates from 2MLE instead of the ac-
tual (unknown) probabilities. Our procedure MCIndepD
(given in Algorithm 6 ) works as follows: given a dataset
x, we will add the appropriately scaled Laplace or Gaus-
sian noise to ensure differential privacy to get the noisy ta-
ble w. Then we use 2MLE on the private data to get ap-
proximates to the parameters π(i), which we denote as π̃(i)

for i = 1, 2. Using these probability estimates, we sample
k > 1/α many contingency tables and noise terms to get k
different values for Q̃2

D and choose the d(k + 1)(1 − α)e
ranked statistic as our threshold τ̃α. If at any stage 2MLE
returns NULL, then the test Fails to Reject H0. We for-
mally give our test MCIndepD in Algorithm 6.

6.3. Asymptotic Approach: PrivIndep

We will now focus on the analytical form of our private
statistic when Guassian noise is added. We can then write
Q̃2
Gauss = W̃T ÃW̃ in its quadratic form, which is similar
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Figure 1. Significance of test PrivGOF in 10, 000 trials with (ε, δ) = (0.1, 10−6).

Algorithm 7 Private Independence Test for r × c tables
procedure PrivIndep(x, (ε, δ), 1− α)
w← x + Z where Z ∼ N(0, σ2Ir·c).(
π̃(1), π̃(2)

)
← 2MLE(w).

if
(
π̃(1), π̃(2)

)
== NULL then

return Fail to Reject
else
p̃← f

(
π̃(1), π̃(2)

)
for f given in (5).

Set Q̃2
Gauss from (9) with w and τ̃α from (11).

if Q̃2
Gauss > τ̃α then return Reject

else return Fail to Reject

to the form of Q2
Gauss where W̃ =

(
Ũ
V

)
with Ũ set in (7)

except with p̃ used instead of the given p0 in the goodness
of fit testing. Further, we denote Ã as A in (3) but with
p̃ instead of p0. We will use the 2rc by 2rc block matrix
Σ̃′ind to estimate the covariance of W̃, where

Σ̃′ind =

[
Σ̃ind 0

0 Irc

]
(10)

and Σ̃ind is the matrix Σind in Lemma 6.3, except we use
our estimates π̃(1), π̃(2), or p̃ whenever we need to use the
actual (unknown) parameters.

Thus, if we are given a differentially private version of a
contingency table where each cell has added independent
Gaussian noise with variance σ2, we calculate Q̃2

Gauss and
compare it to the threshold τ̃α where

Pr

[
rc∑
i=1

λ̃iχ
2,i
1 ≥ τ̃α

]
= α (11)

with {λ̃i} being the eigenvalues of B̃T ÃB̃ with rank ν =

rc + (r − 1)(c − 1) matrix B̃ ∈ R2rc,ν where B̃B̃T =

Σ̃′ind. Our new independence test PrivIndep is given in
Algorithm 7, where 2MLE estimates π(i) for i = 1, 2 and
PrivIndep Fails to Reject if 2MLE returns NULL.

7. Significance Results
We now show how each of our tests perform on simulated
data when H0 holds in goodness of fit and independence
testing. We fix our desired significance 1 − α = 0.95 and
privacy level (ε, δ) = (0.1, 10−6) in all of our tests.

By Theorem 5.3, we know that MCGOFD will have signifi-
cance at least 1 − α. We then turn to our test PrivGOF
to compute the proportion of trials that failed to reject
H0 : p = p0 when it holds. In Figure 1 we give several dif-
ferent null hypotheses p0 and sample sizes n to show that
PrivGOF achieves near 0.95 significance in all our tested
cases. We also compare our results with how the original
test GOF would perform if used on the private counts with
either Laplace and Gaussian noise.

We then turn to independence testing for 2×2 contingency
tables using both MCIndepD and PrivIndep. Note that
our methods do apply to arbitrary k × ` tables and run in
time poly(k, `, log(n)) plus the time for the iterative Imhof
method to find the critical values. In Figure 2 we compute
the empirical significance of both of our tests and compare
it to how Indep performs on the nonprivate data. For
MCIndepD and PrivIndep we sample 1,000 trials for
various parameters π(1), π(2), and n that could have gener-
ated the contingency tables. We set the number of samples
k = 50 in MCIndepD regardless of the noise we added
and when we use Laplace noise, we set γ = 0.01 as the
parameter in 2MLE.

We also plot the critical values of our various tests in Fig-
ure 3. For both PrivGOF and PrivIndep we used the
package in R “CompQuadForm” that has various methods
for finding estimates to the tail probabilities for quadratic
forms of normals, of which we used the “imhof” method
(Imhof, 1961) to approximate the threshold for each test.
Note that in MCIndepD and PrivIndep each trial has a
different threshold, so we give the average over all trials.
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Figure 2. Significance of Indep when used on a contingency table with added Laplace or Gaussian noise compared to MCIndepD for
both Laplace and Gaussian noise and PrivIndep in 1,000 trials with (ε, δ) = (0.1, 10−6) and α = 0.05.

Figure 3. Comparison of the (average) critical values for all of our tests with α = 0.05 and (ε, δ) = (0.1, 10−6).

8. Power Results
We now want to show that our tests correctly reject H0

when it is false, fixing parameters α = 0.05 and (ε, δ) =
(0.1, 10−6). For our two goodness of fit tests, MCGOFD
(with k = 100) and PrivGOF we test whether the multi-
nomial data came from p0 = (1/4, 1/4, 1/4, 1/4) when it
was actually sampled from p1 = p0+0.01 ·(1,−1, 1,−1).
We compare each of our tests with the classical Indep
test that uses the unaltered data in Figure 4. We then find
the proportion of 1,000 trials that each of our tests rejected
H0 : p = p0 for various n. Note that Indep has difficulty
distinguishing p0 and p1 for reasonable sample sizes.

Figure 4. Power Plots of MCGOFD and PrivGOF, as well as our
independence tests MCIndepD and PrivIndep compared with
the classical tests, with (ε, δ) = (0.1, 10−6).

We then turn to independence testing for 2 × 2 ta-

bles with our two differentially private tests MCIndepD
and PrivIndep. We fix the alternate H1 :
Cov(Y(1),Y(2)) = ∆ > 0 so that Y(1) ∼ Bern(π(1) =
1/2) and Y(2) ∼ Bern(π(2) = 1/2) are not independent.
We then sample contingency tables from a multinomial
distribution with probability p1 = (1/4, 1/4, 1/4, 1/4) +
∆(1,−1, 1,−1) and various sizes n. We compute the pro-
portion of 1,000 trials that MCIndepD and PrivIndep
rejected H0 : Y(1)⊥Y(2) and ∆ = 0.01 in Figure 4. For
MCIndepD we set the number of samples k = 50 and
when we use Laplace noise, we set γ = 0.01 in 2MLE.

9. Conclusion
We proposed new hypothesis tests based on a private ver-
sion of the chi-squared statistic for goodness of fit and in-
dependence tests. For each test, we showed analytically or
experimentally that we can achieve significance close to the
target 1 − α level similar to the nonprivate tests. We also
showed that all the tests have a loss in power with respect to
the non-private classical tests, with methods using Laplace
noise outperforming those with Gaussian noise, due to the
fact that the Gaussian noise has higher variance (to achieve
the same level of privacy). Experimentally we show for
2× 2 tables that with less than 3000 additional samples the
tests with Laplace noise achieve the same power as the clas-
sical tests. Typically, one would expect differential privacy
to require the sample size to blow up by a multiplicative
1/ε factor. However, we see a better performance because
the noise is dominated by the sampling error.
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