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1 Proposition1

In the limit as C, K, R — oo, the expected sum of the core tensor elements is finite and equal to
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The proof is very similar to that of Zhou (2015, Lemma 1). By the law of total expectation,
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The marks 7n” are gamma distributed with mean 1, so
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Using E (Y25, 75*) (5, )] = 2 + 2, we can write
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Finally, using Campbell’s Theorem (Kingman, 1972), we know that E[Y 2 nn | = &, s0
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2 Proposition 2

For an M-dimensional core tensor with Dy X . . . x Dy elements, computing the normalizing constant using
non-compositional allocation requires 1 < 7 < oo times the number of operations required by compositional
allocation. When Dy =...=Dy =1, 7=1. As D, D,y — o0 for any m and m’ #m, m — oo.

Each event token occurs in an M -dimensional discrete coordinate space—i.e., e, = p, where p =
(p1,--.,pum) is a multi-index. Similarly, each event token’s latent class assignment also occurs in
an M-dimensional discrete coordinate space—i.e., z, =q, where g = (q1, . . ., g ) is a multi-index.

Assuming M factor matrices ©(V), ... ©(*) and an M-dimensional core tensor A,

M
P(zpn=q|en=p) x A\q H Qézfzm.
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The computational bottleneck in MCMC inference is computing the normalizing constant
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If we use a naive non-compositional approach, then (assuming each latent dimension m has car-
dinality D,,) the sum over g involves HM D, terms and each term requires M multiplications.

Thus, computing Z, requires a total of M H D,,, multiplications and H | D, additions.!
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However, we can also compute Z, using a compositional approach—i.e.,
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IComputing a sum of N terms requires either N or N — 1 additions, depending on whether or not you add the first
term to zero. We assume the former definition and say that computing a sum of N terms requires N additions.



This approach requires a total of _ D,,, multiplications and 1 + S>_ (D,,, — 1) additions.

The ratio 7 of the number of operations (i.e., multiplications and additions) required by the non-
compositional approach to the number of operations required by the compositional approach is
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As the cardinalities Dy, ..., Djs of the latent dimensions grow, the numerator grows at a faster
rate than the denominator. Therefore 7 achieves its lower bound when Dy = ... = Dy = 1:
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Because the numerator grows at a faster rate than the denominator, we can find the upper bound
by taking the limit as one or more cardinalities tend to infinity. We work with the inverse ratio
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First, we take the limit of 7~! as a single cardinality D,,, — oc:
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However, as any second cardinality D,,,, — oo,
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Therefore, 7 — oo as any two (or more) cardinalities tend to infinity.



3 Inference

Gibbs sampling repeatedly resamples the value of each latent variable from its conditional poste-
rior. In this section, we provide the conditional posterior for each latent variable in BPTD.

We start by defining the Chinese restaurant table (CRT) distribution (Zhou & Carin, 2015): If [ ~
CRT(m, r) is a CRT-distributed random variable, then, we can equivalently say that

= T
I~ B — .
; ern(r—f—n—l)

We also define g(z) = In(1 + z).

Throughout this section, we use, e.g., (6;c| —) to denote 6;. conditioned on Y, ¢y, vy, and the

current values of the other latent variables. We assume that Y is partially observed and include a
binary mask B, where b(l =0 means that y(i =0 is unobserved, not an observed zero.
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Country-Community Factors:
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Per-Country Rate Parameters:
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Diagonal Elements of the Core Tensor:
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Off-Diagonal Elements of the Core Tensor:
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Between-Community Weights:
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4 Baseline Models

BPTF (Schein et al., 2015):
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GPIRM (Schmidt & Merup, 2013):
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The rest of the generative process is the same as that of the GPIRM.



5 Supplementary Plots
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Figure 1: Inferred community weights n{*,...,n&. We use the between-community weights to
interpret shrinkage because they are used for the on- and off-diagonal elements of the core tensor.
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Figure 2: Latent structure discovered by BPTD for topic £k = 1 (mostly Verbal Cooperation ac-
tion types) and the most active regime, including the community—community interaction network
(bottom left), the rate at which each country acts as a sender (top left) and a receiver (bottom right)
in each community, and the number of times each country ¢ took an action associated with topic k
toward each country j during regime r (top right). We show only the most active 100 countries.
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Figure 3: Latent structure discovered by BPTD for topic k=2 (Verbal Cooperation).
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Figure 4: Latent structure discovered by BPTD for topic k=3 (Material Cooperation).
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Figure 5: Latent structure discovered by BPTD for topic k=4 (Verbal Conflict).
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Figure 6: Latent structure discovered by BPTD for topic k=5 (Material Conflict).
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Figure 7: Latent structure discovered by BPTD for topic k=6 (Material Conflict).
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