
Multi-Player Bandits – a Musical Chairs Approach

Jonathan Rosenski JONATHAN.ROSENSKI@WEIZMANN.AC.IL

Weizmann Institute of Science, Rehovot 7610001, Israel

Ohad Shamir OHAD.SHAMIR@WEIZMANN.AC.IL

Weizmann Institute of Science, Rehovot 7610001, Israel

Liran Szlak LIRAN.SZLAK@WEIZMANN.AC.IL

Weizmann Institute of Science, Rehovot 7610001, Israel

Abstract
We consider a variant of the stochastic multi-
armed bandit problem, where multiple players si-
multaneously choose from the same set of arms
and may collide, receiving no reward. This
setting has been motivated by problems arising
in cognitive radio networks, and is especially
challenging under the realistic assumption that
communication between players is limited. We
provide a communication-free algorithm (Musi-
cal Chairs) which attains constant regret with
high probability, as well as a sublinear-regret,
communication-free algorithm (Dynamic Musi-
cal Chairs) for the more difficult setting of play-
ers dynamically entering and leaving throughout
the game. Moreover, both algorithms do not re-
quire prior knowledge of the number of players.
To the best of our knowledge, these are the first
communication-free algorithms with these types
of formal guarantees.

1. Introduction
The stochastic multi-armed bandit (MAB) problem is a
classic and well-studied setting of sequential decision-
making, which exemplifies the dilemma of exploration vs.
exploitation (see (Bubeck & Cesa-Bianchi, 2012) for a
comprehensive review). In this problem, a player sequen-
tially chooses from a set of actions, denoted as ‘arms’. At
every round, each arm produces a reward sampled from
some unknown distribution in [0, 1], and the player receives
that reward, but does not observe the reward of other arms.
The player’s goal, of course, is to maximize the cumula-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

tive reward. The dilemma of exploration vs. exploitation
here is that the more the player ‘explores’ by trying dif-
ferent arms, she will have a better understanding of each
machine’s expected reward. The more the player ‘exploits’
the machine which she thinks is best, the less rounds are
wasted on exploring bad machines.

In this work, we study a variant of this problem, where
there are many players who choose from the same set of
arms. If two or more choose the same arm then there is a
‘collision’ and no reward is provided by that arm. More-
over, we assume that players may not communicate. The
goal is to find a distributed algorithm for players that will
maximize the sum of their rewards. One motivation for this
setting (as discussed in the Related Work section below)
comes from the field of cognitive radio networks, where
several users utilize the same set of channels, in a situation
where the quality of the different channels varies, and di-
rect coordination between the players is not possible. We
use the standard notion of (expected) regret to measure our
performance, namely the difference between the expected
cumulative reward of the arm with highest mean reward,
and the expected cumulative rewards of the players.

We focus on a particularly challenging situation, where the
players cannot communicate, there is no central control,
and the players cannot even know how many other players
are also participating. At every round each player decides
which arm to sample. After the round is over the player
receives the reward associated with the chosen arm, or an
indication that the arm was chosen by at least one other
player, in which case they receive no reward. The event
that more than one player chooses the same arm will be
referred to as a collision.

We will consider two variants in this work - a static setting
in which all players start the game simultaneously and play
for T rounds, and a dynamic setting, in which players may
enter and exit throughout the game. Our main results are
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the following:

• For the static case we propose and analyze the Mu-
sical Chairs (MC) algorithm, which achieves, with
high probability and assuming a fixed gap between the
mean rewards, a constant regret independent of T .

• For the dynamic setting we propose the Dynamic
Musical Chairs (DMC) algorithm, which achieves an
Õ(
√
xT ) regret (with high probability and assuming

a fixed gap between rewards), where x is a bound on
the total number of players entering and leaving.

• We study the behavior of previous algorithms for this
problem, and show that in the dynamic setting, there
are some reasonable scenarios leading to their regret
being linear in T. For other scenarios, we show that
our regret guarantees improve on previous ones.

• We present several experiments which validate our
theoretical findings.

All guarantees hold assuming all players implement the al-
gorithm, but do not require any communication or coordi-
nation during the game.

Related Work

Most previous work on multi-player multi-armed bandits
assumed that players can communicate, and included ele-
ments such as a negotiation phase or exact knowledge of
the number of players, which remains fixed throughout the
game, e.g. (Liu & Zhao, 2009; Anandkumar et al., 2011;
Kalathil et al., 2014). However, in modeling problems such
as cognitive radio networks, where players may be unable
or unwilling to coordinate, these are not always realistic as-
sumptions. For example, the algorithm proposed in (Liu
& Zhao, 2009) relies on the players agreeing on a time
division schedule for sharing the best arms, and requires
all players to know the number of players, which needs to
be fixed. (Anandkumar et al., 2011) provide an algorithm
which is communication and cooperation free, but the per-
formance guarantees of this algorithm are rather vague, and
do not hold for the dynamic setting. Another approach
which requires communication is the algorithm proposed
in (Kalathil et al., 2014), called dUCB4, in which players
negotiate using Bertsekas’ auction algorithm, in order to
reach an agreement where each player will have a unique
arm. The paper also proposes an algorithm for stochastic
rewards changing according to a Markov process.

The work most similar to ours is (Avner & Mannor, 2014),
where communication is not allowed and there is no knowl-
edge of the number of players. The proposed algorithm,
named MEGA, is based on an elegant combination of the
well-known ε- greedy MAB algorithm, together with a

collision avoidance mechanism inspired by the classical
ALOHA protocol.

We discuss in detail the MEGA algorithm in section 4, and
show that it may perform poorly in some reasonable dy-
namic scenarios. Essentially, this is because collision fre-
quency decreases as the game proceeds, but never reaches
zero. Although the frequency can be tuned based on the
algorithm’s parameters, it is difficult to find a single com-
bination of parameters that will work well in all scenarios.

2. Setting
In the standard (single-player) stochastic MAB setting
there are K arms, with the rewards of each arm i ∈ [K]
sampled independently from some distribution on [0, 1],
with expected reward µi. Every round, a player chooses
an arm and would like to receive the highest cumulative re-
ward possibly in T rounds overall. In this work, we focus
for simplicity on the finite-horizon case, where T is fixed
and known in advance.

The multi-player MAB setting is similar, but with several
players instead of a single one. In fact, we consider two
cases: one where the set of players, and therefore num-
ber of players N , is fixed and another where the number
of players, Nt, can change at any round t. In our model
we would like to minimize, or even eliminate, any central
control and communication, and assume that players do not
even possess knowledge of the value of Nt. Generally, we
assume K, N and Nt are all much smaller than T . We
will denote by ”the top N arms” the set of N arms with the
highest expected rewards.

The performance in the standard single-player MAB set-
ting is usually measured by how small is the regret (where
we take expectations over the rewards of the arms):

R := T · µ∗ −
T∑
t=1

µ (t)

where µ (t) is the expected reward of the arm chosen by the
single player at round i, and µ∗ = maxi µ

i is the expected
reward of the arm with the highest expected reward. The
regret is non-trivial if it is sub-linear in T .

In the multi-player setting, we generalize this notion, and
define our regret with respect to the best static allocation
of players to arms (in expectation over the rewards), as fol-
lows:

R :=

T∑
t=1

∑
k∈K∗t

µk −
T∑
t=1

N∑
j=1

µj (t) · (1− ηj (t))

where µj (t) is the expected reward of the arm chosen by
player j at round t, Nt is the number of players at round t,



Multi-Player Bandits – a Musical Chairs Approach

K∗t is the set of the highest Nt ranked arms where the rank
is taken over the expected rewards, and ηj (t) is a collision
indicator, which equals 1 if player j had a collision at round
t, and 0 otherwise. We define a collision as the event where
more than one player chose the same arm at a given round,
and assume that no reward is obtained in that case.

Since achieving sublinear regret is trivially impossible
when there are more players than arms, we assume
throughout that the number of players is always less than
the number of arms.

3. Algorithms and Analysis
3.1. The Musical Chairs (MC) Algorithm

We begin by considering the static case, where no players
enter or leave. The MC algorithm, that we present below
for this setting, is based on the idea that after a finite time
of random exploration, all players learned a correct rank-
ing of all the arms with high probability (assuming gaps
between the mean rewards). If after this time all players
could fix on one of the top N arms and never leave, then
from this point onward, there would be no regret accumu-
lating. The algorithm we present is composed of a learning
phase, with enough rounds of random exploration for all
players to learn the ranking of the arms and the number of
players; a ‘Musical Chairs’ phase, in which the N players
fix on the topN arms; and a ‘fixed’ phase where all players
remain fixed on their arm.

Algorithm 1 MC
Input: Parameters T0, T1
CT0 = 0, µ̃i (t) = 0, oi = 0, si (0) = 0 ∀i ∈ 1, ...,K
for t = 0 to T0 do

sample arm i ∼ U (1, ...,K)
receive η (t) and r (t)
if η (t) 6= 1 then

update oi = oi + 1
si (t) = si (t− 1) + r (t)

else
CT0

= CT0
+ 1 // # collisions

end if
end for
∀i ∈ 1, ...,K set µ̃i = si(T0)

oi
// Estimate of µi

Sort indices in [K] according to empirical mean in an
array. Call this array A.

N∗ := min

round

 log

(
T0−CT0

T0

)
log(1− 1

K )
+ 1

 ,K

 and

N∗ := K if CT0
= T0

j = Musical Chairs(N∗ , A )
Stay fixed on arm j for the remainder of the rounds (total
rounds is T1 )

Algorithm 2 Musical Chairs
Input: Parameter N∗, sorted array of arms A
loop for T1 − T0 iterations

sample i ∼ U (1, ..., N∗) and choose arm A[i]
receive η (t)
if η (t) == 0 then

output A[i] and return
end if

end loop

The Musical Chairs subroutine works by having each
player randomly choose an arm in the top N arms, until
she chooses one without experiencing a collision. From
that point onwards, she chooses only that arm. It can be
shown that if all players implement this subroutine, then af-
ter a bounded number of rounds (in expectation), all players
will fix on different arms, and there will be no more added
regret. The Musical Chairs subroutine’s success depends
on each player being able to accurately estimate a correct
ranking of the machines (the ranking needs to be accurate
enough to distinguish the best N machines from the rest)
and to estimate the correct value of N .

3.2. Analysis of the MC algorithm

Let N be the number of players and let i1, ..., iN denote
the best N ranked arms. For each player we denote by µ̃j
to be that player’s measured empirical mean reward of arm
j. We use the following definition from (Avner & Mannor,
2014):
Definition 1. An ε-correct ranking of K arms is a sorted
list of empirical mean rewards of arms such that ∀i, j : µ̃i
is listed before µ̃j if µi − µj > ε

Theorem 1. Let ∆ > 0 be the gap between the expected
reward of the N th best arm and the N + 1 best arm. Then
for all ε < ∆ and δ ∈ (0, 1), with probability ≥ 1− δ, the
expected regret of N players using the MC algorithm with
K arms for T rounds, with parameter T0 set to

T0 =

⌈
max

(
16K
ε2 ln

(
4K2

δ

)
,
K2 log( 4

δ )
0.02

)⌉
is at most T0 ·

N + 2 · exp(2) ·N2.

Note that the bound we give is in expectation over the re-
wards and the algorithm’s randomness, conditioned on the
event (occurring with probability at least 1 − δ, where δ
is a user-defined parameter) that players learn an ε-correct
ranking and estimate the true number of players. Also, we
assume that a lower bound on the reward gap is known.
These types of guarantees/assumptions have also been used
in previous work, e.g. (Avner & Mannor, 2014).

The proof of theorem 1 is composed of three arguments
whose main idea is presented below. Formal proof appears
in appendix A.
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We begin by showing that that with high probability, all
players will learn an ε-correct ranking after a time period
independent of T .

We then show how estimating the number of players
also requires a number of rounds independent of T
with high probability. Knowing the value of N ex-
actly is required in order for the players to run the
Musical Chairs subroutine and choose an arm from
the top N arms. To estimate N , each player keeps
track of the number of collisions till time t, denoted as
Ct, and after T0 rounds, computes the estimate N∗ =

min
(

round
(

log
(
T0−CT0
T0

)
/ log

(
1− 1

K

)
+ 1
)
,K
)

,
where round(·) rounds to the nearest integer. We take the
minimum between the two terms in order to handle the low
probability event where the first term in the min expression
is larger than K.

Finally, given that players were able to learn an ε-correct
ranking and the number of players, we can upper bound the
expected time (and hence the regret) for all the players to
fix on different arms, and show that this bound is a constant.

3.3. The Dynamic Musical Chairs (DMC) Algorithm

In this subsection we consider the case when players can
enter and leave. For the dynamic setting we suggest an ex-
tension of the MC algorithm, which simply runs the algo-
rithm in epochs and restarts at the end of each epoch (see
pseudocode below). We call this algorithm the Dynamic
MC (DMC) algorithm and it requires the use of a shared
clock between all players, to synchronize the epochs. We
note that having a shared clock is a mild assumption which
has been used previously in several works (See for example
(Avner & Mannor, 2015), (Shukla & Ravimohan, 2014),
(Nieminen et al., 2009)). This clock means that at any
round t, players know what is t mod T1, where T1 (a pa-
rameter of the algorithm) is the epoch length. However,
communication between players is still not allowed, and the
shared clock is not used for resource allocation or synchro-
nization between players regarding which arm to choose.
The DMC algorithm requires knowledge of the time hori-
zon T . This is an assumption that will be important to lift
in future work, possibly using doubling tricks.

We emphasize that in the dynamic setting, some restriction
on the frequency at which players enter or leave is neces-
sary for any algorithm to obtain a sub-linear regret bound.
This is because if players may enter or leave at every round,
then it is possible that no player stays long enough to even
learn the true ranking of any arm, in which case any algo-
rithm will result in linear regret. For this reason, we as-
sume that the overall number of players entering and leav-
ing is sublinear in T . Moreover, since time periods are syn-
chronized, we will allow ourselves to assume that players

can only enter and leave after the learning period in each
epoch. We note that according to our analysis, the propor-
tion of rounds belonging to learning period is a vanishing
portion of the total number of rounds T , and therefore this
assumption is not overly restrictive. Moreover, under some
conditions, this assumption can be weakened to cover only
leaving players, without significantly changing our regret
bounds1.

Algorithm 3 Dynamic MC
Input:Parameters T0, T1, T
explore/learn until t mod T1 = 0
run in loop MC (T0, T1)

3.4. Analysis of DMC Algorithm

The main result here is the following theorem:

Theorem 2. Let Nm ≤ K be an upper bound on the
number of active players at any time point; ∆min =
mini=1,...,Nm µ

i − µi+1 the minimal gap between the best
Nm + 1 arms, with a known lower bound ε > 0; and x
be an upper bound on the total number of players enter-
ing and leaving during T rounds. Then with arbitrarily
high probability, the expected regret of the DMC algorithm
(over the rewards), using Θ(

√
xT ) epochs with Õ(1) learn-

ing rounds at the beginning of each epoch, is at most:

Õ
(√

xT
)

where the Õ hides factors logarithmic in T, δ, and polyno-
mial in ∆min,K,Nm.

As in theorem 1, the bound is in expectation over rewards
and the algorithm’s randomness, conditioned on the high-
probability event that in each epoch, the players learn the
correct ranking and the number of players.

The bound in the theorem hides several factors to simplify
the presentation. More specifically, the bound is based on

the following lemma, and taking T1 =

⌈√
T ·(T0+2·Tf )

x

⌉
:

Lemma 1. Let e be the total number of players entering, l
the total number of players leaving, Tf is the expected time
for any player to fix on an arm (at most exp(2) · Nm by
theorem 1), and ∆min be a lower bound on mini µ

i−µi+1

where µi is the expected reward of the ith best arm, for any
i ≤ Nm.

Then ∀δ ∈ (0, 1) and ε < ∆min, w.p. ≥ 1− δ, the expected
regret of the Dynamic MC algorithm played for T rounds,

1For example, if the entering players can refrain from picking
arms during the learning phase, and accumulate regret. Since the
total length of the learning phase is less than our regret bounds,
this won’t affect the bounds by more than a small constant.
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with parameters:

T0 =

⌈
max

(
16K
ε2 ln

(
4K2

δ
2T

)
,
K2 log( 4T

δ )
0.02

)⌉
and T1

chosen such that T1 > T0, is at most T
T1
·

(Nm · (T0 + 2 · Tf )) + e · 2 (T1 − T0) + l (T1 − T0) .

Note that Nm is not known to the players, however, it is
always possible to upper bound it since we are in the setting
where the number of players does not exceed the number of
arms, i.e., Nm ≤ K and thus we can calculate a sufficient
time for learning, T0, by replacing Nm by K.

The lemma is proven by using the proof of theorem 1 with
the confidence parameter set to δ

2·T , and taking the union
bound over all epochs. This ensures that, with high prob-
ability, the players learn the true rankings and estimate the
number of players correctly at each epoch. For this rea-
son T0 includes a log (T ) factor as stated above. We then
separately bound the regret arising from the learning phase
and fixing on an arm, as well as regret due to entering and
leaving players. The formal proof appears in appendix A.

4. Comparison to the MEGA Algorithm
As discussed in the introduction, the most relevant exist-
ing algorithm for our setting (at least, that we are aware
of) is the MEGA algorithm presented in (Avner & Man-
nor, 2014). In terms of formal guarantees, the algorithm
attains O(T 2/3) in the static setting. A full analysis of the
algorithm in the dynamic setting is lacking, but it is shown
that if a single player leaves at some time point, the system
re-stabilizes at an optimal configuration, after essentially
O(T 2/3) rounds. The algorithm is clever, based on well-
established techniques, allows players to enter and leave at
any round, and compared to our approach, is not based on
repeatedly restarting the algorithm, which can be wasteful
in practice (an issue we shall return to later on). On the
flip side, our algorithms have fewer parameters, attain con-
siderably better performance in the static setting, and can
provably cope with the general dynamic setting. In this
section, we show that this is not just a matter of analysis,
and that the approach taken by the MEGA algorithm in-
deed has some deficiencies in the dynamic setting. We be-
gin by outlining the MEGA algorithm at a level sufficient to
understand our analysis, and then demonstrate how it may
perform poorly in some natural dynamic scenarios.

4.1. Outline of the algorithm

The MEGA algorithm uses a well known ε-greedy MAB
approach, augmented with a collision avoidance mecha-
nism. Initially, players mostly explore arms in order to
learn their ranking, and then gradually move to exploiting
the best arms, while trying to avoid arms they have collided
on. Specifically, each player has an exploration probabil-

ity which scales like O
(
1
t

)
, where t is the current round.

The exploration probability also depends on two input pa-
rameters, c and d, where d is a lower bound on the gap of
the N th and N + 1th best arms. Each player has a per-
sistence probability, pt, whose initial value, p0, is another
input parameter. pt is increased to pt−1 · α + (1 − α) for
every round in which the player picks the same arm con-
secutively, where α is another input parameter. Otherwise,
if the player switches arms, pt is set to p0. In the case of a
collision, the colliding players indefinitely flip a coin with
their own respective probabilities, pt, for deciding whether
to persist on the arm on which they collided. In case a
player does not persist after a collision, she marks this arm
unavailable until a time point sampled uniformly at random
from {t, ..., t + tβ} where β is another input parameter of
the algorithm.

Note that both our algorithm and the MEGA algorithm re-
quire a lower bound on the gap between the N th best arm
and the N + 1th best arm.

One issue with the MEGA algorithm approach is that play-
ers never entirely stop colliding, even when T → ∞. At
least in the static case, it seems advantageous to fix player’s
choice after a while, hence avoiding all future collisions
and additional regret. The motivation for the MC algorithm
is to create a procedure which guarantees that once learning
completes, all players will choose one of the N best arms
for the rest of the game.

In the dynamic setting, however, the issue is quite the re-
verse: The ε-greedy mechanism, which the MEGA algo-
rithm is based on, is not good at adapting to changing cir-
cumstances. In the next subsection, we illustrate two prob-
lematic ramifications: One is that players entering late in
the game are not able to learn the ranking of the best arm,
and the other is that when players leave, the best arms may
stay vacant for a long period of time before being sampled
by other players. A third issue is that if the reward distri-
butions change over time, a rapidly decreasing exploration
probability is problematic. The DMC algorithm can ad-
dress this as it runs in epochs, hence any mistake in one
epoch is undone in the next.

4.2. Problematic Scenarios for the MEGA algorithm

Below, we study the realistic situation where players both
enter and leave, and demonstrate that the regret of the
MEGA algorithm can be substantially worse than our re-
gret guarantees (both in terms of regret guarantees as well
as in terms of actual regret obtained), sometimes even lin-
ear in T . For the proofs of the theorems presented in this
section we refer the reader to appendix A.

The first scenario we wish to discuss is the simple setting of
two players and two arms, where the second player enters
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at some round in the game and the first player then leaves
at some later round. We will describe what will happen, in-
tuitively, if the players are following the MEGA algorithm,
with a formal theorem presented below. In the scenario we
described, the first player will learn a correct ranking of the
two arms with high probability, and will proceed to exploit
the highest ranked arm, thus making his persistence prob-
ability very high and exploration probability very low. If
a second player enters late in the game, then any attempt
to sample the highest ranked arm will cause a collision in
which the first player will stay, and the second player will
fail to sample the arm, since the first players’ persistence
probability is so high and the new player’s persistence is
set to a lower p0. This means that the second player will
not be able to learn the true ranking of the two arms. Thus,
if the first player leaves after a period of time, such that
the second player is not likely to explore, then the second
player will exploit the second ranked arm, causing linear
regret. This scenario can be extended to multiple players
and arms, by adding players one by one in time intervals
that ensure that players who entered late will not succeed
in learning the true ranking, due to the collision avoidance
mechanism. The formal result regarding this scenario is:

Theorem 3. Consider a multi-player MAB setting as de-
scribed above, where the second player enters at round⌈
T
2

⌉
, and the first player leaves at round

⌈
T
2 + f · T

⌉
) for

some parameter f . Then for all choices of the MEGA algo-
rithm parameters c, d, β, p0, if α (the parameter that con-
trols the collision avoidance mechanism) is chosen such
that α ≤ 1 − 4 log(4fT )

T , and f is chosen such that
c·K2

d2·(K−1)

T ≤ f ≤ d2·(K−1)
8·c·K2 , then:

• The expected regret of the MEGA algorithm is Ω (T ).

• The conditional expected regret of the DMC algorithm
(using Θ(

√
T ) epochs) is Õ

(√
T
)

.

Notice that for the DMC algorithm we have an upper bound
on the expected regret conditioned on the event that all
players learn an ε-correct ranking, which happens with ar-
bitrarily high probability.

In particular, if we choose f to be a constant in the required
range, we get a scenario where the regret bounds above
hold for any α ≤ 1−O(log(T )/T ) (and any possible val-
ues of the other parameters of the MEGA algorithm). We
note that when α is larger than 1− O(log(T )/T ), the per-
sistence probability p will hardly deviate from p0, which
makes the persistence mechanism non-functional and can
easily lead to large regret, even in the static setting.

We now turn to discuss a second reasonable scenario, in
which players alternate between entering and exiting, at in-
tervals of Tλ rounds. We will show in this scenario that

Figure 1. total accumulated regret after 50,000 iterations

however λ is chosen, the regret bound of the MEGA al-
gorithm (as given in (Avner & Mannor, 2014), using rec-
ommended parameter values, and even just counting regret
due to players leaving) is worse than the regret bound of
the DMC algorithm (which incorporate regret due to both
players leaving, entering, learning or fixing). Note that un-
like Theorem 3, here we compare the available regret upper
bounds, rather than proving a regret lower bound.

The setting is defined as follows: one player exits (or en-
ters, alternating) every Tλ rounds, for some λ < 1. In the
worst case, the player who left was occupying the highest
ranked arm. In the analysis of (Avner & Mannor, 2014),
players following the MEGA algorithm might take up to tβ

rounds before being able to access this arm, due to the col-
lision avoidance mechanism (where t is the round at which
the player exited, and β is a parameter of the algorithm,
whose recommended value based on the static setting anal-
ysis is 2/3). For players following the DMC algorithm a
player leaving can affect the regret of the current epoch
only. Intuitively, if we set the epoch length compatible
to the rate of exiting players, we can achieve a better re-
gret bound than what is indicated by the MEGA algorithm
analysis. Formally, we have the following:

Theorem 4. In the multi-player MAB setting with one
player leaving every (2 · r) · dTλe rounds, and one player
entering every (2 · r+ 1) · dTλe rounds, for r = 0, 1, 2, ...,
and λ > β, we have that

1. The regret upper bound of the MEGA algorithm is at
least O

(
T 1−(λ−β))

2. The expected regret upper bound of the DMC algo-
rithm is Õ

(
T 1−λ2

)
As in the previous theorem, the expected regret of the DMC
algorithm is conditioned on the event that all players learn
an ε-correct ranking, which happens with arbitrarily high
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Figure 2. case 1; The black dashed lines represents players enter-
ing and the green dashed line shows when the first player exits.

probability. The assumption λ > β is required in order
to apply the existing MEGA analysis. When we pick the
recommended value β = 2

3 , the exponent in the regret
bound is uniformly superior for our algorithm. Note that
if β is chosen differently then the regret bound of (Avner
& Mannor, 2014) will increase, even in the static setting.
A graphic illustration of the theorem appears in Figure 4 in
appendix B.

5. Experiments
For our experiments, we implemented the DMC algorithm
for the dynamic case and the MC algorithm for the static
case. For comparison, we implemented the MEGA algo-
rithm of (Avner & Mannor, 2014), which is the current
state-of-the-art for our problem setting. Besides the exper-
iments presented here, additional experiments and figures
appear in appendix B.

For each experimental setup and algorithm, we repeated the
experiment 20 times, and plotted the average and standard
deviation of the resulting regret (the standard deviation is
shown with a shaded region encompassing the average re-
gret). In scenarios that are dynamic we mark the time that a
player enters or leaves with a dashed line. In most figures,
we plot the average per-round regret, as a function of the
number of rounds so far.

For the parameters of the MEGA algorithm, we used the
empirical values suggested in (Avner & Mannor, 2014)
(rather than the theoretical values which are overly con-
servative). The only exception is the gap between the mean
rewards of theN th andN+1th best arms, which was taken
as the actual gap rather than a rough lower bound. Note that
this only gives the MEGA algorithm more power. More-
over, in all experiments, the gap is at least 0.05, which is
the heuristic value suggested to be used as the lower bound
in (Avner & Mannor, 2014). For the dynamic scenarios,

where the players and the number of players change, we
use the minimum gap between the N th and N + 1th best
arms over all rounds. For example, if at the beginning there
are 2 players and the gap between the second and third arm
is 0.3, but by the end there are 4 players and the gap be-
tween the fourth and fifth arm is 0.01, then we use 0.01 as
the value of this gap.

For the MC and DMC algorithm, we set T0 to be 3000 in
all experiments. For the DMC parameter, T1, we use either
the theoretically optimal value presented in this work or
that value scaled by a small constant (see details below for
the specific value in each experiment).

In the DMC algorithm, a potential source of waste is that
newly entering players can accumulate linear regret until
the next epoch begins. Therefore, in the DMC experi-
ments, we added the following heuristic: When a player
enters during the middle of the epoch, she chooses an arm
with probability proportional to the empirical mean of its
rewards (as observed by her so far, initially set to 1), mul-
tiplied by the empirical probability of not colliding on that
arm (initially set to 1). After the epoch is over, she chooses
arms by following the DMC algorithm. Intuitively this
would quickly stop a large amount of collisions with play-
ers who are already fixed, and would encourage more play-
ers to exploit rather than only explore. This happens be-
cause any arm that has a player ‘fixed’ on it would always
give newly entered players an empirical probability for col-
liding of 1.

We begin with a simple scenario corresponding to the static
setting. There is an initial set of 6 players, which remains
fixed throughout the game, and 10 arms. The mean rewards
of the arms are chosen uniformly at random in [0, 1] (with
a gap of at least 0.05 between the N th and N + 1th arm).
At every round of the game the rewards of each arm are
chosen to be 1 with probability equal to the mean reward,
and zero otherwise.

In this scenario we can see the short time period where
players running the MC algorithm are learning, and then,
with high probability, they all know which are the best N
arms and never make any more mistakes or collisions. The
added regret at every round after learning is zero, while in
the MEGA algorithm, even though the exploration proba-
bility goes down with time, it is never zero. Also, in the
MEGA algorithm every time a player has the best arm be-
come ’available’ that player will try to exploit it, probably
colliding with other players who also want to exploit that
arm. Therefore, in the MEGA algorithm there will always
be collisions, even though they happen less frequently with
time. This is further exemplified in figure 1 where we can
see that after the learning stage there is no further accumu-
lated regret for the MC algorithm while the MEGA algo-
rithm never stops accumulating regret.
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(a) case 2

(b) case 2 with 10 million iterations

Figure 3. Players alternate between entering and leaving (black
dashed lines).

Another scenario we simulate is that of section 4 in theo-
rem 3. The game starts with one player. At round dT3 e, a
second player enters and after another dT3 e rounds the first
player leaves. There are 4 arms, with a lower bound on
the gap of 0.8 between the expected reward of the N th and
N+1th best arm, T1 set to 34, 757, and rewards are chosen
deterministically. The results can be seen in figure 2.

As discussed in section 4, in the scenario of figure 2 a sec-
ond player who enters late is not able to learn the best arm,
because the first player always exploits the best arm and
has a very high persistence probability. Therefore, once the
first player leaves the game, and allows the best arm to be
free for the second player to use, it will take the second
player time proportional to the number of rounds she has
played to explore this arm. Since her exploration proba-
bility will be very low, exploring this arm will take a very
long time. The DMC algorithm runs in epochs and there-
fore a problem of inflexibility, or an inability to change for
dynamic settings, does not arise. This phenomenon can
be seen in figure 2: When the first player leaves (marked
by a dashed green line) the average regret of the MEGA
algorithm increases dramatically, while for the DMC algo-

rithm the decreasing trend continues. This suggests that
the MEGA algorithm may be susceptible to large regret in
some natural dynamic scenarios.

Another dynamic player scenario we simulate (demonstrat-
ing theorem 4) is where the game starts with a set of five
players and 10 arms and every T 0.84 rounds, we alternate
between a player leaving and a player entering. The leaving
player is chosen at random from the set of current players.
Figure 3(a) shows the outcome for T = 5 ∗ 105, and 3(b)
shows the outcome for T = 6 ∗ 106. In these scenarios
T1 is chosen to be 32, 482 in figure 3(a) and 119, 921 in
figure 3(b). Although our algorithm performs better when
T is large enough (confirming the theoretical evidence in
theorem 2), we note that this is not the case for smaller val-
ues of T . We believe that this is due to the epoch-based
nature of the DMC algorithm, which can be wasteful when
T is moderate. However, when T is sufficiently large (as in
figure 3(b)), the DMC algorithm outperforms MEGA.

6. Discussion
In this work we propose new algorithms for the stochas-
tic multi-player multi-armed bandit problem, with no com-
munication or central control. We provide an analysis for
the static setting, showing that the proposed MC algorithm
achieves a better upper bound on the regret (as a function of
the number of rounds) than the current state of the art. We
also provide the DMC algorithm, which is the first (to the
best of our knowledge) with formal guarantees which copes
with the general dynamic setting. We also study some nat-
ural dynamic scenarios, in which the behavior of previous
approaches can be problematic.

This work leaves several questions open. For example,
as noted earlier, both the DMC algorithm and the ear-
lier MEGA algorithm require knowing a lower bound on
the gap between the N -th and N + 1-th best arm, and it
would be interesting to remove this assumption while at-
taining similar guarantees. Another issue with the DMC
algorithm is its epoch-based nature, which considerably de-
grades practical performance (especially if the total number
of rounds T is not too large). Can we develop other algo-
rithms with provable guarantees for the dynamic setting?

More generally, it would be quite interesting to develop al-
gorithms in the adversarial setting, where the rewards are
arbitrary. In the adversarial case, one cannot rely on high-
reward arms to remain such in the future, and it is not clear
at all what algorithmic mechanism can work here. Another
interesting direction is to remove the assumption that play-
ers faithfully execute a given algorithm: In practice, play-
ers may be non-cooperative and greedy, and it would be
interesting to devise algorithms which are also incentive-
compatible, and study related game-theoretic questions.
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ysis of stochastic and nonstochastic multi-armed bandit
problems. arXiv preprint 1204.5721, 2012.

Kalathil, Dileep, Nayyar, Naumaan, and Jain, Rahul. De-
centralized learning for multiplayer multiarmed bandits.
Information Theory, IEEE Transactions on, 60(4):2331–
2345, 2014.

Liu, Keqin and Zhao, Qing. Distributed learning in multi-
armed bandit with multiple players. arXiv preprint
arXiv:0910.2065, 2009.

Nieminen, Jari, Jäntti, Riku, and Qian, Lijun. Time syn-
chronization of cognitive radio networks. In Global
Telecommunications Conference, 2009. GLOBECOM
2009. IEEE, pp. 1–6. IEEE, 2009.

Shukla, Annpurna and Ravimohan. Synchronization in
cognitive radio systems: A survey. International Journal
of Advanced Research in Computer and Communication
Engineering Vol. 3, Issue 7, July 2014, 2014.

Sutton, Richard S and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press Cambridge, 1998.


