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Abstract
There has been a surge of research interest
in developing tools and analysis for Bayesian
optimization, the task of finding the global
maximizer of an unknown, expensive function
through sequential evaluation using Bayesian
decision theory. However, many interesting
problems involve optimizing multiple, expensive
to evaluate objectives simultaneously, and rela-
tively little research has addressed this setting
from a Bayesian theoretic standpoint. A pre-
vailing choice when tackling this problem, is to
model the multiple objectives as being indepen-
dent, typically for ease of computation. In prac-
tice, objectives are correlated to some extent. In
this work, we incorporate the modelling of inter-
task correlations, developing an approximation
to overcome intractable integrals. We illustrate
the power of modelling dependencies between
objectives on a range of synthetic and real world
multi-objective optimization problems.

1. Introduction
Most engineering problems require making design choices
which aim to simultaneously optimize multiple objectives.
For example, in designing a new drug, a pharmaceutical
scientist may strive to simultaneously maximize the
likelihood of curing an illness, minimize the chance of
unwanted side-effects and minimize the cost of drug devel-
opment. Typically there would not exist a particular option
for which each objective is fully optimized. Subsequently,
the scientist would wish to consider a range of options
which trade off the multiple objectives. The ultimate
choice should be Pareto optimal; there should not exist an
alternative option which can improve on the chosen option
in every objective simultaneously.
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The objective functions are often unknown, and can
only be ascertained through pointwise evaluation. How-
ever, it can be expensive to evaluate these objectives, in
the sense that they may necessitate large computational,
economical or other resource. The challenge is to find a set
of Pareto optimal points in as few sequential evaluations
of the multiple objective functions as possible, so as to
minimize the total expense.

A Bayesian theoretic approach to this task would be
to probabilistically model the multiple unknown objective
functions. Where the function should be evaluated next
is decided by maximizing the expected value of a chosen
acquisition, or utility function, based on the posterior
distribution of the objective functions given evaluations.
In the single objective scenario, this approach is called
Bayesian optimization (Mockus, 1989), and has been
successful in a variety of difficult, expensive global
optimization tasks including drug discovery (Negoescu
et al., 2011) and robot gait control (Lizotte et al., 2007).

Two key choices must be made under this Bayesian
theoretic framework: (i) a choice of prior over the ob-
jective functions and (ii) a choice of acquisition function
which instructs where the functions should be evaluated
next. Gaussian processes (Rasmussen and Williams, 2006)
are the popular choice for modelling objective functions,
since they are nonparameteric and permit analytic calcu-
lations. Other models have also shown promising results
in Bayesian optimization e.g. Student-t processes (Shah
et al., 2014) and deep neural networks (Snoek et al., 2015).
A commonly used acquisition function is the expected
improvement (Mockus et al., 1978), and alternative options
are discussed in the next section.

Whilst Bayesian optimization techniques have been
developed to decide on multiple locations in which a single
objective should be evaluated next (Contal et al., 2013;
Shah and Ghahramani, 2015), relatively little research
has focussed on Bayesian approaches to decide on where
to evaluate multiple objectives next (Picheny, 2014;
Hernández-Lobato et al., 2016). This is in part due to it
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being more difficult to find a set of Pareto optimal points
for multiple objectives than it is to find an optimizer of a
single function. Furthermore, it is not entirely clear how
one can quantitatively evaluate the quality of a proposed
Pareto frontier, or set of Pareto optimal points. Zitzler
(1999) considers a volume based measure of the Pareto
frontier, whose expected increase is possible to compute
analytically under the assumption of independently dis-
tributed Gaussian process objectives (Emmerich et al.,
2008). However, in practice, objectives are correlated.
Returning to the drug discovery example, we would expect
the cost of drug development to be high when the chance
of unwanted side effects is high, and incorporating this
belief should affect our decision process.

The key contribution of this work is to include the mod-
elling of correlations amongst objective functions using
multi-output Gaussian process priors. To the best of our
knowledge, no approach in the literature has yet considered
a Bayesian approach to modelling and optimizing multiple
correlated objectives. We introduce an approximation to
an intractable multidimensional integral, which results in
an elegant deterministic and differentiable approximation
to the expected increase in volume. Empirical evidence
suggests that our approach is beneficial on a range of
multi-objective optimization tasks.

In Section 2, we formalize notation and discuss the
notion of Pareto hypervolume. Next, in Section 3, we
describe how Gaussian processes may be used to model
the objective functions and derive our approximation
which is used to determine where to evaluate the correlated
objectives next. Finally, we run our algorithm and several
comparisons on synthetic and real objective functions.

2. Hypervolume Based Pareto Learning
In this section, we discuss how the quality of a Pareto set
can be measured quantitatively, and review a previously
proposed method to directly improve this measure. We
first introduce notation to formalize the problem.

2.1. Pareto Efficiency and Hypervolume

Our aim is to jointly maximize L ≥ 2 bounded objectives
fl : X → R for l = 1, ..., L. Concretely, we wish to find
a set of Pareto efficient points. Given distinct yi ∈ RL

for i = 1, ..., n, we write yj � yk when yj,l ≥ yk,l
for each l = 1, ..., L, and say “yj dominates yk”. For
the set of distinct points Y = {y1, ...,yn}, the subset
of Pareto efficient points, P(Y) ⊆ Y , is defined as
P(Y) =

{
yi ∈ Y : yj � yi ∀yj ∈ Y\{yi}

}
. In other

words, the Pareto efficient set is the set of non-dominated
points, and is always non empty. A dominated point, by

definition, is a suboptimal choice since there exists a point
which achieves a higher value for each of the L objectives.

In a Bayesian optimization setting, input locations
x1, x2, ... ∈ X , at which the expensive objective functions
are evaluated, are chosen sequentially. Given function
evaluations ys = [f1(xs), ..., fL(xs)]

> for s = 1, ..., t,
xt+1 ∈ X is chosen with the goal of improving the set
of Pareto points as much as possible with as few future
function evaluations. However, in its current frame, this
is a qualitative goal and not a quantitative formulation.
In the case of single objective Bayesian optimization
of a function f : X → R, a common approach is to
maximize a future reward, rT = [f(x̃T ) − f(x∗)], where
x? ∈ argmaxx∈X f(x) is an optimal input and x̃T is our
guess of where the maximizer of f is after evaluating f
at T input locations (Brochu et al., 2009). How can the
quantitative single objective framework be generalized
to the multi objective case? The Pareto hypervolume is
an appropriate measure of the quality of a set of Pareto
efficient points (Zitzler, 1999).

Given a set of distinct points Y = {y1, ...,yn}, we
have defined its Pareto efficient subset, P(Y). Define a
reference point, vref ∈ RL, which is dominated by each
element of P(Y) i.e. u � vref for each u ∈ P(Y). The
Pareto hypervolume of P(Y) with respect to vref is

Volvref

(
P(Y)

)
(1)

=

∫
RL

I
[
y � vref

][
1−

∏
u∈P(Y)

I
[
u � y

]]
dy

where I(.) is the indicator function, which outputs 1 if its
argument is true and 0 otherwise. Volvref

(
P(Y)

)
measures

the volume of points in RL which dominate vref but are
dominated by at least one element of the Pareto set, P(Y).
The shaded region of Figure 1(a) illustrates this volume.
The Pareto hypervolume is a monotone function since
Volvref

(
P
(
Y ∪ {y}

))
≥ Volvref

(
P(Y)

)
.

The more dominant the set of Pareto points, the larger the
Pareto hypervolume. Conversely, a marginally dominant
set of Pareto points will have a small Pareto hypervolume.
This makes the Pareto hypervolume a reasonable measure
of how “good” a proposed set of Pareto efficient points is.

Note that the units of the hypervolume measure is
the product of the units of each of the objectives, fl. Whilst
the scale of units does not affect performance in most
commonly used single objective Bayesian optimization
algorithms, the relative scales of objectives f1, ..., fL will
affect the hypervolume measure that we propose here.
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(a) Pareto hypervolume (b) Increase in Pareto hypervolume

Figure 1. Two objective example illustrating Pareto optimality, Pareto hypervolume and our notation. (a) Observations (f1(xi), f2(xi))
for i = 1, ..., 12 shown by dots, with the dark dots representing the set of Pareto efficient observations. Grey dots each have at least
one dark dot to the top-right of it i.e. they are dominated. f1 values are shown on the x-axis and f2 values on the y-axis. The Pareto
efficient points induce a grid cell partitioning of the relevant region which has bottom left corner, vref , and top right corner, wref . Cell
C(3, 4) defines the cuboid from vC(3,4) ≡

(
b
(3)
1 , b

(4)
2

)
to wC(3,4) ≡

(
b
(4)
1 , b

(5)
2

)
. The volume of the shaded region, in which points

are dominated by at least one Pareto efficient point, represents the Pareto hypervolume with respect to reference point vref . (b) Change
in Pareto frontier when a new observation is made at input location xnew with value

(
f1(xnew), f2(xnew)

)
=

(
ynew1 , ynew2

)
. The new

observation dominates 2 points which were previously Pareto optimal. The consequent increase in Pareto hypervolume is equal to the
volume of the darker shaded region. The darker shaded region is the sum of cuboidal volumes over the previously non-dominated cells
in Cnd. Note that had the new observation

(
ynew1 , ynew2

)
been in the lightly shaded region, it would have been dominated, the set of

Pareto efficient points would not have changed and hence the increase in Pareto hypervolume would have been 0.

2.2. Expected Improvement in Pareto Hypervolume

Analogous to the single objective case, we can
formulate a multi objective Bayesian optimiza-
tion problem as maximizing a future reward,
rT =

[
Volvref

(
P(ỸT )

)
− Volvref

(
P(Y∗)

)]
, where

Y∗ is the true Pareto frontier and ỸT is the suggested
Pareto frontier after T evaluations of each of the objectives.

Computing the expected effect of a decision made at
time step t = 1 on a regret at time T � 1 is computa-
tionally infeasible in the Bayesian optimization setting
(Osborne et al., 2009). A common greedy, but computa-
tionally feasible alternative is to repeatedly maximize the
expected one step ahead reward, examples of which in-
clude expected improvement, probability of improvement
(Kushner, 1964), upper confidence bound (Cox and John,
1992) and entropy search (Hennig and Schuler, 2012).

Emmerich (2005) introduced the idea of expected im-
provement in Pareto hypervolume, defined as

EIPV(xt+1|D) = (2)

Ep(y(xt+1)|D)

[
Vol
(
P
(
Y ∪ {y(xt+1)}

))
−Vol

(
P
(
Y
))]

where ys = [f1(xs), ..., fL(xs)]
>, Y = {ys}ts=1,

D = {xs,ys}ts=1 and vref is dropped for convenience.

Given that each fl is bounded above, we choose a reference
point wref , such that wref � [f1(x), ..., fL(x)]> for any
x ∈ X (it is ossible to set wref,l = ∞). The cuboidal set
of interest becomes A ≡ {y ∈ RL : wref � y � vref}.
Let the Pareto efficient subset be P(Y) = {u1, ...,uP } for
1 ≤ P ≤ t, and set u0 = vref and uP+1 = wref .
Now let b

(0)
j ≤ ... ≤ b

(P+1)
j be the sorted list

of jth coordinates of u0, ...,uP+1. The grid co-
ordinates b

(p)
j induce a cuboidal partitioning of A.

Specifically, for each (i1, ..., iL) ∈ {0, ..., P}L,
we define the grid cell C(i1, ..., iL) as the cuboid(
b
(i1)
1 , b

(i1+1)
1

]
×
(
b
(i2)
2 , b

(i2+1)
2

]
× ... ×

(
b
(iL)
L , b

(iL+1)
L

]
,

then grid cells are disjoint and their union equals A.
Analogous to the definitions of vref and wref with respect
to A, we define vC(i1,...,iL) =

(
b
(i1)
1 , ..., b

(iL)
L

)>
and

wC(i1,...,iL) =
(
b
(i1+1)
1 , ..., b

(iL+1)
L

)>
. Hence for any

y ∈ C(i1, ..., iL), wC(i1,...,iL) � y � vC(i1,...,iL).
The set of grid cells is defined as C ≡

{
C(i1, ..., iL) :

(i1, ..., iL) ∈ {0, ..., P}L
}

. An example of this grid
partitioning with L = 2 objectives is shown in Figure 1(a).

Note that there are two key types of grid cells: those
whose points are dominated by at least one member of
the Pareto efficient set and those whose points are not
dominated by any member of the Pareto efficient set
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(b) Inrease in PV at x ∈ X

Figure 2. An illustration that modelling correlations amongst ob-
jectives is beneficial. (a) Two objectives on X = [0, 1] with
observed function values shown by black squares. (b) Plots of
CEIPV, IEIPV and IPV at new input locations. IPV is the actual
increase in Pareto volume. CEIPV better matches the true IPV, as
it is able to model negative correlation between objectives.

(shaded differently in Figure 1(b)). Subsequent new
observations amongst the non-dominated cells change
the Pareto frontier, whilst observations in the dominated
cells do not. We define the set of non-dominated cells as
Cnd ≡ {C ∈ C : ∀y ∈ C,u ∈ P(Y),u � y}.

With the notation, definitions and illustrations developed,
the increase in Pareto volume from a new observation,
ynew, is given by

∑
C∈Cnd

VolvC

(
{ynew}

)
(see the sup-

plementary material for a formal derivation). This is the
volume of points which were previously non-dominated,
but are rendered dominated by ynew. Consequently, the
expected increase in Pareto volume is

EIPV(x|D) =
∑

C∈Cnd

∫
C

VolvC

(
{y}

)
p(y|D) dy

=
∑

C∈Cnd

wC∫
vC

L∏
l=1

(
yl − vC,l

)
p(y|D) dy. (3)

We have developed an acquisition function to decide where
multiple objectives should be evaluated next in pursuit of
finding a Pareto frontier. Next, we shall discuss various
Gaussian process based measures for p(y|D).

3. Pareto Learning with Gaussian Processes
Our setting is one in which evaluating objectives f1, ..., fL
is expensive and we therefore would like to learn as much
as possible per set of evaluations. Modelling objectives
accurately and quantifying uncertainty about predictions
are both key to deciding where we should evaluate next.

Gaussian processes are ideal for modelling the objec-
tives, as they are nonparametric, provide uncertainty esti-
mates about function values and often permit analytically
tractable inference. We review how independent GP mod-
els on each fl lead to an analytic expression for EIPV, and
introduce a novel analytic approximate of EIPV when we
model the fl as correlated.

3.1. Independent Gaussian Process Objectives

Emmerich et al. (2008) show that in the case that f1, ..., fL
are independent Gaussian process draws, the expected im-
provement in Pareto hypervolume can be calculated analyt-
ically. We denote the EIPV under independent GP objec-
tives, as IEIPV and compute it below,

IEIPV(x|D) =
∑

C∈Cnd

wC∫
vC

L∏
l=1

(
yl − vC,l

)
p(y|D) dy

=
∑

C∈Cnd

L∏
l=1

wC,l∫
vC,l

(
yl − vC,l

)
φ
(yl − µl

σl

)
dyl

=
∑

C∈Cnd

L∏
l=1

σ2
l

[(
φ(βC,l)− φ(αC,l)

)
+ βl

(
Φ(βC,l)− Φ(αC,l)

)]
, (4)

where fl(x)|D ∼ N
(
fl(x);µl, σ

2
l

)
, αC,l = (wC,l −

µl)/σl, βC,l = (vC,l−µl)/σl, and φ and Φ are the standard
Gaussian pdf and cdf respectively. Under the assumption
of independent Gaussian process objectives, not only is the
EIPV analytically computable, its derivative is too. This is
achieved by computing the derivatives of µl and σl with re-
spect to the input location x and simple applications of the
chain and product rule. The assumption of independence
of objectives is crucial in the above derivation as it allows
us to write an integral of a product as a product of univari-
ate simple integrals. This is a luxury which is not enjoyed
when the objectives are modelled as being correlated.

3.2. Correlated Gaussian Process Objectives

Denote the integral over cell, C, in equation (3) as
ΨC(x) ≡

∫wC

vC

∏L
l=1

(
yl(x) − vC,l

)
p(y(x)|D)dy. Mod-

elling the objectives fl as correlated Gaussian processes
would lead to a posterior f(x)|D ∼ N

(
f(x);µ,Σ

)
,

where Σ is non-diagonal. Whilst univariate Gaussian in-
tegrals are often analytically computable, the opposite is
true for general multivariate Gaussians. Under a correlated
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GP, the integral ΨC is no longer tractable. Note that

ΨC(x) =

∞∫
−∞

L∏
l=1

(
yl−vC,l

)
I
[
vC,l < yl ≤ wC,l

]
p(y|D)dy.

(5)

Define the form of the expression inside the product of
equation (5) as h(y) ≡ (y−v)I[v < y ≤ w]. Our approach
is to approximate h(y) with a scaled Gaussian probabil-
ity density function, h̃(y) = zN (y;λ, τ2), where we set
z, λ, τ to moment match h(y) as follows

z =

∫ ∞
−∞

h(y)dy =
1

2
(w − v)2

λ = z−1
∫ ∞
−∞

yh(y)dy =
1

2
(2w + v)

τ2 = z−1
∫ ∞
−∞

(y − λ)2h(y)dy =
1

18
(w − v)2. (6)

Note that the approximation parameters z, λ, τ do not de-
pend on the input, x. The nature of our approximation is
similar to that made in expectation propagation (Minka,
2001). The important difference is that expectation prop-
agation requires approximation parameters to be learned in
order to well approximate the entire integral ΨC , whilst our
approach simply aims to well approximate the integrand,
h(y). Whilst the expectation propagation approach is more
appropriate for our task statistically speaking, the param-
eters it would learn would strongly depend on x, which
makes EP computationally infeasible. EP requires relearn-
ing the approximation parameters at each new x location
whilst our approximation does not require this. Incorpo-
rating our proposed approximation strategy results in the
following analytic expression for an approximation to ΨC ,

ΨC ≈ Ψ̃C ≡
∞∫
−∞

L∏
l=1

zC,lN (yl;λC,l, τ
2
C,l)N (y;µ,Σ)dy

=

L∏
l=1

zC,l

∞∫
−∞

N
(
y; diag(λC),diag(τ 2

C)
)
N (y;µ,Σ)dy

=

L∏
l=1

zC,l × exp

(
− 1

2

(
µ>Σ−1µ+ log det(Σ)

)
(7)

+
1

2

(
ν>CΩ−1C νC + log det(ΩC)

)
− 1

2

L∑
l=1

(
λ2C,l

τ2C,l

+ log
(
2πτ2C,l

)))
,

where Ω−1C = Σ−1 + diag
(
τ 2
C

)−1
and Ω−1C νC =

Σ−1µ + diag
(
τ 2
C

)−1
λC . The final equality comes

from the fact that the product of multivariate Gaussian

probability density functions leads to a scaled multivariate
Gaussian probability density function, which can be
integrated analytically (see the supplementary material
for a derivation). We denote the approximated expected
improvement in Pareto hypervolume under the correlated
objective case as CEIPV(x|D) =

∑
C∈Cnd Ψ̃C(x).

Since the parameters zC ,λC , τC do not depend on
input location, x, we compute ∂Ψ̃C/∂x by computing
∂µ/∂x and ∂Σ/∂x , repeated applications of the chain
and product rules, and use of matrix derivative rules.

3.3. Correlated Gaussian Process Models

Until now, in this section, we have assumed a correlated
Gaussian process model without specifying its form. In
this subsection we propose two correlated output Gaussian
process models to use in the CEIPV framework.

Multi-task GPs. Bonilla et al. (2008) developed a frame-
work to model correlated functions on the same input do-
main, X . The idea involves a Kronecker factorization of
the covariance between fl(x) and fl′(x

′), separating the
intra-task covariance matrix from the inter-task covariance.
Specifically, Cov(fl(x), fl′(x

′)) = Kl,l′k(x, x′), where K
is a positive semi-definite matrix specifying inter-task sim-
ilarities and k is a covariance function over X . Suppose
for inputs x1, ..., xn, G is such that Gi,j = k(xi, xj), then
the full covariance matrix across tasks and data points is
K ⊗G, where ⊗ represents a Kronecker product. A ben-
efit of this approach, is that matrix inversion costs only
O(L3 +n3) since

[
K⊗G

]−1
= K−1⊗G−1. However, a

potential downside is that each function is marginally iden-
tically distributed up to scaling, which may be a poor as-
sumption for multiple objective Pareto frontier learning.
Swersky et al. (2013) utilize this model for Bayesian op-
timization of single objectives to transfer knowledge from
previously solved similar optimization problems.

Semiparametric Latent Factor GP. In this framework
introduced by Teh et al. (2004), the idea is to take lin-
ear combinations of nonparametric models. In our con-
text, we define the covariance between fl(x) and fl′(x′), as
Cov(fl(x), fl′(x

′)) =
∑L

s=1 Al,sAl′,sks(x, x
′), where A

is lower triangular, and ks are covariance functions over X .
Here, each function is no longer marginally identically dis-
tributed, but the downside is that matrix inversion now has
complexity O(L3n3). In typical settings this cost would
be prohibitive, but note that under a Bayesian optimization
framework this would not be a problem. We will be inter-
ested in up to 3 objective functions to optimize, and n is
typically small, of the order of 100.
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(a) Synthetic objective functions
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(b) EIPV(x)
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(c) CEIPV(x)

Figure 3. We empirically assess the quality of the CEIPV approximation to a numerical integration based estimate of EIPV on a 2
objective problem, under the Semiparametric Latent Factor GPs model. (a) Synthetic objective functions f1, f2 : [0, 1]2 → R. Dark
regions correspond to high function values and faint regions correspond to low function values. Black squares correspond to input
locations of 10 function evaluations, which are identical for both functions. (b) Ground truth EIPV(x), where each ΨC(x) is computed
using numerical integration over R2. (c) Our approximation, CEIPV(x). Dark regions correspond to input locations, x ∈ R, with high
utility, whilst faint regions correspond to inputs with low utility in terms of where to evaluate the objectives next.

4. Experiments
In this section, we provide empirical comparisons assess-
ing the performance of the proposed CEIPV method. We
denote the CEIPV framework under the semiparamteric la-
tent factor GPs and multi-task models, as CEIPV-SLF and
CEIPV-MT respectively. Three algorithms are used for
comparison: IEIPV, ParEGO (Knowles, 2006) and Ran-
dom. ParEGO is a method, which, at each iteration, de-
fines a single objective function by taking a random convex
combination of the multiple objectives, and maximizing the
expected improvement under the pseudo single objective to
decide where to evaluate all of the objectives next. Random
simply picks a point in X to evaluate all the objectives at
next, uniformly at random. Our experiments assume the
input space, X , is a convex subset of RD.

In line with Snoek et al. (2012), we choose to use ARD
Matérn 5/2 kernels over the input space, defined as

kM52(x,x′) = θ20

(
1 +
√

5r2 +
5

3
r2
)

exp
(
−
√

5r2
)

r2 =

D∑
d=1

(xd − x′d)2/θ2d.

For the CEIPV algorithms, the amplitude hyperparameter,
θ0, is set to 1 to avoid over parameterization.

In many applications, observed values are corrupted
with noise. In this work, we assume each objective is
observed with its own form of Gaussian noise, such
that yl(x) = fl(x) + εl(x), where εl(x) ∼ N (0, σ2

l )
independently. All of the previous derivations remain
possible with the assumption of additive Gaussian noise,

because a sum of Gaussians is also Gaussian distributed.

To perform a fully Bayesian treatment of the hyper-
parameters, we place priors over and sample them from
their joint posterior given observed data using slice
sampling (Neal, 2003). Independent log-Gaussian priors
are placed over θ and σ. In the case of CEIPV-MT, we
parameterize the L × L inter-task covariance matrix K as
AA>, where A is lower triangular. A lower triangular
matrix is also used in CEIPV-SLF. For both algorithms, we
place Gaussian priors on the lower triangular entries of A.
Our first experiment shows the benefit of modelling
cross objective correlations, and that the CEIPV method
is able to capture these correlations. For illustrative
purposes, we limit the input space to [0, 1], and generate
two negatively correlated objective functions, f1 and f2
which we jointly wish to maximize. Given noise free
observations of both objectives at 7 input locations, we
compared CEIPV-SLF(x|D), IEIPV(x|D) and the actual
increase in Pareto volume from a new evaluation at x given
the data and full knowledge of the objective functions,
IPV(x|D, f1, f2). See Figure 2. Notice CEIPV does a
much better job of modelling IPV than IEIPV does. Whilst
the independent GP method is fooled by the high function
values for x ∈ [0.8, 1], the correlated GP model learns the
strong negative correlation, and uses this to recommend
that the next evaluation be in the interval x ∈ [0.2, 0.3].

Once convinced that modelling correlations amongst
objective functions is beneficial, we wished to assess the
quality of the CEIPV approximation to the true integral,
EIPV, under the the SLF model. We again consider 2
objective functions, f1, f2 : [0, 1]2 → R with 10 noiseless
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(a) ρ = −0.5
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(b) ρ = 0
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(c) ρ = +0.25
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(d) ρ = +0.75

Figure 4. Performance of various algorithms in maximizing Pareto hypervolume on 2 objectives on X = [0, 1]3, synthetically generated
from the Semiparameteric Latent Factor GPs with correlations (a) ρ = −0.5, (b) ρ = 0, (c) ρ = +0.25 and (d) ρ = +0.75. Experiments
for each algorithm are repeated 50 times, the mean perfomances plus-minus one standard deviation are plotted.

function observations (Figure 3(a)). Under a SLF GP
model, we compute an estimate of EIPV (equation (3))
using numerical integration, and CEIPV-SLF, at new input
locations x ∈ [0, 1]2 (Figures 3(b),(c)). Notice that the
contours of CEIPV-SLF are on the whole very similar to
those of EIPV, suggesting that the CEIPV approximation
is a decent one. There is a small amount of discrepancy is
in the region [0, 0.2] × [0.8, 1], where CEIPV is slightly
more inclined to explore than IEPV, something we noticed
in further experiments. The approximation quality appears
best in regions close to observed input locations.

For the remaining experiments, we report Volvref

(
P(Ỹt)

)
at every iteration, t. Each experiment is initialized with
function evaluations at 5 input locations sampled inde-
pendently and uniformly at random over the input space.
To assess performance with different initial samples, we
repeat each experiment 50 times with different initial
input points. At each iteration, we average the acquisition
function over 10 hyperparameter samples.

Next, we assess the performance of various algorithms
on problems with different correlation levels. Setting the
input space to [0, 1]3, we generate pairs of objectives,
f1, f2, with means 2 and −2 respectively. Objectives are
drawn using the SLF model with two Matérn kernels with
lengthscales θ(1) = [0.7, 0.4, 1] and θ(2) = [0.34, 0.9, 0.5].
The matrix A is set such that A1,1 = 1,A2,1 = ρ and
A2,2 =

√
1− ρ2. We generate pairs of objectives for (a)

ρ = −0.5, (b) ρ = 0, (c) ρ = +0.25 and (d) ρ = +0.75.
The various algorithms are run attempting to find Pareto
efficient frontiers, with the results displayed in Figure 4.
The higher the absolute value of correlation, the more the
CEIPV methods outperform other methods. For ρ = 0
there is so statistical difference between between IEIPV
and CEIPV models as we would expect. ParEGO also

performs just as well for this level of correlation. Each of
the 4 model based methods outperforms Random. These
experiments provide strong evidence that the CEIPV are
able to account for correlations amongst objectives, and
that this can lead to superior performance.

While Gaussian process based multi-objective opti-
mization has not been thoroughly explored, there is a long
history of, typically model-free based, approaches to this
problem, including evolutionary and genetic algorithms
(Coello et al., 2002; Zitzler and Thiele, 1999). Several
benchmark functions have been constructed for testing
the efficacy of optimization algorithms. We choose three
such functions for experimentation: oka2 (Okabe et al.,
2004), vlmop3 (Veldhuizen and Lamont, 1999) and
dtlz1a (Deb et al., 2001). We define these functions in
the supplementary material.

Results for the experiments on these functions are shown
in Figure 5(a),(b),(c). The objectives being experimented
on have complicated correlations between them, which
depend on the location of the input space. Nonetheless,
the CEIPV methods perform consistently strongly in all
experiments. IEIPV does well on the oka2 task despite a
slow start. We believe this was due to f1 being simple to
model, where a correlated multi-task GP may be prone to
consider more complicated explanations than necessary.

Finally we consider three real-world multi objective
Pareto frontier optimization problems. The first problem,
boston, involves training a 2 hidden layer neural network
on a random train/test split of the Boston Housing dataset
(Bache and Lichman, 2013). The function takes as input
the weight-decay parameter, number of training iterations
and size of the hidden layers. The outputs are the negative
prediction error on the test set, and the negative product of
the layer size and number of training iterations. The idea is
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(b) vlmop3
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(f) llvm

Figure 5. Performance of multi-objective optimization algorithms on synthetic and real functions. Experiments for each algorithm are
repeated 50 times, the mean perfomances plus-minus one standard deviation are plotted.

to explore the trade off between (i) accuracy of prediction,
and (ii) a combined measure of memory consumption and
training time of the neural network. Such a trade off would
be useful to explore, for example in the case of storing
neural network models on mobile devices with limited
memory and computational power. A manufacturer of such
devices would be interested in knowing the form of the
Pareto curve as this could influence final design choices.

Next we consider rocket, a simulation of a rocket
(Hasbun, 2008) being launched from the Earth’s surface.
The mass of fuel used, launch height and launch angle
relative to the ground are inputs to the simulation. The
outputs are the time taken to return to the Earth’s surface,
the angular distance travelled with respect to the centre of
the Earth, and the absolute difference between the launch
angle and the radius at the point of launch. Simulations
are often used in engineering to explore what outcomes of
various design choices may be for example in aerospace
and automobile engineering. Nevertheless, running
simulations can take days and require vast computational
resources, making intelligent experiment choice crucial.

Thirdly we consider the problem of optimizing com-
piler settings for the LLVM compiler, using the SW-LLVM
data set of Siegmund et al. (2012). The design space
consists of 1023 different compiler settings, determined
by 10 binary flags. The objectives are memory footprint
and performance on a given set of software programs,
compiled with the particular compiler settings. The data
was very costly to obtain; evaluating the objectives on a
particular compiler setting takes several hours. We denote
the problem llvm, and set the input space to [0, 1]10, using
a rounding function to determine the binary indicators.

Results on each of the three real world tasks are shown
in Figure 5(d),(e),(f). As before, the CEIPV algorithms
which incorporate correlations between objectives tend
to perform best, by a statistically significant margin in
most cases. Most interestingly, the IEIPV model performs
marginally worse than random selection on the llvm

task, whilst the CEIPV methods do significantly better
than random. On the boston problem, the CEIPV
methods appear to achieve results in 10 iterations, which
takes ParEGO about 100 iterations, suggesting that our
approximation and correlation modelling significantly
boosts the rate at which we approach Pareto optimality.

We also ran a popular evolutionary approach to multi-
objective Pareto optimization, NSGA-II (Deb et al., 2002),
on each of these tasks. On each and every task, the
performance of NSGA-II was marginally below that of
IEIPV at every iteration. In order to avoid further clutter,
we decided not to plot the performance in Figure 5. All
EIPV methods outperform NSGA-II, verifying the findings
of Couckuyt et al. (2014).

5. Discussion
In this paper, we argue that modelling correlations amongst
objectives in multi-objective Pareto optimization problems
is important for success. To overcome the problem of
intractable integrals, we devise a novel approximation
which leads to an analytic and differentiable approximation
to the expected increase in Pareto hypervolume acquisition
function. Two forms of correlated output GP models are
implemented on a variety of multi-objective problems, and
seem to consistently outperform competing models which
model objectives as being independent.

There are several directions in which this work may be ex-
tended further. Further theoretical analysis is required to
assess the nature of the approximation we have made. In or-
der to reduce computational burden under the SLF model,
one may consider implementing a sparse approximation to
theNL×NL covariance matrix which leads to faster com-
putation. Next, we could work on how to select a batch of
points where we can evaluate next in parallel, in a multi-
objective setting. Another interesting avenue would be to
experiment with alternative correlated output models, such
as a deep neural network.
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