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In this document we include details which were left out in the main text.

Expected improvement in Pareto Volume
In the main text, we defined the notion of increase in Pareto volume from a new observation and later partition the relevant
region into grid cells to compute this value. Here we derive the equivalence in the way we define this quantity and the
expression we end up using.
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The first equality comes from the definition of the Pareto volume. The second equality partitions the domain of the integral.
The third equality comes from the fact that the integrand is 0 for every C /∈ Cnd. The fourth equality comes from the fact
that for o ∈ C ∈ Cnd, I

[
u � o

]
= 1 for each u ∈ P(Y) ∪ P(Y ∪ y)\{y}, by definition of Cnd. The final equality comes

from the definition of hypervolume in the main text. Consequently the expected increase in Pareto hypevolume from a new
observation at x after observing data D is
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Integral of Product of Multivariate Gaussian Densities
We make use of a Gaussian approximation which leads to an analytically tractable quantity. Here we derive the integral
with more detail. Let N (y;µ,Σ) and N (y;λ,Θ) be multivariate Gaussian density functions on RL. Then
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where Ω−1 = Θ−1 +Σ−1 and Ω−1ν = Θ−1λ+Σ−1µ.

Synthetic Function Definitions
Here we explicitly define the synthetic functions which we experiment on in the main text.

oka2 is defined for x1 ∈ [−π, π], x2, x3 ∈ [−5, 5] as
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vlmop3 is defined for x ∈ [−3, 3]2 as
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dtlz1a is defined for x ∈ [0, 1]6 as
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