
Fast Stochastic Algorithms for SVD and PCA:
Convergence Properties and Convexity

Ohad Shamir OHAD.SHAMIR@WEIZMANN.AC.IL

Weizmann Institute of Science, Rehovot, Israel

Abstract

We study the convergence properties of the VR-
PCA algorithm introduced by (Shamir, 2015) for
fast computation of leading singular vectors. We
prove several new results, including a formal
analysis of a block version of the algorithm, and
convergence from random initialization. We also
make a few observations of independent interest,
such as how pre-initializing with just a single ex-
act power iteration can significantly improve the
analysis, and what are the convexity and non-
convexity properties of the underlying optimiza-
tion problem.

1. Introduction
We consider the problem of computing the subspace
spanned by the top k left singular vectors of a d×n matrix
X = (x1, . . . ,xn), where k � min{n, d}. This is equiva-
lent to computing the subspace of the top k eigenvectors of
XX>, or equivalently, solving the optimization problem

min
W∈Rd×k:W>W=I

−Trace

(
W>

(
1

n

n∑
i=1

xix
>
i

)
W

)
.

(1)
This is one of the most fundamental matrix computation
problems, and has numerous uses (such as low-rank matrix
approximation and principal component analysis).

For large-scale matrices X , where exact eigendecompo-
sition is infeasible, standard deterministic approaches are
based on power iterations or variants thereof (e.g. the Lanc-
zos method) (Golub & Van Loan, 2012). Alternatively, one
can exploit the structure of Eq. (1) and apply stochastic
iterative algorithms, where in each iteration we update a
current d × k matrix W based on one or more randomly-
drawn columns xi ofX . Such algorithms have been known

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

for several decades ((Krasulina, 1969; Oja, 1982)), and en-
joyed renewed interest in recent years, e.g. (Arora et al.,
2012; Balsubramani et al., 2013; Arora et al., 2013; Hardt
& Price, 2014; De Sa et al., 2015). Another stochastic ap-
proach is based on SVD of a random projection of the data
matrix, e.g. (Halko et al., 2011; Woodruff, 2014).

Unfortunately, each of these algorithms suffer from a dif-
ferent disadvantage: The deterministic algorithms are ac-
curate (runtime logarithmic in the required accuracy ε, un-
der an eigengap condition), but require a full pass over the
matrix for each iteration, and in the worst-case many such
passes would be required (polynomial in the eigengap). On
the other hand, each iteration of the stochastic algorithms
is cheap, and their number is independent of the size of the
matrix, but on the flip side, their noisy stochastic nature
means they are not suitable for obtaining a high-accuracy
solution (the runtime scales polynomially with ε).

Recently, (Shamir, 2015) proposed a new practical algo-
rithm, VR-PCA, for solving Eq. (1), which has a “best-
of-both-worlds” property: The algorithm is based on cheap
stochastic iterations, yet the algorithm’s runtime is logarith-
mic in the required accuracy ε. More precisely, for the case
k = 1, xi of bounded norm, and when there is an eigen-
gap of λ between the first and second leading eigenvalues
of the covariance matrix 1

nXX
>, the required runtime was

shown to be on the order of

d

(
n+

1

λ2

)
log

(
1

ε

)
. (2)

The algorithm is therefore suitable for obtaining high ac-
curacy solutions (the dependence on ε is logarithmic), es-
sentially at the cost of only O(log(1/ε)) passes over the
data, assuming λ = Ω(1/

√
n). The algorithm is based on

the variance-reduction technique introduced in (Johnson &
Zhang, 2013) to speed up stochastic algorithms for convex
optimization problems, even though the optimization prob-
lem in Eq. (1) is inherently non-convex. See Section 3 for
a more detailed description of this algorithm, and (Shamir,
2015) for more discussions as well as experiments.

These results left several questions open. For example, it
is not clear if the quadratic dependence on 1/λ in Eq. (2)

Fast SVD and PCA Algorithms: Convergence Properties and Convexity

is necessary, since it is worse than the linear (or better) de-
pendence that can be obtained with the deterministic algo-
rithms mentioned earlier, as well as analogous results that
can be obtained with similar techniques for convex opti-
mization problems (where λ is the strong convexity pa-
rameter). Also, the analysis was only shown for the case
k = 1, whereas often in practice, we may want to recover
k > 1 singular vectors simultaneously. Although (Shamir,
2015) proposed a variant of the algorithm for that case, and
studied it empirically, no analysis was provided. Finally,
the convergence guarantee assumed that the algorithm is
initialized from a point closer to the optimum than what
is attained with standard random initialization. Although
one can use some other, existing stochastic algorithm to do
this “warm-start”, no end-to-end analysis of the algorithm,
starting from random initialization, was provided.

In this paper, we study these and related questions, and
make the following contributions:

• We propose a variant of VR-PCA to handle the k >
1 case, and formally analyze its convergence (Sec-
tion 3). The generalization to k > 1 is far from triv-
ial, and requires carefully tracking the evolution of the
subspace spanned by the current iterate.

• In Section 4, we study the convergence of VR-PCA
starting from a random initialization. And show that
with a slightly smarter initialization – essentially, ran-
dom initialization followed by a single power iteration
– the convergence (at least in terms of the analysis)
can be substantially improved.

• In Section 5, we study whether functions similar
to Eq. (1) have hidden convexity properties, which
would allow applying existing convex optimization
tools as-is, and possibly improve the required run-
time. For the k = 1 case, we show that this is in
a sense true: Close enough to the optimum, and on
a suitably-designed convex set, such a function is in-
deed λ-strongly convex. Unfortunately, the distance
from the optimum has to be O(λ), which is quite
small and is not clear how to utilize in most practical
regimes.

Following the initial publication of this paper, both (Garber
& Hazan, 2015) and (Jin et al., 2015) proposed a different
family of algorithms for the same problem as we do, in
the special case where k = 1. The algorithms are based
on repeatedly solving a series of convex problems, using
fast stochastic methods, and have better theoretical run-
time bounds in certain parameter regimes and when starting
from random initialization. On the flip side, besides hav-
ing an analysis specific to the k = 1 case, the algorithms
are considerably more complex than the simple schemes

we consider here, and their practical efficiency on actual
datasets remains to be seen. Moreover, to get an algorithm
requiring a logarithmic number of passes over the data, the
eigengap λ must in general be Ω(1/

√
n), which in that re-

spect is no better than the runtime bound in Eq. (2). Thus,
it is still of interest to understand whether this dependence
between λ and n is inherent to this non-convex problem.

2. Some Preliminaries and Notation
We consider a d × n matrix X composed of n columns
(x1, . . . ,xn), and let

A =
1

n
XX> =

1

n

n∑
i=1

xix
>
i .

Thus, Eq. (1) is equivalent to finding the k leading eigen-
vectors of A.

We generally use bold-face letters to denote vectors, and
capital letters to denote matrices. We let Tr(·) denote the
trace of a matrix, ‖ · ‖F to denote the Frobenius norm, and
‖ · ‖2 to denote the spectral norm. A symmetric d× d ma-
trix B is positive semidefinite, if infz∈Rd z

>Bz ≥ 0. A is
positive definite if the inequality is strict. Following stan-
dard notation, we write B � 0 to denote that A is positive
semidefinite, and B � C if B −C � 0. B � 0 means that
B is positive definite.

A twice-differentiable function F on a subset of Rd is con-
vex, if its Hessian is alway positive semidefinite. If it is
always positive definite, and � λI for some λ > 0, we
say that the function is λ-strongly convex. If the Hessian is
always≺ sI for some s ≥ 0, then the function is s-smooth.

3. The VR-PCA Algorithm and a Block
Version

We begin by recalling the algorithm of (Shamir, 2015) for
the k = 1 case (Algorithm 1), and then discuss its general-
ization for k > 1.

The basic idea of the algorithm is to perform stochastic up-
dates using randomly-sampled columns xi of the matrix,
but interlace them with occasional exact power iterations,
and use that to gradually reduce the variance of the stochas-
tic updates. Specifically, the algorithm is split into epochs
s = 1, 2, . . ., where in each epoch we do a single exact
power iteration with respect to the matrix A (by computing
ũ), and then perform m stochastic updates, which can be
re-written as

w′t = (I + ηA)wt−1 + η
(
xitx

>
it −A

)
(wt−1 − w̃s−1)

wt =
1

‖w′t‖
w′t,

Fast SVD and PCA Algorithms: Convergence Properties and Convexity

Algorithm 1 VR-PCA: Vector version (k = 1)
Parameters: Step size η, epoch length m
Input: Data matrix X = (x1, . . . ,xn); Initial unit vec-
tor w̃0

for s = 1, 2, . . . do
ũ = 1

n

∑n
i=1 xi

(
x>i w̃s−1

)
w0 = w̃s−1
for t = 1, 2, . . . ,m do

Pick it ∈ {1, . . . , n} uniformly at random
w′t = wt−1 + η

(
xit
(
x>itwt−1 − x>itw̃s−1

)
+ ũ

)
wt = 1

‖w′t‖
w′t

end for
w̃s = wm

end for

The first term is essentially a power iteration (with a finite
step size η), whereas the second term is zero-mean, and
with variance dominated by ‖wt−1 − w̃s−1‖2. As the al-
gorithm progresses, wt−1 and w̃s−1 both converge toward
the same optimal point, hence ‖wt−1 − w̃s−1‖2 shrinks,
eventually leading to an exponential convergence rate.

To handle the k > 1 case (where more than one eigenvec-
tor should be recovered), one simple technique is deflation,
where we recover the leading eigenvectors v1,v2, . . . ,vk
one-by-one, each time using the k = 1 algorithm. How-
ever, a disadvantage of this approach is that it requires a
positive eigengap between all top k eigenvalues, otherwise
the algorithm is not guaranteed to converge. Thus, an algo-
rithm which simultaneously recovers all k leading eigen-
vectors is preferable.

We will study a block version of Algorithm 1, presented
as Algorithm 2. Roughly speaking, we replace the d-
dimensional vectors wt−1, w̃s−1,u by d × k matrices
Wt−1, W̃s−1, Ũ , and normalization is replaced by orthog-
onalization1. Indeed, Algorithm 1 is equivalent to Algo-
rithm 2 when k = 1. The main twist in Algorithm 2 is that
instead of using W̃s−1, Ũ as-is, we perform a unitary trans-
formation (via the k × k orthogonal matrix Bt−1) which
maximally aligns them with Wt−1. Note that Bt−1 is a
k × k matrix, and since k is assumed to be small, this does
not introduce significant computational overhead.

We now turn to provide a formal analysis of Algorithm 2:

Theorem 1. Define the d × d matrix A as 1
nXX

> =
1
n

∑n
i=1 xix

>
i , and let Vk denote the d × k matrix com-

posed of the eigenvectors corresponding to the largest k
eigenvalues. Suppose that

1The normalization Wt = W ′t

(
W
′>
t W ′t

)−1/2

ensures that
Wt has orthonormal columns. We note that in our analysis, η
is chosen sufficiently small so that W

′>
t W ′t is always invertible,

hence the operation is well-defined.

Algorithm 2 VR-PCA: Block version
Parameters: Rank k, Step size η, epoch length m
Input: Data matrix X = (x1, . . . ,xn); Initial d × k
matrix W̃0 with orthonormal columns
for s = 1, 2, . . . do
Ũ = 1

n

∑n
i=1 xi

(
x>i W̃s−1

)
W0 = W̃s−1
for t = 1, 2, . . . ,m do
Bt−1 = V U>, where USV > is an SVD decompo-
sition of W>t−1W̃s−1
B Equivalent to

Bt−1 = arg min
B>B=I

‖Wt−1 − W̃s−1B‖2F

Pick it ∈ {1, . . . , n} uniformly at random
W ′t = Wt−1+

η
(
xit

(
x>itWt−1 − x>itW̃s−1Bt−1

)
+ ŨBt−1

)
Wt = W ′t

(
W
′>
t W ′t

)−1/2
end for
W̃s = Wm

end for

• maxi ‖xi‖2 ≤ r for some r > 0.

• A has eigenvalues s1 > s2 ≥ . . . ≥ sd, where sk −
sk+1 = λ for some λ > 0.

• k − ‖V >k W̃0‖2F ≤ 1
2 .

Let δ, ε ∈ (0, 1) be fixed. If we run the algorithm with any
epoch length parameter m and step size η, such that

η ≤ cδ2

r2
λ , m ≥ c′ log(2/δ)

ηλ
,

kmη2r2 + rk
√
mη2 log(2/δ) ≤ c′′ (3)

(where c, c′, c′′ designate certain positive numerical con-
stants), and for T =

⌈
log(1/ε)
log(2/δ)

⌉
epochs, then with proba-

bility at least 1− dlog2(1/ε)eδ, it holds that

k − ‖V >k W̃T ‖2F ≤ ε.

For any orthogonal W , k − ‖V >k W‖2F lies between 0 and
k, and equals 0 when the column spaces of Vk and W
are the same (i.e., when W spans the k leading singular
vectors). According to the theorem, taking appropriate2

2Specifically, we can take m = c′ log(2/δ)/ηλ and η =
aδ2/r2λ, where a is sufficiently small to ensure that the first and
third condition in Eq. (3) holds. It can be verified that it’s enough

to take a = min

{
c, c′′

4δ2ck log(2/δ)
, 1
4δ2c

(
c′′

k log(2/δ)

)2
}

.

Fast SVD and PCA Algorithms: Convergence Properties and Convexity

η = Θ(λ/(kr)2), and m = Θ((rk/λ)2), the algorithm
converges with high probability to a high-accuracy approx-
imation of Vk. Moreover, the runtime of each epoch of the
algorithm equalsO(mdk2 + dnk). Overall, we get the fol-
lowing corollary:

Corollary 1. Under the conditions of Theorem 1, there ex-
ists an algorithm returning W̃T such that k−‖V >k W̃T ‖2F ≤
ε with arbitrary constant accuracy, in runtime

O
(
dk

(
n+

r2k3

λ2

)
log(1/ε)

)
.

This runtime bound coincides with the existing one for the
k = 1 case 3.

The proof of Theorem 1 appears in Subsection A.1, and re-
lies on a careful tracking of the evolution of the potential
function k − ‖V >k W̃t‖2F . An important challenge com-
pared to the k = 1 case is that the matrices Wt−1 and
W̃s−1 do not necessarily become closer over time, so the
variance-reduction intuition discussed earlier no longer ap-
plies. However, the column space of Wt−1 and W̃s−1 do
become closer, and this is utilized by introducing the trans-
formation matrix Bt−1. We note that although Bt−1 ap-
pears essential for our analysis, it isn’t clear that using it
is necessary in practice: In (Shamir, 2015), the suggested
block algorithm was Algorithm 2 with Bt−1 = I , which
seemed to work well in experiments. In any case, using
this matrix doesn’t affect the overall runtime beyond con-
stants, since the additional runtime of computing and using
this matrix (O(dk2)) is the same as the other computations
performed at each iteration.

A limitation of the theorem above is the assumption that the
initial point W̃0 is such that k − ‖V >k W̃0‖2F ≤ 1

2 . This is a
non-trivial assumption, since if we initialize the algorithm
from a random d×O(1) orthogonal matrix W̃0, then with
overwhelming probability, ‖V >k W̃0‖2F = O(1/d). How-
ever, experimentally the algorithm seems to work well even
with random initialization (Shamir, 2015). Moreover, if we
are interested in a theoretical guarantee, one simple solu-
tion is to warm-start the algorithm with a purely stochastic
algorithm for this problem (such as (De Sa et al., 2015;
Hardt & Price, 2014; Balsubramani et al., 2013)), with run-
time guarantees on getting such a W̃0. The idea is that W̃0

is only required to approximate Vk up to constant accuracy,
so purely stochastic algorithms (which are good in obtain-
ing a low-accuracy solution) are quite suitable. In the next
section, we further delve into these issues, and show that
in our setting such algorithms in fact can be substantially

3(Shamir, 2015) showed that it’s possible to further improve
the runtime for sparseX , replacing d by the average column spar-
sity ds. This is done by maintaining parameters in an implicit
form, but it’s not clear how to implement a similar trick in the
block version, where k > 1.

improved.

4. Warm-Start and the Power of a Power
Iteration

In this section, we study the runtime required to compute a
starting point satisfying the conditions of Theorem 1, start-
ing from a random initialization. Combined with Theo-
rem 1, this gives us an end-to-end analysis of the runtime
required to find an ε-accurate solution, starting from a ran-
dom point. For simplicity, we will only discuss the case
k = 1, i.e. where our goal is to compute the single leading
eigenvector v1, although our observations can be general-
ized to k > 1. In the k = 1 case, Theorem 1 kicks in once
we find a vector w satisfying 〈v1,w〉2 ≥ 1

2 . However,
when we have no prior knowledge on the optimal solution
v1, the standard initialization heuristic is to choose a start-
ing vector uniformly at random from the unit sphere, in
which case we have 〈v1,w0〉2 ≈ 1

d . Thus, we begin with a
vector almost orthogonal to the leading eigenvector v1 (de-
pending on d), and this leads to polynomial dependencies
on d in the analysis.

However, it turns out that it is possible to improve the anal-
ysis by a smarter initialization: Sample w from the stan-
dard Gaussian distribution on Rd, perform a single power
iteration w.r.t. the covariance matrix A = 1

nXX
>, i.e.

w0 = Aw/‖Aw‖, and initialize from w0. For such a pro-
cedure, we have the following simple observation:

Lemma 1. For w0 as above, it holds for any δ that with
probability at least 1− 1

d − δ,

〈v1,w0〉2 ≥
δ2

12 log(d) nrank(A)
,

where nrank(A) =
‖A‖2F
‖A‖22

is the numerical rank of A.

The numerical rank (see e.g. (Rudelson & Vershynin,
2007)) is a relaxation of the standard notion of rank: For
any d × d matrix A, nrank(A) is at most the rank of A
(which in turn is at most d). However, it will be small even
if A is just close to being low-rank. In many if not most
machine learning applications, we are interested in matri-
ces which tend to be approximately low-rank, in which case
nrank(A) is much smaller than d or even a constant. There-
fore, by a single power iteration, we get an initial point w0

for which 〈v1,w0〉2 is on the order of 1/nrank(A), which
can be much larger than the 1/d given by a random initial-
ization, and is never substantially worse.

Proof. Let s1 ≥ s2 ≥ . . . ≥ sd ≥ 0 be the d eigenvalues

Fast SVD and PCA Algorithms: Convergence Properties and Convexity

of A, with eigenvectors v1, . . . ,vd. We have

〈v1,w0〉2 =
〈v1, Aw〉2

‖Aw‖2

=
(s1〈v1,w〉)2(∑d
i=1 sivi〈vi,w〉

)2
=

s21〈v1,w〉2∑d
i=1 s

2
i 〈vi,w〉2

.

Since w is distributed according to a standard Gaussian dis-
tribution, which is rotationally symmetric, we can assume
without loss of generality that v1, . . . ,vd correspond to the
standard basis vectors e1, . . . , ed, in which case the above
reduces to

s21w
2
1∑d

i=1 s
2
iw

2
i

≥ s21∑d
i=1 s

2
i

· w2
1

maxi w2
i

,

where w1, . . . , wd are independent and scalar random vari-
ables with a standard Gaussian distribution.

First, we note that s21 equals ‖A‖22, the spectral norm of A,
whereas

∑d
i=1 s

2
i equals ‖A‖2F , the Frobenius norm of A.

Therefore, s21∑
i s

2
i

=
‖A‖22
‖A‖2F

= 1
nrank(A) , and we get overall

that

〈v1,w0〉2 ≥
1

nrank(A)
· w2

1

maxi w2
i

. (4)

We consider the random quantity w2
1/maxi w

2
i , and inde-

pendently bound the deviation probability of the numerator
and denominator. First, for any t ≥ 0 we have

Pr(w2
1 ≤ t) = Pr(w1 ∈ [−

√
t,
√
t])

=

∫ √t
z=−

√
t

√
1

2π
exp

(
−z

2

2

)
≤
√

1

2π
∗ 2
√
t

=

√
2

π
t . (5)

Second, by combining two standard Gaussian concentra-
tion results (namely, that if W = max{|w1|, . . . , |wd|},
then 0 ≤ E[W] ≤ 2

√
2 log(d), and by the Cirelson-

Ibragimov-Sudakov inequality, Pr(W − E[W] > t) ≤
exp(−t2/2)), we get that

Pr(max
i
|wi| > 2

√
2 log(d) + t) ≤ exp(−t2/2),

and therefore

Pr(max
i
w2
i > (2

√
2 log(d) + t)2) ≤ exp(−t2/2). (6)

Combining Eq. (5) and Eq. (6), with a union bound, we get
that for any t1, t2 ≥ 0, it holds with probability at least

1−
√

2
π t1 − exp(−t22/2) that

w2
1

maxi w2
i

≥ t1

(2
√

2 log(d) + t2)2
.

To slightly simplify this for readability, we take t2 =√
2 log(d), and substitute δ =

√
2
π t1. This implies that

with probability at least 1− δ − 1/d,

w2
1

maxi w2
i

≥
π
2 δ

2

18 log(d)
>

δ2

12 log(d)
.

Plugging back into Eq. (4), the result follows.

When an exact power iteration is possible, this result can be
plugged into the existing analyses of streaming PCA/SVD
algorithms, and can often improve the dependence on the d
factor in the iteration complexity bounds to a dependence
on the numerical rank of A. Moreover, even in a purely
streaming setting, where an exact power iteration is not
possible, an approximate power iteration can still be per-
formed and apparently lead to similar results.

To give a concrete example of this, we provide a conver-
gence analysis of the VR-PCA algorithm (Algorithm 1),
starting from an arbitrary initial point, bounding the total
number of stochastic iterations required by the algorithm in
order to produce a point satisfying the conditions of The-
orem 1 (from which point the analysis of Theorem 1 takes
over). Combined with Theorem 1, this analysis also justi-
fies that VR-PCA indeed converges starting from a random
initialization.
Theorem 2. Using the notation of Theorem 1 (where λ
is the eigengap, v1 is the leading eigenvector, and r =
maxi ‖xi‖2), and for any δ ∈ (0, 12), suppose we run Al-
gorithm 1 with some initial unit-norm vector w̃0 such that

〈v1, w̃0〉2 ≥ ζ > 0,

and a step size η satisfying

η ≤ cδ2λζ3

r2 log2(2/δ)
(7)

(for some universal constant c). Then with probability at
least 1− δ, after

T =

⌊
c′ log(2/δ)

ηλζ

⌋
stochastic iterations (lines 6−10 in the pseudocode, where
c′ is again a universal constant), we get a point wT satis-
fying 1 − 〈v1,wT 〉2 ≤ 1

2 . Moreover, if η is chosen on the
same order as the upper bound in Eq. (7), then

T = Θ

(
r2 log3(2/δ)

δ2λ2ζ4

)
.

Fast SVD and PCA Algorithms: Convergence Properties and Convexity

Note that the analysis does not depend on the choice of
the epoch size m, and does not use the special structure
of VR-PCA (in fact, the technique we use is applicable to
any algorithm which takes stochastic gradient steps to solve
this type of problem). The proof of the theorem appears in
Section A.2.

we get that the runtime required by VR-PCA to find a point
w such that 1− 〈v1,wT 〉2 ≤ 1

2 is O(d/λ2ζ4) where ζ is a
lower bound on 〈v1, w̃0〉2. As discussed earlier, if w̃0 is a
result of random initialization followed by a power iteration
(requiring O(nd) time), and the covariance matrix A has
small numerical rank, then ζ = 〈v1, w̃0〉2 = Ω̃(1/ log(d)),
and the runtime is

O
(
nd+

d

λ2
log4(d)

)
= O

(
d

(
n+

(
log2(d)

λ

)2
))

.

By Corollary 1, the runtime required by VR-PCA from that
point to get an ε-accurate solution is

O
(
d

(
n+

1

λ2

)
log

(
1

ε

))
,

so the sum of the two expressions (which is d
(
n+ 1

λ2

)
up

to log-factors), represents the total runtime required by the
algorithm.

Very recently (and following the initial publication of this
paper), (Jain et al., 2016) managed to obtain an improved
analysis of standard stochastic gradient for our problem,
which requires Õ(1/λ2ε) iterations (ignoring log factors)
to achieve a point w such that 〈v1,w〉2 ≥ 1− ε, with con-
stant probability. Using this new analysis, if we warm-start
VR-PCA with Õ(1/λ2) iterations of stochastic gradient de-
scent (each requiring O(d) runtime), we again get an algo-
rithm attaining a high-accuracy solution in Õ(d

(
n+ 1

λ2

)
)

runtime, starting from random initialization. Note that
here, we do not need to assume the covariance matrix A
has low numerical rank, and the runtime of the warm-start
phase scales as d/λ2 rather than dn. Moreover, we suspect
that the analysis of (Jain et al., 2016) can be extended to
VR-PCA (which is also a stochastic gradient method), al-
though the structure of the updates makes the analysis of
(Jain et al., 2016) inapplicable as-is. If that is the case,
a standard random initialization of VR-PCA will get the
same runtime, without the need for any special initializa-
tion or warm-start procedures. We note that this would
accord with the empirical evidence in (Shamir, 2015), in
which VR-PCA appeared to work well from standard ran-
dom initialization.

5. Convexity and Non-Convexity of the
Rayleigh Quotient

As mentioned in the introduction, an intriguing open ques-
tion is whether the requirement of λ = Ω(1/

√
n) is nec-

essary or can be further improved, if we are interested in
an algorithm performing a logarithmic number of passes
over the data. Indeed, in the world of convex optimiza-
tion from which our algorithmic techniques are derived,
where we attempt to minimize convex functions of the
form F (w) = 1

n

∑n
i=1 fi(w), the analogue of λ is the

strong convexity parameter of F , and it is only required
that λ = Ω(1/n) to get a similar type of performance
(see e.g. (Johnson & Zhang, 2013; Shalev-Shwartz &
Zhang, 2014; Roux et al., 2012; Konečnỳ & Richtárik,
2013; Frostig et al.) in the context of the variance-reduction
technique we use). To phrase this in a different way, we
showed runtime bounds of order d(n+1/λ2) log(1/ε) run-
time bounds for the PCA/SVD problem, but for λ-strongly
convex problems, the known runtime bounds are of order
d(n + 1/λ) log(1/ε). Is it possible to get such runtimes
(with linear rather than quadratic dependence on 1/λ) for
our problem as well?

Another question is whether the non-convex problem that
we are tackling (Eq. (1)) is really that non-convex. Clearly,
it has a nice structure (since we can solve the problem
in polynomial time), but perhaps it actually has hidden
convexity properties, at least close enough to the optimal
points? We note that Eq. (1) can be “trivially” convexi-
fied, by re-casting it as an equivalent semidefinite program
(Boyd & Vandenberghe, 2004). However, that would re-
quire optimization over d × d matrices, leading to poor
runtime and memory requirements. The question here is
whether we have any convexity with respect to the original
optimization problem over “thin” d× k matrices.

In fact, the two questions of improved runtime and con-
vexity are closely related: If we can show that the opti-
mization problem is convex in some domain containing an
optimal point, perhaps this can lead to faster algorithms for
this problem, by utilizing such convexity.

To discuss these questions, we will focus on the k = 1
case for simplicity (i.e., our goal is to find a leading eigen-
vector of the matrix A = 1

nXX
> = 1

n

∑n
i=1 xix

>
i),

and study potential convexity properties of the negative
Rayleigh quotient,

FA(w) = − w>Aw

‖w‖2
=

1

n

n∑
i=1

(
−〈w,xi〉

2

‖w‖2

)
.

Note that for k = 1, this function coincides with Eq. (1)
on the unit Euclidean sphere, and with the same optimal
points, but has the nice property of being defined on the
entire Euclidean space (thus, at least its domain is convex).

At a first glance, such functions FA appear to potentially
be convex at some bounded distance from an optimum, as

illustrated for instance in the case where A =

(
1 0
0 0

)
(see Figure 1). Unfortunately, it turns out that the figure is

Fast SVD and PCA Algorithms: Convergence Properties and Convexity

Figure 1. The function (w1, w2) 7→ − w2
1

w2
1+w

2
2

, corresponding to

FA(w) where A = (1 0 ; 0 0) (best seen in color). It is invariant
to re-scaling of w, and attains a minimum at (a, 0) for any a 6= 0.

misleading, and in fact the function is not convex almost
everywhere:

Theorem 3. For the matrix A above, the Hessian of FA is
not positive semidefinite for all but a measure-zero set.

Proof. The leading eigenvector of A is v1 = (1, 0), and
FA(w) = − w2

1

w2
1+w

2
2

. The Hessian of this function at some
w equals

2

(w2
1 + w2

2)3

(
w2

2(3w2
1 − w2

2) −2w1w2(w2
1 − w2

2)
−2w1w2(w2

1 − w2
2) w2

1(w2
1 − 3w2

2)

)
.

The determinant of this 2× 2 matrix equals

4
(
w2

1w
2
2(3w2

1 − w2
2)(w2

1 − 3w2
2)− 4w2

1w
2
2(w2

1 − w2
2)2
)

(w2
1 + w2

2)6

=
4w2

1w
2
2

(w2
1 + w2

2)6
(
(3w2

1 − w2
2)(w2

1 − 3w2
2)− 4(w2

1 − w2
2)2
)

=
4w2

1w
2
2

(w2
1 + w2

2)6
(
−(w2

1 + w2
2)2
)

= − 4w2
1w

2
2

(w2
1 + w2

2)4
,

which is always non-positive, and strictly negative for w
for which w1w2 6= 0 (which holds for all but a measure-
zero set of Rd). Since the determinant of a positive
semidefinite matrix is always non-negative, this implies
that the Hessian isn’t positive semidefinite for any such
w.

The theorem implies that we indeed cannot use convex op-
timization tools as-is on the function FA, even if we’re
close to an optimum. However, the non-convexity was
shown for FA as a function over the entire Euclidean space,
so the result does not preclude the possibility of having

𝒗1

𝒘0

𝐻𝒘0

Unit
Euclidean
sphere

𝐵𝒘0
(𝑟)

Optimal points

Figure 2. Illustration of the construction of the convex set on
which FA is strongly convex and smooth. v1 is the leading eigen-
vector of A, and a minimum of FA (as well as any re-scaling of
v1). w0 is a nearby unit vector, and we consider the intersection
of a hyperplane orthogonal to w0, and an Euclidean ball centered
at w0.

convexity on a more constrained, lower-dimensional set. In
fact, this is what we are going to do next: We will show that
if we are given some point w0 close enough to an optimum,
then we can explicitly construct a simple convex set, such
that

• The set includes an optimal point of FA.

• The function FA is O(1)-smooth and λ-strongly con-
vex in that set.

Unfortunately, this has a catch: To make it work, we need
to have w0 very close to the optimum – in fact, we require
‖v1−w0‖ ≤ O(λ), and we show (in Theorem 5) that such
a dependence on the eigengap λ cannot be avoided (perhaps
up to a small polynomial factor). The issue is that the run-
time to get such a w0, using stochastic-based approaches
we are aware of, would scale at least quadratically with
1/λ, but getting dependence better than quadratic was our
problem to begin with. So, at the moment we do not know
how to utilize such convexity to get actual better runtime
performance. However, these results may still indicate that
a better runtime and dependence on λ is possible

To explain our construction, we need to consider two con-
vex sets: Given a unit vector w0, define the hyperplane
tangent to w0,

Hw0
= {w : 〈w,w0〉 = 1}

as well as a Euclidean ball of radius r centered at w0:

Bw0(r) = {w : ‖w −w0‖ ≤ r}

Fast SVD and PCA Algorithms: Convergence Properties and Convexity

The convex set we use, given such a w0, is simply the inter-
section of the two, Hw0 ∩Bw0(r), where r is a sufficiently
small number (see Figure 2).

The following theorem shows that if w0 is O(λ)-close to
an optimal point (a leading eigenvector v1 of A), and we
choose the radius of Bw0(r) appropriately, then Hw0 ∩
Bw0

(r) contains an optimal point, and the function FA is
indeed λ-strongly convex and smooth on that set. For sim-
plicity, we will assume that A is scaled to have spectral
norm of 1, but the result can be easily generalized.

Theorem 4. For any positive semidefinite A with spectral
norm 1, eigengap λ and a leading eigenvector v1, and any
unit vector w0 such that ‖w0 − v1‖ ≤ λ

44 , the function
FA(w) is 20-smooth and λ-strongly convex on the convex
set Hw0

∩ Bw0

(
λ
22

)
, which contains a global optimum of

FA.

The proof of the theorem appears in Subsection A.3. Fi-
nally, we show below that a polynomial dependence on the
eigengap λ is unavoidable, in the sense that the convexity
property is lost if w0 is significantly further away from v1.

Theorem 5. For any λ, ε ∈
(
0, 12
)
, there exists a positive

semidefinite matrix A with spectral norm 1, eigengap λ,
and leading eigenvector v1, as well as a unit vector w0

for which ‖v1 −w0‖ ≤
√

2(1 + ε)λ), such that FA is not
convex in any neighborhood of w0 on Hw0

.

Proof. Let

A =

 1 0 0
0 1− λ 0
0 0 0

 ,

for which v1 = (1, 0, 0), and take

w0 = (
√

1− p2, 0, p),

where p =
√

(1 + ε)λ (which ensures ‖v1 −
w0‖2 =

√
2p2 =

√
2(1 + ε)λ). Consider the ray

{(
√

1− p2, t, p) : t ≥ 0}, and note that it starts from w0

and lies in Hw0 . The function FA along that ray (consider-
ing it as a function of t) is of the form

− (1− p2) + (1− λ)t2

(1− p2) + t2 + p2
= − 1− p2 + (1− λ)t2

1 + t2
.

The second derivative with respect to t equals

−2
(3t2 − 1)(λ− p2)

(t2 + 1)3
= 2

(3t2 − 1)ελ

(t2 + 1)3
,

where we plugged in the definition of p. This is a negative
quantity for any t < 1√

3
. Therefore, the function FA is

strictly concave (and not convex) along the ray we have
defined and close enough to w0, and therefore isn’t convex
in any neighborhood of w0 on Hw0

.

6. Discussion and Open Questions
In this paper, we studied the direct applicability of
variance-reduced gradient descent methods to the non-
convex SVD and PCA problem. We showed that even in
the block case, where we attempt to recover the subspace of
k > 1 eigenvectors simultaneously, such methods indeed
enjoys a convergence rate comparable to the k = 1 case.
Moreover, we studied the convergence of these methods
starting from a random initialization, and observed that pre-
ceding the algorithm with a single power iteration can sig-
nificantly improve the resulting bounds. Finally, we stud-
ied the geometry of the optimization problem, and showed
that on a suitably chosen convex neighborhood of a global
optimum, the function is indeed strongly-convex. Unfortu-
nately, the radius around the optimum where this happens
scales with the eigengap, which precludes a better runtime
with currently available algorithms. Nevertheless, it does
indicate that a better runtime and dependence on λ may be
possible.

This work leaves several questions open. In particular, it is
still not clear what is the optimal runtime for the PCA/SVD
problem (at least in terms of the objective function in
Eq. (1)), when using first-order, O(d)-memory methods.
In particular, we do not know whether the quadratic depen-
dence on 1/λ is inevitable, or whether a linear dependence
might be possible (similar to existing runtime bounds for λ-
strongly convex problems with a finite-sum structure). This
is true even for the k = 1 case. Another question for future
research is understanding whether similar methods can be
applied to other non-convex optimization problems, with
provable convergence guarantees. A more specific open
question is understanding the exact radius around the op-
timum where strong convexity occurs, by closing the gap
between the radius lower bound in Theorem 4 and the up-
per bound in Theorem 5.

Acknowledgements: This research is supported in part
by an FP7 Marie Curie CIG grant, the Intel ICRI-CI Insti-
tute, and Israel Science Foundation grant 425/13.

References
Agarwal, A. and Bottou, L. A lower bound for the opti-

mization of finite sums. In ICML, 2015.

Arora, R., Cotter, A., Livescu, K., and Srebro, N. Stochas-
tic optimization for PCA and PLS. In 2012 50th An-
nual Allerton Conference on Communication, Control,
and Computing, 2012.

Arora, R., Cotter, A., and Srebro, N. Stochastic optimiza-
tion of PCA with capped MSG. In NIPS, 2013.

Fast SVD and PCA Algorithms: Convergence Properties and Convexity

Balsubramani, A., Dasgupta, S., and Freund, Y. The fast
convergence of incremental PCA. In NIPS, 2013.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

De Sa, C., Olukotun, K., and Ré, C. Global convergence of
stochastic gradient descent for some nonconvex matrix
problems. In ICML, 2015.

Frostig, R., Ge, R., Kakade, S., and Sidford, A. Un-
regularizing: approximate proximal point and faster
stochastic algorithms for empirical risk minimization.

Garber, D. and Hazan, E. Fast and simple pca via convex
optimization. arXiv preprint arXiv:1509.05647, 2015.

Golub, G. H and Van Loan, C. Matrix computations, vol-
ume 3. John Hopkins University Press, 2012.

Halko, N., Martinsson, P., and Tropp, J. Finding structure
with randomness: Probabilistic algorithms for construct-
ing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

Hardt, M. and Price, E. The noisy power method: A meta
algorithm with applications. In NIPS, 2014.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. Journal of the American statistical
association, 58(301):13–30, 1963.

Horn, R. and Johnson, C. Matrix analysis. Cambridge
university press, 2012.

Jain, Prateek, Jin, Chi, Kakade, Sham M, Netrapalli, Pra-
neeth, and Sidford, Aaron. Matching matrix bern-
stein with little memory: Near-optimal finite sam-
ple guarantees for oja’s algorithm. arXiv preprint
arXiv:1602.06929, 2016.

Jin, C., Kakade, S., Musco, C., Netrapalli, P., and Sidford,
A. Robust shift-and-invert preconditioning: Faster and
more sample efficient algorithms for eigenvector com-
putation. arXiv preprint arXiv:1510.08896, 2015.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In NIPS,
2013.

Konečnỳ, Jakub and Richtárik, Peter. Semi-stochastic gra-
dient descent methods. arXiv preprint arXiv:1312.1666,
2013.

Krasulina, T.P. The method of stochastic approximation
for the determination of the least eigenvalue of a sym-
metrical matrix. USSR Computational Mathematics and
Mathematical Physics, 9(6):189–195, 1969.

Oja, E. Simplified neuron model as a principal component
analyzer. Journal of mathematical biology, 15(3):267–
273, 1982.

Roux, Nicolas L, Schmidt, Mark, and Bach, Francis R. A
stochastic gradient method with an exponential conver-
gence rate for finite training sets. In Advances in Neural
Information Processing Systems, pp. 2663–2671, 2012.

Rudelson, M. and Vershynin, R. Sampling from large ma-
trices: An approach through geometric functional analy-
sis. Journal of the ACM (JACM), 54(4):21, 2007.

Shalev-Shwartz, Shai and Zhang, Tong. Accelerated proxi-
mal stochastic dual coordinate ascent for regularized loss
minimization. Mathematical Programming, pp. 1–41,
2014.

Shamir, O. A stochastic PCA and SVD algorithm with an
exponential convergence rate. In ICML, 2015.

Woodruff, D. Sketching as a tool for numerical linear al-
gebra. Theoretical Computer Science, 10(1-2):1–157,
2014.

