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A. Proof of Lemma 4.1
Proof. We will define ✓ so that for every x, y, p✓(Xi =

xi|Y = y) = p�(Xi = xi|H = y) and p✓(Y = y) =

p�(H = y).

Since the weight matrix W has dimension d⇥1 in this case,
it is a vector, which we will denote as w. Recall that

p�(Xi = 1|H = y) = �(ai + wiy),

hence we define

 i ⌘ �(ai + wi)

and
⌘i ⌘ 1� �(ai).

Finally, recall that

p�(H = 1) =

P
x2{0,1}d e�E�(x,1)

P
x2{0,1}d, h2{0,1} e
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,

where E� is the energy function given in equation (2),
hence we set

⇡ ⌘
P

x2{0,1}d ea
T x+b+xTw

P
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�
eaT x

+ eaT x+b+xTw
� . (3)

To see that the map � 7! ✓ is 1:1, note that ai uniquely
determines ⌘i, hence (ai, wi) uniquely determine ( i, ⌘i).
Lastly, rearranging equation (3) we get
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so that given (a,W ), ⇡ is uniquely determined by b. Show-
ing that the map � 7! ✓ is a also subjective is straightfor-
ward. Hence it is a bijection.

B. Proof of Lemma 4.2
Proof. Since d � 3 and for each i, Xi is not independent
of Y , by Chang (1996), the parameter ✓ of the conditional
independence model is identifiable. Since the map � 7! ✓
in Lemma 4.1 is a bijection, there exists � corresponding
to ✓, which is therefore identifiable as well. By the consis-
tency property of the MLE (see, for example, (Casella &
Berger, 2002)),

lim

n!1
ˆ�MLE = �.

Since p�(H = 1|X) is continuous in ✓, one obtains

p�̂MLE
(H = 1|X) ! p�(H = 1|X).

Finally, note that Lemma 4.1 implies, in particular, that un-
der the map � 7! ✓

p�(H = 1|X) = p✓(Y = 1|X),

which completes the proof.

C. Stacking RBMs as a Variational Inference
Procedure

Variational inference is a common approach to tackle com-
plicated probability estimation problems (see, for exam-
ple, (Bishop, 2006; Fox & Roberts, 2012), and a recent
review (Blei et al., 2016)). Specifically, let p be a tar-
get probability distribution that we want to approximate.
In variational inference we define a family of approximate
distributions D = {q↵ : ↵ 2 A}, and then perform op-
timization to find the member of D that is closest to p in
Kullback-Leibler distance. A key idea is that the family D
is flexible enough to contain a distribution close to p, yet
simple enough to perform optimization over. For example,
a popular choice is to take D as the collection of factorized
distributions, i.e., of the form q↵(X) =

Q
i q↵(Xi). In this

section, we motivate the use of RBM-based DNN by con-
sidering a specific data generation model, and showing that
training a stack of RBMs on data generated by this model
is in fact a variational inference procedure.

The generative model we consider is a two layer Deep
Belief Network (DBN), which played an important role
in the emergence of deep learning in 2006 (Hinton et al.,
2006). The DBN we consider generates data Y 2 {0, 1},
H 2 {0, 1}m, X 2 {0, 1}d via the probability distribution

p✓(X,H, Y ) ⌘ p✓1(X,H)p✓2(Y |H)

where X,H form a RBM (parametrized by ✓1).

We observe data x(1) . . . x(n) from p✓(X) and our goal is
to estimate the posterior p✓(y(i)|x(i)

) for i = 1, . . . n. The
posterior can be written as

p✓(Y |X) = Eh⇠p✓1 (H|X)P✓2(Y |H = h).

Cueto et al. (2010) showed that as long as m is not too large
comparing to d, RBMs are locally identifiable, i.e., iden-
tifiable up to order and flips of hidden units (Jason Mor-
ton, personal communication). Therefore, when training
a RBM with m hidden units on x(1) . . . x(n), by the con-
sistency property of the MLE (Casella & Berger, 2002)
the MLE ˆ✓1MLE will converge to the true parameter ✓1 as
n ! 1. Hence, when n is large enough, the vectors h(i)
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obtained from the (trained) RBM are in fact samples from
p✓1(H|X = x(i)

).

At the next step, the vectors h(1) . . . h(n) are used to
train a second RBM, with a single hidden node. Observe
that in the data generation model considered in this sec-
tion, p✓(H|Y ) does not factorize. The factorized distribu-
tion p�(H|Y ) that minimizes KL(p✓2(H|Y )kp�(H|Y )) is
given by

p�(Hi|Y ) = p✓2(Hi|Y )

Bishop (2006) (Chapter 10). By Lemma 4.1, we know that
the distribution

p�(H,Y ) = p✓(Y )

Y

i

p✓2(Hi|Y ) (4)

is equivalent to a RBM. Finally, by Lemma 4.2, the dis-
tribution (4) is consistently estimated by a RBM trained
on vectors h(1) . . . h(n), and is thus a variational inference
procedure.

D. Stacking RBMs as an Approximation for a
Directed Top-Down Model

Assume that the data is generated by a Markov chain
Y ! H ! X , where Y 2 {0, 1}, H 2 {0, 1}m,
X 2 {0, 1}d. We further assume that the distributions
p✓(X|H), p✓(H|Y ) factorize, i.e.,

p✓(X|H) =

dY

i=1

Pr(Xi|H) (5)

and

p✓(H|Y ) =

mY

i=1

Pr(Hi|Y ), (6)

and are given by RBM-like conditional distributions, i.e.,

p✓(Xi = 1|H) = � (ai +Wi,·H) (7)

and
p✓(Hi = 1|Y ) = � (bi + Ui,·Y ) . (8)

Hence the corresponding data generation probability is
parametrized by ✓ = (⇡, a, b,W,U), where ⇡ = Pr(Y =

1).

This data generation process is depicted in Figure 10.

The posterior probabilities p✓(Y |X) are given by

p✓(Y |X) =

X

H2{0,1}m

p✓(Y |H)p✓(H|X)

= Eh⇠p✓(H|X)p✓(Y |H = h).

By Section 4, we know that p✓(H,Y ) is equivalent to a
RBM. Therefore, to accurately estimate the posterior, it
suffices to approximate p✓(H|X).

Y

H1 Hi Hm

X1 Xi Xd

Figure 10. Data generated by a Markov Chain Y ! H ! X
with RBM-like conditional probabilities.

Under the data generation model described in Figure 10
and equations (5)-(8), it is evident that the joint distribu-
tion p✓(X,H) cannot be parametrized as a RBM; indeed,
p✓(H|X) does not factorize. Hence, training a RBM on
samples from p✓(X), is a mean field approximation of
p✓(H|X). The form of p✓(X,H) is shown in the following
lemma.

Lemma D.1. Under the data generation model described
in Figure 10 and equations (5)-(8), the joint distribution
p✓(X,H) is given by

p✓(X,H) = exp

�
aTX +XTWH + bTH

�
Z(H)

where

Z(H) =

1P
X2{0,1}d exp (aTX +XTWH)

⇥
X
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p✓(Y ) exp(HTUY )P
H0 exp (bTH 0

+H 0TUY )

Proof. By definition,

p✓(X,H) =

X

Y 2{0,1}

p✓(X,H, Y )

=

X

Y 2{0,1}

p(Y )p✓(H|Y )p(X|H) (9)

Writing

p✓(X|H) =

exp

�
aTX +XTWH

�
P

X02{0,1}d exp (aTX 0
+X 0TWH)

and similarly

p✓(H|Y ) =

exp

�
bTH +HTUY

�
P

H02{0,1}m exp (bTH 0
+H 0TUY )

,
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we obtain

p✓(X|H)p✓(H|Y ) =

exp

�
aTX +XTWH + bTH +HTUY

�

(

P
X0 exp (aTX 0

+X 0TWH)) (

P
H0 exp (bTH 0

+H 0TUY ))

.

(10)

Plugging equation (10) in equation (9) we get

p✓(X,H) = exp

�
aTX +XTWH + bTH

�

⇥ 1P
X0 exp (aTX 0

+X 0TWH)

⇥
X

Y 2{0,1}

p✓(Y ) exp(HTUY )P
H0 exp (bTH 0

+H 0TUY )

From lemma D.1 we see that p✓(H|X) is close to be fac-
torizable if Z(H) is a approximately a log-linear function
of H and p✓(X) is approximately a log-linear function of
X .

E. Datasets and Experimental Details
E.1. Simulated Dataset Generation Details

• CondInd: the label Y was sampled from a
Bernoulli(0.5) distribution; The specificity ⌘i and sen-
sitivity  i of the variables Xi, i = 1 . . . 5 were sam-
pled uniformly from [0.5, 1]. The other ten Xi’s were
random guesses, i.e., had specificity = sensitivity =
0.5.

• Tree15-3-1: the label Y was sampled from a
Bernoulli(0.5) distribution; each node in the interme-
diate and layer was generated from his parent with
specificity and sensitivity sampled uniformly from
[0.8, 1], and in the bottom layer with specificity and
sensitivity sampled uniformly from [0.6, 1].

• LayeredGraph15-5-5-1: Data is generated from
a Layered Graph with four layers of dimensions
1,5,5,15, starting at the true label Y . Each layer in the
graph is generated from the above layer, and the graph
has sparse connectivity (about 30% of the edges exist).
For every node i and parent j we sample specificity
 ij and sensitivity ⌘ij uniformly. Finally, the value
at each node was calculated as the weighted sum of
the probabilities of the node being 1 given the values
of the nodes in the preceding layer, normalized by the
sum over the edges. The label Y was sampled from a
Bernoulli(0.5) distribution.

• TruncatedGaussian: the label Y was sampled from
a Bernoulli(0.5) distribution. One Gaussian had mean

vector µ1 were each of the 15 coordinates was sam-
pled uniformly. The other Gaussian had mean vector
µ2 = �µ1. Both Gaussians had identical covariance
matrix, with off diagonal entries of 0.5 and diagonal
entries of 1.

E.2. The Magic Datasets

An example for the correlation matrix of the 16 classifiers
given the 0 class can be seen in Figure 12.

E.3. Hyper Parameters

In all experiments, we used stochastic gradient descent with
minibatch size of 100. The hyper parameters we found im-
portant to tune were learning rate and the `2 penalty. In
all our experiments we found that for both parameters, a
value between 0.01-0.1 is satisfactory. The hyper parame-
ters were tunes based on examination of the reconstruction
error and free energies on a validation set.
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Figure 11. correlation matrices of the input data, for the y = 0 class in all four simulated datasets: condInd (top left), tree15-3-1 (top
right), LayeredGraph (bottom left), TruncatedGaussian (bottom right).

Figure 12. correlation matrix of the 16 classifiers in the Magic1
dataset, for the y = 0 class.


