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A. Overview of the Appendix
In Section B, we derive the optimal solution U∗ for (2.4),
which was used in Section 2. Next, we clarify the imple-
mentation details of Algorithm 1 in Section C. We illustrate
more experiments in Section D. In Section F, we prove our
theoretical results and some preliminary lemmas are given
in Section E.

B. Optimal solution U∗ for (2.4)

The optimal solution U for (2.4) is given by the first order
optimality condition:

∂h̃(Y,D,U)

∂U
= U + λ3(Y

⊤Y U − Y ⊤D) = 0,

which implies
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(
1

λ3
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Then, its transpose is given by
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Note that ui is the column of U⊤. So for each i ∈ [n],

u∗
i = D⊤

(
1

λ3
Ip +

n∑
i=1

yiy
⊤
i

)−1

yi

=
1

n
D⊤
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where we denote Nn =
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⊤
i .

Also, we have
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C. Algorithm Details

Algorithm 2 Solving v and e

Require: D ∈ Rp×d, z ∈ Rp, parameters λ1 and λ2

Ensure: Optimal v and e.
1: Set e = 0.
2: repeat
3: Update v:

v = (D⊤D +
1

λ1
I)−1D⊤(z − e).

4: Update e:

e = Sλ2/λ1
[z −Dv].

5: until convergence

For Algorithm 2, we set a threshold ϵ = 10−3. Let {v′, e′}
and {v′′, e′′} be the two consecutive iterates. If the max-
imum of ∥v′ − v′′∥2/∥v′∥2 and ∥e′ − e′′∥2/∥e′∥2 is less
than ϵ, then we stop Algorithm 2.
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Algorithm 3 Solving D

Require: D ∈ Rp×d in the previous iteration, accumula-
tion matrix M , A and B, parameters λ1 and λ3.

Ensure: Optimal D (updated).
1: Denote Â = λ1A+ λ3I and B̂ = λ1B + λ3M .
2: repeat
3: for j = 1 to d do
4: Update the jth column of D:

dj ← dj −
1

Âjj

(
Dâj − b̂j

)
5: end for
6: until convergence

For Algorithm 3, we observe that a one-pass update on
the dictionary D is enough for the final convergence of
D, as we shown in the experiments. This is also observed
in Mairal et al. (2010).

D. More Experiments
We also investigate the performance of subspace clustering
on MNIST-7K and MNIST-10K. In this way, one can see
how the computational time changes with the number of
samples.

Table 4. Clustering accuracy (%) and computational time
(seconds).

OLRSC ORPCA LRR LRR2 SSC

Mush- 85.09 65.26 58.44 56.38 54.16
rooms 8.78 8.30 46.82 8.55 32 min

DNA 67.11 53.11 44.01 45.32 52.23
2.58 2.09 23.67 1.65 3 min

Protein 43.30 40.22 40.31 40.00 44.27
24.66 22.90 921.58 98.33 65 min

USPS 65.95 55.70 52.98 58.69 47.58
33.93 27.01 257.25 71.15 50 min

MNIST- 58.04 55.40 54.77 54.27 45.56
7K 42.99 39.84 512.37 95.21 26 min

MNIST- 56.79 54.66 55.15 53.67 44.90
10K 67 56 24 min 153 84 min

MNIST- 57.74 54.10 55.23 54.53 43.91
20K 129 121 32 min 360 7 hours

E. Proof Preliminaries
Lemma 3 (Corollary of Thm. 4.1 (Bonnans & Shapiro,
1998)). Let f : Rp × Rq → R. Suppose that for all
x ∈ Rp the function f(x, ·) is differentiable, and that f
and ∇uf(x,u) are continuous on Rp × Rq . Let v(u) be

the optimal value function v(u) = minx∈C f(x,u), where
C is a compact subset of Rp. Then v(u) is directionally
differentiable. Furthermore, if for u0 ∈ Rq , f(·,u0) has
unique minimizer x0 then v(u) is differentiable in u0 and
∇uv(u0) = ∇uf(x0,u0).

Lemma 4 (Corollary of Donsker theorem (van der Vaart,
2000)). Let F = {fθ : X → R, θ ∈ Θ} be a set of mea-
surable functions indexed by a bounded subset Θ of Rd.
Suppose that there exists a constant K such that

|fθ1(x)− fθ2(x)| ≤ K ∥θ1 − θ2∥2 ,

for every θ1 and θ2 in Θ and x in X . Then, F is P-Donsker.
For any f in F , let us define Pnf , Pf and Gnf as

Pnf =
1

n

n∑
i=1

f(Xi),

Pf = E[f(X)],

Gnf =
√
n(Pnf − Pf).

Let us also suppose that for all f , Pf2 < δ2 and ∥f∥∞ <
M and that the random elements X1, X2, · · · are Borel-
measurable. Then, we have

E ∥G∥F = O(1),

where ∥G∥F = supf∈F |Gnf |.
Lemma 5 (Sufficient condition of convergence for a
stochastic process (Bottou, 1998)). Let (Ω,F , P ) be a
measurable probability space, ut, for t ≥ 0, be the real-
ization of a stochastic process and Ft be the filtration by
the past information at time t. Let

δt =

{
1 if E[ut+1 − ut | Ft] > 0,

0 otherwise.

If for all t, ut ≥ 0 and
∑∞

t=1 E[δt(ut+1 − ut)] < ∞,
then ut is a quasi-martingale and converges almost surely.
Moreover,

∞∑
t=1

|E[ut+1 − ut | Ft]| < +∞ a.s.

Lemma 6 (Lemma 8 from Mairal et al. (2010)). Let at, bt
be two real sequences such that for all t, at ≥ 0, bt ≥
0,
∑∞

t=1 at = ∞,
∑∞

t=1 atbt < ∞, ∃K > 0, such that
|bt+1 − bt| < Kat. Then, limt→+∞ bt = 0.

F. Proof Details
F.1. Proof of Boundedness

Proposition 7. Let {ut}, {vt}, {et} and {Dt} be the op-
timal solutions produced by Algorithm 1. Then,
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1. vt, et, 1
tAt and 1

tBt are uniformly bounded.

2. Mt is uniformly bounded.

3. Dt is supported by some compact set D.

4. ut is uniformly bounded.

Proof. Let us consider the optimization problem of solving
v and e. As the trivial solution {v′

t, e
′
t} = {0, zt} are

feasible, we have

ℓ̃1(zt, Dt−1,v
′
t, e

′
t) = λ2 ∥zt∥1 .

Therefore, the optimal solution should satisfy:

λ1

2
∥zt −Dt−1vt − et∥22 +

1

2
∥vt∥22 + λ2 ∥et∥1 ≤ λ2 ∥zt∥1 ,

which implies

1

2
∥vt∥22 ≤ λ2 ∥zt∥1 ,

λ2 ∥et∥1 ≤ λ2 ∥zt∥1 .

Since zt is uniformly bounded (Assumption 1), vt and et
are uniformly bounded.

To examine the uniform bound for 1
tAt and 1

tBt, note that

1

t
At =

1

t

t∑
i=1

viv
⊤
i ,

1

t
Bt =

1

t

t∑
i=1

(zi − ei)v
⊤
i .

Since for each i, vi, ei and zi are uniformly bounded, 1
tAt

and 1
tBt are uniformly bounded.

Now we derive the bound for Mt. All the information we
have is:

1. Mt =
∑t

i=1 yiu
⊤
i (definition of Mt).

2. ut = (∥yt∥
2
2 +

1
λ3
)−1(Dt−1−Mt−1)

⊤yt (closed form
solution).

3. Dt(λ1At+λ3I) = λ1Bt+λ3Mt (first order optimality
condition for Dt).

4. 1
tAt, 1

tBt, 1
tNt are uniformly upper bounded (Claim 1).

5. The smallest singular values of 1
tNt and 1

tAt are uni-
formly lower bounded away from zero (Assumption 2
and 3).

For simplicity, we write Dt as:

Dt = (λ1Bt + λ3Mt)Q
−1
t , (F.1)

where

Qt = λ1At + λ3I.

Note that as we assume 1
tAt is positive definite, Qt is al-

ways invertible.

From the definition of Mt and (3.4), we know that

Mt+1 −Mt

= yt+1u
⊤
t+1

=

(∥∥yt+1

∥∥2
2
+

1

λ3

)−1

yt+1y
⊤
t+1 (Dt −Mt)

= PtDt − PtMt

= Pt(λ1Bt + λ3Mt)Q
−1
t − PtMt, (F.2)

where

Pt =

(∥∥yt+1

∥∥2
2
+

1

λ3

)−1

yt+1y
⊤
t+1.

By multiplying Qt on both sides of (F.2), we have

Mt+1 =
(
Mt − λ1PtMtAtQ

−1
t

)
+ λ1PtBtQ

−1
t . (F.3)

By applying the Taylor expansion on Q−1
t , we have

Q−1
t = (λ1At + λ3Id)

−1 =
1

λ3

+∞∑
i=0

(
−λ1

λ3
At

)i

.

Thus,

AtQ
−1
t =

1

λ3

+∞∑
i=0

(
−λ1

λ3

)i

(At)
i+1

= − 1

λ1

+∞∑
i=0

(
−λ1

λ3
At

)i+1

= − 1

λ1

[
+∞∑
i=−1

(
−λ1

λ3
At

)i+1

− Id

]

= − 1

λ1

(
Id +

λ1

λ3
At

)−1

+
1

λ1
Id.

So Mt+1 is given by

Mt+1 = (Id − Pt)Mt

+ PtMt

(
Id +

λ1

λ3
At

)−1

+ λ1PtBtQ
−1
t︸ ︷︷ ︸

Wt

.

(F.4)
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We first show that PtBtQ
−1
t is uniformly bounded.

∥∥PtBtQ
−1
t

∥∥ =

∥∥∥∥∥Pt

(
1

t
Bt

)(
1

t
Qt

)−1
∥∥∥∥∥

≤∥Pt∥ ·
∥∥∥∥1t Bt

∥∥∥∥ ·
∥∥∥∥∥
(
1

t
Qt

)−1
∥∥∥∥∥ .

Since we assume that {zt} are uniformly upper bounded
(Assumption 1), there exists a constant α1, such that for all
t > 0,

∥zt∥2 ≤ α1.

So we have

∥Pt+1∥ ≤
λ3α

2
1

λ3α2
1 + 1

.

Next, as we have shown that 1
tBt can be uniformly

bounded, there exists a constant c1, such that for all t > 0,∥∥∥∥1t Bt

∥∥∥∥ ≤ c1.

And, ∥∥∥∥∥
(
1

t
Qt

)−1
∥∥∥∥∥ =

1

σmin

(
1
tQt

)
=

1

σmin

(
λ1

t At +
λ3

t Id
)

=
1

λ3

t + λ1σmin

(
1
tAt

)
≤ 1

λ3 + λ1β0
.

Thus, λ1PtBtQ
−1
t is uniformly bounded by a constant, say

c2. That is, ∥∥λ1PtBtQ
−1
t

∥∥ ≤ c2. (F.5)

It follows that Wt can be bounded:

∥Wt∥ ≤ ∥Pt∥ · ∥Mt∥ ·

∥∥∥∥∥
(
Id +

λ1

λ3
At

)−1
∥∥∥∥∥+ c2

ζ1
≤ α2

1

α2
1 +

1
λ3

· λ3

λ3 + λ1β0t
∥Mt∥+ c2

≤ c3
t
∥Mt∥+ c2,

(F.6)

where ζ1 is derived by utilizing the assumption that z is
upper bounded by α1 and the smallest singular value of
1
tAt is lower bounded by β0. The last inequality always
holds for some uniform constant c3.

From Assumption 2, we know that the singular values of
1
t

∑t
i=1 ziz

⊤
i should uniformly span the diagonal. Thus,

there exists a constant τ , such that for all i > 0,
1
τ

∑i+τ
i ziz

⊤
i is uniformly bounded away from zero with

high probability.

Let m1 = ∥M1∥. Now we pick a constant t∗, such that

c3τ

t∗
(
1

α0
+ 1) ≤ 0.5. (F.7)

We also have a constant w∗, such that for all t ≤ t∗,

∥Wt∥ ≤ w∗,
c3
t
m1 + 0.5w∗ + c2 ≤ w∗.

(F.8)

Based on this, we first derive a bound for all ∥Mt∥, with
t ≤ t∗. We know that there exists an integer k∗ (which is
a uniform constant), such that k∗(τ + 1) ≤ t∗ < (k∗ +
1)(τ + 1). Our strategy is to bound ∥Mt∥ in each interval
[(k− 1)(τ +1), k(τ +1)]. We start our reasoning from the
first interval [1, τ + 1].

It is easy to induce from (F.4) that for all t > 0,

Mt+1 =

t∏
i=1

(Ip − Pi)M1 +

t−1∑
j=1

t∏
i=j+1

(Ip − Pi)Wj +Wt.

Thus,

∥Mτ+1∥

=

∥∥∥∥∥∥
τ∏

i=1

(Ip − Pi)M1 +

τ−1∑
j=1

τ∏
i=j+1

(Ip − Pi)Wj +Wτ

∥∥∥∥∥∥
≤

∥∥∥∥∥
τ∏

i=1

(Ip − Pi)M1

∥∥∥∥∥+
∥∥∥∥∥∥
τ−1∑
j=1

τ∏
i=j+1

(Ip − Pi)Wj +Wτ

∥∥∥∥∥∥
ζ1
≤

∥∥∥∥∥
τ∏

i=1

(Ip − Pi)

∥∥∥∥∥ · ∥M1∥+ τw∗

ζ2
≤ (1− α0)m1 + τw∗.

Here, ζ1 holds because
∥∥∥∏τ

i=j+1(Ip − Pi)
∥∥∥ ≤ 1 for all

j ∈ [τ − 1]. ζ2 holds because the singular values of Pi’s
have span over the diagonal so the largest singular value of∏τ

i=1(Ip − Pi) is 1− α0, where α0 is the lower bound for
all zi’s (see Assumption 1).

For M2(τ+1), we can similarly obtain∥∥M2(τ+1)

∥∥ ≤ (1− α0)
2m1 + (1− α0)τw

∗ + τw∗.
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More generally, for any integer k ≤ k∗,

∥∥Mk(τ+1)

∥∥ ≤(1− α0)
km1 +

k−1∑
j=0

(1− α0)
jτw∗

≤m1 +
τw∗

α0
.

Hence, we obtain a uniform bound for
∥∥Mk(τ+1)

∥∥, with
k ∈ [k∗]. For any i ∈ ((k − 1)(τ + 1), k(τ + 1)), they can
simply bounded by

∥Mi∥ ≤ m1 +
τw∗

α0
+ (i− (k − 1)(τ + 1))w∗

≤ m1 +
τw∗

α0
+ τw∗.

Therefore, for all the current Mt’s, we can bound them as
follows:

∥Mt∥ ≤ m1 +
τw∗

α0
+ τw∗, ∀ t = 1, 2, · · · , t∗. (F.9)

From (F.8) and (F.9), we know that for all t ≤ t∗,

∥Wt∥ ≤ w∗,

∥Mt∥ ≤ m1 +
τw∗

α0
+ τw∗.

Next, we show that the bounds still hold for ∥Wt∗+1∥ and
∥Mt∗+1∥, which completes our induction.

For ∥Mt∗+1∥, it can simply be bounded in the same way
as aforementioned because all the Wt’s are bounded by w∗

for t < t∗ + 1. That is,

∥Mt∗+1∥ ≤
∥∥Mk∗(τ+1)

∥∥+ (t∗ + 1− k∗(τ + 1))w∗

≤ m1 +
τw∗

α0
+ τw∗. (F.10)

For ∥Wt∗+1∥, from (F.6), we know

∥Wt∗+1∥ ≤
c3

t∗ + 1
∥Mt∗+1∥+ c2

≤ c3
t∗ + 1

(m1 +
τw∗

α0
+ τw∗) + c2

=
c3m1

t∗ + 1
+

c3τ

t∗ + 1
(
1

α0
+ 1)w∗ + c2

ζ1
≤ c3m1

t∗ + 1
+ 0.5w∗ + c2

ζ2
≤ w∗. (F.11)

Here, ζ1 is derived by utilizing (F.7) and ζ2 is derived by
(F.8).

From (F.10) and (F.11), we know that the bound for ∥Mt∥
and ∥Wt∥’s, with t ≤ t∗, still holds for t = t∗ + 1. Thus

we complete the induction and conclude that for all t > 0,
we have

∥Mt∥ ≤ m1 +
τw∗

α0
+ τw∗,

∥Wt∥ ≤ w∗.

Thus, Mt is uniformly bounded.

From (F.1), we know that

Dt = λ1Bt (λ1At + λ3Id)
−1

+ λ3Mt (λ1At + λ3Id)
−1

= λ1

(
1

t
Bt

)(
λ1

t
At +

λ3

t
Id

)−1

+
λ3

t
Mt

(
λ1

t
At +

λ3

t
Id

)−1

.

Since 1
tAt, 1

tBt and Mt are all uniformly bounded, Dt is
also uniformly bounded.

By examining the closed form of ut, and note that we have
proved the uniform boundedness of Dt and Mt, we con-
clude that {ut} are uniformly bounded.

Corollary 8. Let vt, et, ut and Dt be the optimal solutions
produced by Algorithm 1.

1. ℓ̃(zt, Dt,vt, et) and ℓ(zt, Dt) are uniformly bounded.

2. 1
t h̃(Z,D,U) is uniformly bounded.

3. The surrogate function gt(Dt) defined in (3.5) is uni-
formly bounded and Lipschitz.

Proof. To show Claim 1, we just need to examine the
definition of ℓ̃(zt, Dt,vt, et) and notice that zt, Dt,
vt and et are all uniformly bounded. This implies
that ℓ̃(zt, Dt,vt, et) is uniformly bounded and so is
ℓ(zt, Dt). Likewise, we show that 1

t h̃(Z,D,U) is uni-
formly bounded.

The uniform boundedness of gt(Dt) follows immediately
as ℓ̃(zt, Dt,vt, et) and 1

t h̃(Z,D,U) are both uniformly
bounded. To show that gt(D) is Lipschitz, we show that
the gradient of gt(D) is uniformly bounded for all D ∈ D.

∥∇gt(D)∥F =

∥∥∥∥λ1D

(
At

t
+

λ3

t
Id

)
− λ1

Bt

t
− λ3

t
Mt

∥∥∥∥
F

≤ λ1 ∥D∥F

(∥∥∥∥At

t

∥∥∥∥
F

+

∥∥∥∥λ3

t
Id

∥∥∥∥
F

)
+ λ1

∥∥∥∥Bt

t

∥∥∥∥
F

+

∥∥∥∥λ3

t
Mt

∥∥∥∥
F

.

Notice that each term on the right side of the inequality
is uniformly bounded. Thus the gradient of gt(D) is uni-
formly bounded and gt(D) is Lipschitz.
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Proposition 9. Let D ∈ D and denote the minimizer of
ℓ̃(z, D,v, e) as:

{v′, e′} = argmin
v,e

ℓ̃(z, D,v, e).

Then, the function ℓ(z, L) is continuously differentiable
and

∇Dℓ(z, D) = (Dv′ + e′ − z)v′⊤.

Furthermore, ℓ(z, ·) is uniformly Lipschitz.

Proof. By fixing the variable z, the function ℓ̃ can be seen
as a mapping:

Rd+p ×D → R

([v; e], D) 7→ ℓ̃(z, D,v,e).

It is easy to show that for all [v; e] ∈ Rd+p, ℓ̃(z, ·,v, e)
is differentiable. Also ℓ̃(z, ·, ·, ·) is continuous on Rd+p ×
D. ∇D ℓ̃(z, D,v, e) = (Dv + e− z)v⊤ is continuous on
Rd+p×D. ∀D ∈ D, since ℓ̃(z, D,v, e) is strongly convex
w.r.t. v, it has a unique minimizer {v′,e′}. Thus Lemma 3
applies and we prove that ℓ(z, D) is differentiable in D and

∇Dℓ(z, D) = (Dv′ + e′ − z)v′⊤.

Since every term in∇Dℓ(z, D) is uniformly bounded (As-
sumption 1 and Proposition 7), we conclude that the gradi-
ent of ℓ(z, D) is uniformly bounded, implying that ℓ(z, D)
is uniformly Lipschitz w.r.t. D.

Corollary 10. Let ft(D) be the empirical loss function de-
fined in (2.6). Then ft(D) is uniformly bounded and Lips-
chitz.

Proof. Since ℓ(z, L) can be uniformly bounded (Corol-
lary 8), we only need to show that 1

th(Z,D) is uniformly
bounded. Note that we have derived the form for h(Z,D)
as follows:

1

t
h(Z,D) =

1

t3

t∑
i=1

1

2

∥∥∥∥∥D⊤
(

1

λ3t
Ip +

1

t
Nt

)−1

zi

∥∥∥∥∥
2

2

+
λ3

2t3

∥∥∥∥∥
(
1

t
Ip +

λ3

t
Nt

)−1

D

∥∥∥∥∥
2

F

where Nt =
∑t

i=1 ziz
⊤
i . Since every term in the above

equation can be uniformly bounded, h(Z,D) is uniformly
bounded and so is ft(D).

To show that ft(D) is uniformly Lipschitz, we show that
its gradient can be uniformly bounded.

∇ft(D)

=
1

t

t∑
i=1

∇ℓ(zi, D) +
1

t
∇h(Z,D)

=
1

t

t∑
i=1

(Dvi + ei − zi)v
⊤
i

+
1

t3

t∑
i=1

(
1

λ3t
Ip +

1

t
Nt

)−1

ziz
⊤
i

(
1

λ3t
Ip +

1

t
Nt

)−1

D

+
λ3

t3

(
1

t
Ip +

λ3

t
Nt

)−2

D.

Then the Frobenius norm of∇ft(D) can be bounded by:

∥∇ft(D)∥F

≤ 1

t

t∑
i=1

∥Dvi + ei − zi∥2 · ∥vi∥2

+
1

t3

t∑
i=1

∥∥∥∥∥
(

1

λ3t
Ip +

1

t
Nt

)−1
∥∥∥∥∥
2

F

· ∥zi∥22 · ∥D∥F

+
λ3

t3

∥∥∥∥∥
(
1

t
Ip +

λ3

t
Nt

)−1
∥∥∥∥∥
2

F

· ∥D∥F .

One can easily check that the right side of the inequal-
ity is uniformly bounded. Thus ∥∇ft(D)∥F is uniformly
bounded, implying that ft(D) is uniformly Lipschitz.

F.2. Proof of P-Donsker

Proposition 11. Let f ′
t(D) = 1

t

∑t
i=1 ℓ(zi, D) and f(D)

be the expected loss function defined in (2.8). Then we have

E[
√
t ∥f ′

t − f∥∞] = O(1).

Proof. Let us consider {ℓ(z, D)} as a set of measur-
able functions indexed by D ∈ D. As we showed
in Proposition 7, D is a compact set. Also, we have
proved that ℓ(z, D) is uniformly Lipschitz over D (Propo-
sition 9). Thus, {ℓ(z, D)} is P-Donsker (see the def-
inition in Lemma 4). Furthermore, as ℓ(z, D) is non-
negative and uniformly bounded, so is ℓ2(z, D). So we
have Ez[ℓ

2(z, D)] being uniformly bounded. Since we
have verified all the hypotheses in Lemma 4, we obtain the
result that

E[
√
t ∥f ′

t − f∥∞] = O(1).
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F.3. Proof of convergence of gt(D)

Theorem 12 (Convergence of the surrogate function
gt(Dt)). The surrogate function gt(Dt) we defined in (3.5)
converges almost surely, where Dt is the solution produced
by Algorithm 1.

Proof. Note that gt(Dt) can be viewed as a stochastic posi-
tive process since every term in gt(Dt) is non-negative and
the samples are drawn randomly. We define

ut = gt(Dt).

To show the convergence of ut, we need to bound the dif-
ference of ut+1 and ut:

ut+1 − ut

= gt+1(Dt+1)− gt(Dt)

= gt+1(Dt+1)− gt+1(Dt) + gt+1(Dt)− gt(Dt)

= gt+1(Dt+1)− gt+1(Dt)

+
1

t+ 1
ℓ(zt+1, Dt)−

1

t+ 1
g′t(Dt)

+

[
1

t+ 1

t+1∑
i=1

1

2
∥ui∥22 +

λ3

2(t+ 1)
∥Dt −Mt+1∥2F

− 1

t

t∑
i=1

1

2
∥ui∥22 −

λ3

2t
∥Dt −Mt∥2F

]

= gt+1(Dt+1)− gt+1(Dt) +
f ′
t(Dt)− g′t(Dt)

t+ 1

+
ℓ(zt+1, Dt)− f ′

t(Dt)

t+ 1

+

[
1

t+ 1

t+1∑
i=1

1

2
∥ui∥22 +

λ3

2(t+ 1)
∥Dt −Mt+1∥2F

− 1

t

t∑
i=1

1

2
∥ui∥22 −

λ3

2t
∥Dt −Mt∥2F

]
. (F.12)

Here,

g′t(Dt) =
1

t

t∑
i=1

ℓ̃(zi, D,vi,ei). (F.13)

First, we bound the last four terms. We have

1

t+ 1

t+1∑
i=1

1

2
∥ui∥22 −

1

t

t∑
i=1

∥ui∥22

=
−1

t(t+ 1)

t∑
i=1

1

2
∥ui∥22 +

1

2(t+ 1)
∥ut+1∥22

≤ 1

2(t+ 1)
∥ut+1∥22 . (F.14)

And

λ3

2(t+ 1)
∥Dt −Mt+1∥2F −

λ3

2t
∥Dt −Mt∥2F

=
−λ3

2t(t+ 1)
∥Dt −Mt∥2F +

λ3

2(t+ 1)

∥∥zt+1u
⊤
t+1

∥∥2
F

− λ3

t+ 1
Tr
(
(Dt −Mt)

⊤zt+1u
⊤
t+1

)
=

−λ3

2t(t+ 1)
∥Dt −Mt∥2F +

λ3

2(t+ 1)

∥∥zt+1u
⊤
t+1

∥∥2
F

− λ3

t+ 1

(
∥zt+1∥22 +

1

λ3

)
∥ut+1∥22

≤ 1

t+ 1

(
λ3

2

∥∥zt+1u
⊤
t+1

∥∥2
F
− (λ3 ∥zt+1∥22 + 1) ∥ut+1∥22

)
≤ 1

t+ 1

(
−λ3

2
∥zt+1∥22 ∥ut+1∥22 − ∥ut+1∥22

)
, (F.15)

where the first equality is derived by the fact that Mt+1 =
Mt + zt+1u

⊤
t+1, and the second equality is derived by the

closed form solution of ut+1 (see (3.4)).

Combining (F.14) and (F.15), we know that

1

t+ 1

t+1∑
i=1

1

2
∥ui∥22 −

1

t

t∑
i=1

∥ui∥22

+
λ3

2(t+ 1)
∥Dt −Mt+1∥2F −

λ3

2t
∥Dt −Mt∥2F

≤ 1

2(t+ 1)
∥ut+1∥22 +

1

t+ 1

(
− λ3

2
∥zt+1∥22 ∥ut+1∥22

− ∥ut+1∥22
)

=
1

t+ 1

(
−λ3

2
∥zt+1∥22 ∥ut+1∥22 −

1

2
∥ut+1∥22

)
≤ 0.

Therefore,

ut+1 − ut ≤ gt+1(Dt+1)− gt+1(Dt) +
1

t+ 1
ℓ(zt+1, Dt)

− 1

t+ 1
g′t(Dt)

= gt+1(Dt+1)− gt+1(Dt) +
f ′
t(Dt)− g′t(Dt)

t+ 1

+
ℓ(zt+1, Dt)− f ′

t(Dt)

t+ 1

≤ ℓ(zt+1, Dt)− f ′
t(Dt)

t+ 1
,

where f ′
t(D) is defined in Proposition 11, and the last in-

equality holds because Dt+1 is the minimizer of gt+1(D)
and g′t(D) is a surrogate function of f ′

t(D).

Let Ft be the filtration of the past information. We take the
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expectation on the above equation conditioned on Ft:

E[ut+1 − ut | Ft] ≤
E[ℓ(zt+1, Dt) | Ft]− f ′

t(Dt)

t+ 1

≤ f(Dt)− f ′
t(Dt)

t+ 1

≤
∥f − f ′

t∥∞
t+ 1

.

From Proposition 11, we know

E[∥f − f ′
t∥∞] = O( 1√

t
).

Thus,

E[E[ut+1 − ut | Ft]
+] = E[max{E[ut+1 − ut | Ft], 0}]

≤ c√
t(t+ 1)

,

where c is some constant.

Now let us define the index set

T = {t | E[ut+1 − ut | Ft] > 0},

and the indicator

δt =

{
1, if t ∈ T ,
0, otherwise.

We have
∞∑
t=1

E[δt(ut+1 − ut)] =
∑
t∈T

E[ut+1 − ut]

=
∑
t∈T

E[E[ut+1 − ut | Ft]]

=
∞∑
t=1

E[E[ut+1 − ut | Ft]
+]

≤+∞.

Thus, Lemma 5 applies. That is, gt(Dt) is a quasi-
martingale and converges almost surely. Moreover,

∞∑
t=1

|E[ut+1 − ut | Ft]| < +∞, a.s. (F.16)

F.4. Proof of Convergence of Dt

Proposition 13. Let {Dt}∞t=1 be the basis sequence pro-
duced by the Algorithm 1. Then,

∥Dt+1 −Dt∥F = O
(
1

t

)
. (F.17)

Proof. According the strong convexity of gt(D) (Assump-
tion 3), we have,

gt(Dt+1)− gt(Dt) ≥
β0

2
∥Dt+1 −Dt∥2F , (F.18)

On the other hand,

gt(Dt+1)− gt(Dt)

= gt(Dt+1)− gt+1(Dt+1) + gt+1(Dt+1)− gt+1(Dt)

+ gt+1(Dt)− gt(Dt)

≤ gt(Dt+1)− gt+1(Dt+1) + gt+1(Dt)− gt(Dt)

def
= Gt(Dt+1)−Gt(Dt). (F.19)

Note that the inequality is derived by the fact that
gt+1(Dt+1) − gt+1(Dt) ≤ 0, as Dt+1 is the minimizer
of gt+1(D). We denote gt(D)− gt+1(D) by Gt(D).

By a simple calculation, we obtain the gradient of Gt(D):

∇Gt(D)

=∇gt(D)−∇gt+1(D)

=
1

t

[
D (λ1At + λ3Id)− (λ1Bt + λ3Mt)

]
− 1

t+ 1

[
D(λ1At+1 + λ3Id)− (λ1Bt+1 + λ3Mt+1)

]
=

1

t

[
D

(
λ1At + λ3Id −

λ1t

t+ 1
At+1 −

λ3t

t+ 1
Id

)

+
λ1t

t+ 1
Bt+1 − λ1Bt +

λ3t

t+ 1
Mt+1 − λ3Mt

]

=
1

t

[
D

(
λ1

t+ 1
At+1 − λ1vt+1v

⊤
t+1 +

λ3

t+ 1
Id

)
+ λ1(zt+1 − et+1)v

⊤
t+1 −

λ1

t+ 1
Bt+1

+ λ3zt+1u
⊤
t+1 −

λ3

t+ 1
Mt+1

]
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So the Frobenius norm of∇Gt(D) follows immediately:

∥∇Gt(D)∥F

≤ 1

t

[
∥D∥F

(
λ1

∥∥∥∥At+1

t+ 1

∥∥∥∥
F

+ λ1

∥∥vt+1v
⊤
t+1

∥∥
F

+
λ3

t+ 1
∥Id∥F

)
+ λ1

∥∥(zt+1 − et+1)v
⊤
t+1

∥∥
F

+ λ1

∥∥∥∥Bt+1

t+ 1

∥∥∥∥
F

+ λ3

∥∥zt+1u
⊤
t+1

∥∥
F

+
λ3

t+ 1
∥Mt+1∥F

]

=
1

t

[
∥D∥F

(
λ1

∥∥∥∥At+1

t+ 1

∥∥∥∥
F

+ λ1

∥∥vt+1v
⊤
t+1

∥∥
F

)
+ λ1

∥∥(zt+1 − et+1)v
⊤
t+1

∥∥
F

+ λ1

∥∥∥∥Bt+1

t+ 1

∥∥∥∥
F

+ λ3

∥∥zt+1u
⊤
t+1

∥∥
F

]

+
λ3

t(t+ 1)

[
∥Id∥F + ∥Mt+1∥F

]
.

We know from Proposition 7 that all the terms in the above
equation are uniformly bounded. Thus, there exist con-
stants c1, c2 and c3, such that

∥∇Gt(D)∥F ≤
1

t
[c1 ∥D∥F + c2] +

c3
t(t+ 1)

.

According to the first order Taylor expansion,

Gt(Dt+1)−Gt(Dt)

= Tr
(
(Dt+1 −Dt)

⊤∇Gt (αDt + (1− α)Dt+1)
)

≤ ∥Dt+1 −Dt∥F · ∥∇Gt (αDt + (1− α)Dt+1)∥F ,

where α is a constant between 0 and 1. According to
Proposition 7, Dt and Dt+1 are uniformly bounded, so
αDt + (1− α)Dt+1 is uniformly bounded. Thus, there
exists a constant c4, such that

∥∇Gt (αLt + (1− α)Lt+1)∥F ≤
c4
t
+

c3
t(t+ 1)

,

resulting in

Gt(Dt+1)−Gt(Dt) ≤
(
c4
t
+

c3
t(t+ 1)

)
∥Dt+1 −Dt∥F .

Combining (F.18), (F.19) and the above equation, we have

∥Dt+1 −Dt∥F =
2c4
β0
· 1
t
+

2c3
β0
· 1

t(t+ 1)
.

F.5. Proof for convergence of ft(Dt)

Theorem 14 (Convergence of ft(Dt)). Let ft(Dt) be the
empirical loss function defined in (2.6) and Dt be the so-
lution produced by the Algorithm 1. Let bt = gt(Dt) −
ft(Dt). Then, bt converges almost surely to 0. Thus,
ft(Dt) converges almost surely to the same limit of gt(Dt).

Proof. Let f ′
t(D) and g′t(D) be those defined in Proposi-

tion 11 and Theorem 12 respectively. Then,

bt = gt(Dt)− ft(Dt)

= g′t(Dt)− f ′
t(Dt) +

[
1

t

t∑
i=1

1

2
∥ui∥22 +

λ3

2t
∥Dt −Mt∥2F

− 1

t3

t∑
i=1

1

2

∥∥∥∥∥D⊤
t

(
1

λ3t
Ip +

1

t
Nt

)−1

zi

∥∥∥∥∥
2

2

− λ3

2t3

∥∥∥∥∥
(
1

t
Ip +

λ3

t
Nt

)−1

Dt

∥∥∥∥∥
2

F

]
= g′t(Dt)− f ′

t(Dt) + qt(Dt),

where qt(Dt) denotes the last four terms. Combining F.12,
we have

bt
t+ 1

=
g′t(Dt)− f ′

t(Dt)

t+ 1
+

qt(Dt)

t+ 1

= gt+1(Dt+1)− gt+1(Dt) +
ℓ(zt+1, Dt)− f ′

t(Dt)

t+ 1

+ ut − ut+1

+

[
qt(Dt)

t+ 1
+

1

t+ 1

t+1∑
i=1

1

2
∥ui∥22

+
λ3

2(t+ 1)
∥Dt −Mt+1∥2F −

1

t

t∑
i=1

1

2
∥ui∥22

− λ3

2t
∥Dt −Mt∥2F

]
.

Note that we naturally have

qt(Dt)

t+ 1
≤ 1

t(t+ 1)

t∑
i=1

1

2
∥ui∥22 +

λ3

2t(t+ 1)
∥Dt −Mt∥2F

≤ 1

t(t+ 1)

t∑
i=1

1

2
∥ui∥22 +

c

2t(t+ 1)
,

where the second inequality holds as Dt and Mt are both
uniformly bounded (see Proposition 7).
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Also, from (F.14), we know

1

t+ 1

t+1∑
i=1

1

2
∥ui∥22 −

1

t

t∑
i=1

∥ui∥22

=
−1

t(t+ 1)

t∑
i=1

1

2
∥ui∥22 +

1

2(t+ 1)
∥ut+1∥22 .

And from (F.15)

λ3

2(t+ 1)
∥Dt −Mt+1∥2F −

λ3

2t
∥Dt −Mt∥2F

≤ 1

t+ 1

(
−λ3

2
∥zt+1∥22 ∥ut+1∥22 − ∥ut+1∥22

)
.

Thus,

qt(Dt)

t+ 1
+

1

t+ 1

t+1∑
i=1

1

2
∥ui∥22

+
λ3

2(t+ 1)
∥Dt −Mt+1∥2F

− 1

t

t∑
i=1

1

2
∥ui∥22 −

λ3

2t
∥Dt −Mt∥2F

≤ c

2t(t+ 1)
+

1

2(t+ 1)
∥ut+1∥22

+
1

t+ 1

(
−λ3

2
∥zt+1∥22 ∥ut+1∥22 − ∥ut+1∥22

)
=

c

2t(t+ 1)
− 1

2(t+ 1)
∥ut+1∥22

− λ3

2(t+ 1)
∥zt+1∥22 ∥ut+1∥22

≤ c

2t(t+ 1)
.

Therefore,

bt
t+ 1

≤ gt+1(Dt+1)− gt+1(Dt) +
ℓ(zt+1, Dt)− f ′

t(Dt)

t+ 1

+ ut − ut+1 +
c

2t(t+ 1)

≤ ℓ(zt+1, Dt)− f ′
t(Dt)

t+ 1
+ ut − ut+1 +

c

2t(t+ 1)
.

By taking the expectation conditioned on the past informa-
tion Ft, we have

bt
t+ 1

≤f(Dt)− ft(Dt)

t+ 1
+ E[ut − ut+1 | Ft] +

c

2t(t+ 1)

≤ c1√
t(t+ 1)

+ |E[ut − ut+1 | Ft]|+
c

2t(t+ 1)
,

where the second inequality holds by applying Proposi-
tion 11. Thus,

∞∑
t=1

bt
t+ 1

≤
∞∑
t=1

c1√
t(t+ 1)

+
∞∑
t=1

|E[ut − ut+1 | Ft]|

+
∞∑
t=1

c

2t(t+ 1)

< +∞.

Here, the last inequality is derived by applying (F.16).

Next, we examine the difference between bt+1 and bt:

|bt+1 − bt|
= |gt+1(Dt+1)− ft+1(Dt+1)− gt(Dt) + ft(Dt)|
≤ |gt+1(Dt+1)− gt(Dt+1)|+ |gt(Dt+1)− gt(Dt)|

+ |ft+1(Dt+1)− ft(Dt+1)|+ |ft(Dt+1)− ft(Dt)| .
(F.20)

For the first term on the right hand side,

|gt+1(Dt+1)− gt(Dt+1)|

=
∣∣∣g′t+1(Dt+1)− g′t(Dt+1) +

1

t+ 1

t+1∑
i=1

1

2
∥ui∥22

− 1

t

t∑
i=1

1

2
∥ui∥22 +

λ3

2(t+ 1)
∥Dt+1 −Mt+1∥2F

− λ3

2t
∥Dt+1 −Mt∥2F

∣∣∣
=
∣∣∣g′t+1(Dt+1)− g′t(Dt+1)−

1

t(t+ 1)

t∑
i=1

1

2
∥ui∥22

− 1

2(t+ 1)
∥ut+1∥22

− λ3

2t(t+ 1)
∥Dt+1 −Mt∥2F −

λ3

2(t+ 1)

∥∥zt+1u
⊤
t+1

∥∥2
F

∣∣∣
≤
∣∣g′t+1(Dt+1)− g′t(Dt+1)

∣∣+ 1

t(t+ 1)

t∑
i=1

1

2
∥ui∥22

+
1

2(t+ 1)
∥ut+1∥22 +

λ3

2t(t+ 1)
∥Dt+1 −Mt∥2F

+
λ3

2(t+ 1)

∥∥zt+1u
⊤
t+1

∥∥2
F

ζ1
≤
∣∣g′t+1(Dt+1)− g′t(Dt+1)

∣∣+ c1
t+ 1

=

∣∣∣∣ 1

t+ 1
ℓ(zt+1, Dt+1)−

1

t+ 1
g′t(Dt+1)

∣∣∣∣+ c1
t+ 1

ζ2
≤ c2

t+ 1
,
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where c1 and c2 are some uniform constants. Note that
ζ1 holds because all the ui’s, Dt+1, Mt and zt+1 are uni-
formly bounded (see Proposition 7), and ζ2 holds because
ℓ(zt+1, Dt+1) and g′t(Dt+1) are uniformly bounded (see
Corollary 8).

For the third term on the right hand side of (F.20), we can
similarly derive

|ft+1(Dt+1)− ft(Dt+1)|

≤
∣∣f ′

t+1(Dt+1)− f ′
t(Dt+1)

∣∣+ c3
t+ 1

=

∣∣∣∣ 1

t+ 1
ℓ(zt+1, Dt+1)−

1

t+ 1
f ′
t(Dt+1)

∣∣∣∣+ c3
t+ 1

ζ3
≤ c4

t+ 1
,

where c3 and c4 are some uniform constants, and ζ3
holds as ℓ(zt+1, Dt+1) and f ′

t(Dt+1) are both uniformly
bounded (see Corollary 10).

From Corollary 8 and Corollary 10, we know that both
gt(D) and ft(D) are uniformly Lipschitz. That is, there
exists uniform constants κ1, κ2, such that

|gt(Dt+1)− gt(Dt)| ≤κ1 ∥Dt+1 −Dt∥F
ζ4
≤ κ3

t+ 1
,

|ft(Dt+1)− ft(Dt)| ≤κ2 ∥Dt+1 −Dt∥F
ζ5
≤ κ4

t+ 1
.

Here, ζ4 and ζ5 are derived by applying Proposition 13 and
κ3 and κ4 are some uniform constants.

Finally, we have a bound for (F.20):

|bt+1 − bt| ≤
κ0

t+ 1
,

where κ0 is some uniform constant.

By applying Lemma 6, we conclude that {bt} converges to
zero. That is,

lim
t→+∞

gt(Dt)− ft(Dt) = 0.

Since we have proved in Theorem 12 that gt(Dt) converges
almost surely, we conclude that ft(Dt) converges almost
surely to the same limit of gt(Dt).

Theorem 15 (Convergence of f(Dt)). Let f(D) be the ex-
pected loss function we defined in (2.8) and let Dt be the
optimal solution produced by Algorithm 1. Then f(Dt)
converges almost surely to the same limit of ft(Dt) (or,
gt(Dt)).

Proof. According to the central limit theorem, we know
that
√
t(f(Dt)− ft(Dt)) is bounded, implying

lim
t→+∞

f(Dt)− ft(Dt) = 0, a.s.

F.6. Proof of gradient of f(D)

Proposition 16 (Gradient of f(D)). Let f(D) be the ex-
pected loss function which is defined in (2.8). Then,
f(D) is continuously differentiable and ∇f(D) =
Ez[∇Dℓ(z, D)]. Moreover, ∇f(D) is uniformly Lipschitz
on D.

Proof. We have shown in Proposition 9 that ℓ(z, D) is con-
tinuously differentiable, f(D) is also continuously differ-
entiable and we have∇f(D) = Ez[∇Dℓ(z, D)].

Next, we prove the Lipschitz of ∇f(D). Let v′(z′, D′)
and e′(z′, D′) be the minimizer of ℓ̃(z′, D′,v,e). Since
ℓ̃(z, D,v, e) has a unique minimum and is continuous in
z, D, v and e, v′(z′, D′) and e′(z′, D′) is continuous in z
and D.

Let Λ = {j | e′j ̸= 0}. According the first order optimality
condition, we know that

∂ℓ̃(z, D,v, e)

∂e
= 0,

which implies

λ1(z −Dv − e) ∈ λ2 ∥e∥1 .

Hence,

|(z −Dv − e)j | =
λ2

λ1
, ∀j ∈ Λ.

Since z − Dv − e is continuous in z and D, there exists
an open neighborhood V , such that for all (z′′, D′′) ∈ V , if
j /∈ Λ, then |(z′′ −D′′v′′ − e′′)j | < λ2

λ1
and e′′j = 0. That

is, the support set of e′ will not change.

Let us denote H = [D Ip], r = [v⊤ e⊤]⊤ and define the
function

ℓ̃(z,H, rΛ) =
λ1

2
∥z −HΛrΛ∥

2
2 +

1

2
∥[I 0]rΛ∥

2
2

+ λ2 ∥[0 I]rΛ∥1
Since ℓ̃(z, DΛ, ·) is strongly convex, there exists a uniform
constant κ1, such that for all r′′Λ,

ℓ̃(z′,H ′
Λ, r

′′
Λ)− ℓ̃(z′,H ′

Λ, r
′
Λ)

≥ κ1 ∥r′′Λ − r′Λ∥
2
2

= κ1

(
∥v′′ − v′∥22 + ∥e

′′
Λ − e′Λ∥

2
2

)
. (F.21)

On the other hand,

ℓ̃(z′,H ′
Λ, r

′′
Λ)− ℓ̃(z′,H ′

Λ, r
′
Λ)

= ℓ̃(z′,H ′
Λ, r

′′
Λ)− ℓ̃(z′′,H ′′

Λ, r
′′
Λ)

+ ℓ̃(z′′,H ′′
Λ, r

′′
Λ)− ℓ̃(z′, D′

Λ, r
′
Λ)

≤ ℓ̃(z′,H ′
Λ, r

′′
Λ)− ℓ̃(z′′,H ′′

Λ, r
′′
Λ)

+ ℓ̃(z′′,H ′′
Λ, r

′
Λ)− ℓ̃(z′,H ′

Λ, r
′
Λ), (F.22)
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where the last inequality holds because r′′ is the minimizer
of ℓ̃(z′′,H ′′, r).

We shall prove that ℓ̃(z′,H ′
Λ, rΛ)− ℓ̃(z′′, H ′′

Λ, rΛ) is Lip-
schitz w.r.t. r, which implies the Lipschitz of v′(z, D) and
e′(z, D).

∇r

(
ℓ̃(z′, H ′

Λ, rΛ)− ℓ̃(z′′,H ′′
Λ, rΛ)

)
= λ1

[
H ′⊤

Λ (H ′
Λ −H ′′

Λ) + (H ′
Λ −H ′′

Λ)
⊤H ′′

Λ

+H ′⊤
Λ (z′′ − z′) + (H ′′

Λ −H ′
Λ)

⊤z′′
]
.

Note that ∥H ′
Λ∥F , ∥H ′′

Λ∥F and z′′ are all uniformly
bounded. Hence, there exists uniform constants c1 and c2,
such that ∥∥∥∇r

(
ℓ̃(z′,H ′

Λ, rΛ)− ℓ̃(z′′,H ′′
Λ, rΛ)

)∥∥∥
2

≤ c1 ∥H ′
Λ −H ′′

Λ∥F + c2 ∥z′ − z′′∥2 ,

which implies that ℓ̃(z′,H ′
Λ, rΛ) − ℓ̃(z′′, H ′′

Λ, rΛ) is
Lipschitz with Lipschitz constant c(H ′

Λ,H
′′
Λ, z

′, z′′) =
c1 ∥H ′

Λ −H ′′
Λ∥F + c2 ∥z′ − z′′∥2. Combining this fact

with (F.21) and (F.22), we obtain

κ1 ∥r′′Λ − r′Λ∥
2
2 ≤ c(H ′

Λ, H
′′
Λ, z

′,z′′) ∥r′′Λ − r′Λ∥2 .

Therefore, r(z, D) is Lipschitz and so are v(z, D) and
e(z, D). Note that according to Proposition 9,

∇f(D′)−∇f(D′′)

= Ez

[
(H ′r′ − z)v′⊤ − (H ′′r′′ − z)v′′⊤

]
=Ez

[
H ′r′(v′ − v′′)⊤ + (H ′ −H ′′)r′v′′⊤

+H ′′(r′ − r′′)v′′⊤ + z(v′′ − v′)⊤
]
.

Thus,

∥∇f(D′)−∇f(D′′)∥F
ζ1
≤ Ez

[
∥H ′r′∥2 ∥v

′ − v′′∥2 + ∥H
′ −H ′′∥F

∥∥r′v′′⊤∥∥
F

+ ∥H ′′∥F ∥r
′ − r′′∥2 ∥v

′′∥2 + ∥z∥2 ∥v
′ − v′′∥2

]
ζ2
≤ Ez

[
(γ1 + γ2 ∥z∥2) ∥H

′ −H ′′∥F
]

ζ3
≤ γ0 ∥D′ −D′′∥F ,

where γ0, γ1 and γ2 are all uniform constants. Here,
ζ1 holds because for any function s(z), we have
∥Ez[s(z)]∥F ≤ Ez[∥s(z)∥F ]. ζ2 is derived by using the
result that r(z,H) and v(z,H) are both Lipschitz and
H ′, H ′′, r′, r′′, v′ and v′′ are all uniformly bounded.
ζ3 holds because z is uniformly bounded and actually
∥H ′ −H ′′∥F = ∥D′ −D′′∥F . Thus, we complete the
proof.

F.7. Proof of stationary point

Theorem 17 (Convergence of Dt). Let {Dt} be the op-
timal basis produced by Algorithm 1 and let f(D) be the
expected loss function defined in (2.8). Then Dt converges
to a stationary point of f(D) when t goes to infinity.

Proof. Since 1
tAt and 1

tBt are uniformly bounded (Propo-
sition 7), there exist sub-sequences of { 1tAt} and { 1tBt}
that converge to A∞ and B∞ respectively. Then Dt will
converge to D∞. Let W be an arbitrary matrix in Rp×d

and {hk} be any positive sequence that converges to zero.

As gt is a surrogate function of ft, for all t and k, we have

gt(Dt + hkW ) ≥ ft(Dt + hkW ).

Let t tend to infinity, and note that f(D) = limt→∞ ft(D),
we have

g∞(D∞ + hkW ) ≥ f(D∞ + hkW ).

Note that the Lipschitz of ∇f indicates that the second
derivative of f(D) is uniformly bounded. By a simple cal-
culation, we can also show that it also holds for gt(D). This
fact implies that we can take the first order Taylor expan-
sion for both gt(D) and f(D) even when t tends to infinity
(because the second order derivatives of them always ex-
ist). That is,

Tr(hkW
⊤∇g∞(D∞)) + o(hkW )

≥ Tr(hkW
⊤∇f(D∞)) + o(hkW )

By multiplying 1
hk∥W∥F

on both sides and note that {hk}
is a positive sequence, it follows that

Tr

(
1

∥W∥F
W⊤∇g∞(D∞)

)
+

o(hkW )

hk ∥W∥F

≥ Tr

(
1

∥W∥F
W⊤∇f(D∞)

)
+

o(hkW )

hk ∥W∥F
.

Now let k go to infinity,

Tr

(
1

∥W∥F
W⊤∇g∞(D∞)

)
≥ Tr

(
1

∥W∥F
W⊤∇f(D∞)

)
.

Note that this inequality holds for any matrix W ∈ Rp×d,
so we actually have

∇g∞(D∞) = ∇f(D∞).

As D∞ is the minimizer of g∞(D), we have

∇f(D∞) = ∇g∞(D∞) = 0.
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