
Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

Jie Shen JS2007@RUTGERS.EDU

Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

Ping Li PINGLI@STAT.RUTGERS.EDU

Dept. of Statistics & Biostatistics, Dept. of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

Huan Xu ISEXUH@NUS.EDU.SG

Department of Industrial and Systems Engineering, National University of Singapore, Singapore

Abstract
Low-Rank Representation (LRR) has been a sig-
nificant method for segmenting data that are gen-
erated from a union of subspaces. It is also
known that solving LRR is challenging in terms
of time complexity and memory footprint, in that
the size of the nuclear norm regularized matrix
is n-by-n (where n is the number of samples).
In this paper, we thereby develop a novel online
implementation of LRR that reduces the mem-
ory cost from O(n2) to O(pd), with p being the
ambient dimension and d being some estimated
rank (d < p ≪ n). We also establish the the-
oretical guarantee that the sequence of solutions
produced by our algorithm converges to a station-
ary point of the expected loss function asymptot-
ically. Extensive experiments on synthetic and
realistic datasets further substantiate that our al-
gorithm is fast, robust and memory efficient.

1. Introduction
In the past a few years, subspace clustering (Vidal, 2010;
Soltanolkotabi & Candès, 2012) has been extensively stud-
ied and has established solid applications, for example,
in computer vision (Elhamifar & Vidal, 2009) and net-
work topology inference (Eriksson et al., 2011). Among
many subspace clustering algorithms which aim to ob-
tain a structured representation to fit the underlying data,
two prominent examples are Sparse Subspace Cluster-
ing (SSC) (Elhamifar & Vidal, 2009; Soltanolkotabi et al.,
2014) and Low-Rank Representation (LRR) (Liu et al.,
2013). Both of them utilize the idea of self-expressiveness,

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

i.e., expressing each sample as a linear combination of the
remaining. What is of difference is that SSC pursues a
sparse solution while LRR prefers a low-rank structure.

In this paper, we are interested in the LRR method, which
is shown to achieve state-of-the-art performance on a broad
range of real-world problems (Liu et al., 2013). Recently,
Liu & Li (2014) demonstrated that, when equipped with a
proper dictionary, LRR can even handle the coherent data –
a challenging issue in the literature (Candès & Recht, 2009;
Candès et al., 2011) but commonly emerges in realistic
datasets such as the Netflix.

Formally, the LRR problem we investigate here is formu-
lated as follows (Liu et al., 2013):

min
X,E

λ1

2
∥Z − Y X − E∥2F + ∥X∥∗ + λ2 ∥E∥1 . (1.1)

Here, Z = (z1, z2, · · · , zn) ∈ Rp×n is the observation
matrix with n samples lying in a p-dimensional subspace.
The matrix Y ∈ Rp×n is a given dictionary, E is some
possible sparse corruption and λ1 and λ2 are two tunable
parameters. Typically, Y is chosen as the dataset Z itself.
The program seeks a low-rank representation X ∈ Rn×n

among all samples, each of which can be approximated by
a linear combination of the atoms in the dictionary Y .

While LLR is mathematically elegant, three issues are im-
mediately incurred for LRR in the face of big data:

Issue 1 (Memory cost of X). In the LRR formula-
tion (1.1), there is typically no sparsity assumption on X .
Hence, the memory footprint of X is proportional to n2

which precludes most of the recently developed nuclear
norm solvers (Lin et al., 2010; Jaggi & Sulovský, 2010;
Avron et al., 2012; Hsieh & Olsen, 2014).

Issue 2 (Computational cost of ∥X∥∗). Due to the size of
the nuclear norm regularized matrix X is n × n, optimiz-
ing such problems can be computationally expensive even
when n is not too large (Recht et al., 2010).

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

Issue 3 (Memory cost of Y). Since the dictionary size is
p×n, it is prohibitive to store the entire dictionary Y during
optimization when manipulating a huge volume of data.

To remedy these issues, especially the memory bottleneck,
one potential way is solving the problem in online manner.
That is, we sequentially reveal the samples z1, z2, · · · , zn

and update the components in X and E. Nevertheless, such
strategy appears difficult to execute due the the residual
term in (1.1). To be more precise, we note that each col-
umn of X is the coefficients of a sample with respect to the
entire dictionary Y , e.g., z1 ≈ Y x1 + e1. This indicates
that without further technique, we have to load the entire
dictionary Y so as to update the columns of X . Hence, for
our purpose, we need to tackle a more serious challenge:

Issue 4 (Partial realization of Y). We are required to guar-
antee the optimality of the solution but can only access part
of the atoms of Y in each iteration.

Related Works. There are a vast body of works attempting
to mitigate the memory and computational bottleneck of
the nuclear norm regularizer. However, to the best of our
knowledge, none of them can handle Issue 3 and Issue 4.

One of the most popular ways to alleviate the huge memory
cost is online implementation. Feng et al. (2013) devised
an online algorithm for the Robust Principal Component
Analysis (RPCA) problem, which makes the memory cost
independent of the sample size. Yet, compared to RPCA
where the size of the nuclear norm regularized matrix is
p×n, that of LRR is n×n – a worse and more challenging
case. Moreover, their algorithm cannot address the partial
dictionary issue that emerges in our case.

To tackle the computational overhead, Jaggi & Sulovský
(2010) utilized a sparse semi-definite programming solver
to derive a simple yet efficient algorithm. Unfortunately,
the memory requirement of their algorithm is proportional
to the number of observed entries, making it impractical
when the regularized matrix is large and dense (which is
the case of LRR). Avron et al. (2012) combined stochastic
subgradient and incremental SVD to boost efficiency. But
for the LRR problem, the type of the loss function does not
meet the requirements and thus, it is still not practical to
use that algorithm in our case.

Another line in the literature explores a structured formu-
lation of LRR beyond the low-rankness. For example,
Wang et al. (2013) provably showed that combining LRR
with SSC can take advantages of both methods. Shen & Li
(2016) argued that the vanilla LRR program does not fully
characterize the nature of multiple subspaces, and pre-
sented several effective alternatives to LRR.

Summary of Contributions. In this paper, henceforth,
we propose a new algorithm called Online Low-Rank

Subspace Clustering (OLRSC), which admits a low com-
putational complexity. In contrast to existing solvers,
OLRSC reduces the memory cost of LRR from O(n2) to
O(pd) (d < p ≪ n). This nice property makes OLRSC
an appealing solution for large-scale subspace clustering
problems. Furthermore, we prove that the sequence of solu-
tions produced by OLRSC converges to a stationary point
of the expected loss function asymptotically even though
only one atom of Y is available at each iteration. In a nut-
shell, OLRSC resolves all practical issues of LRR and still
promotes global low-rank structure – the merit of LRR.

2. Problem Formulation
Notation. We use bold lowercase letters, e.g. v, to denote
a column vector. The ℓ2 norm and ℓ1 norm of a vector v
are denoted by ∥v∥2 and ∥v∥1 respectively. Capital letters
such as M are used to denote a matrix, and its transpose
is denoted by M⊤. For an invertible matrix M , we write
its inverse as M−1. The capital letter Ir is reserved for
identity matrix where r indicates the size. The jth column
of a matrix M is denoted by mj if not specified. Three
matrix norms will be used: ∥M∥∗ for the nuclear norm,
∥M∥F for the Frobenius norm and ∥M∥1 for the ℓ1 norm
of a matrix seen as a long vector. The trace of a square
matrix M is denoted by Tr(M). For an integer n, we use
[n] to denote the integer set {1, 2, · · · , n}.

Our goal is to efficiently learn the representation matrix X
and the corruption matrix E in an online manner so as
to mitigate the issues mentioned in Section 1. The first
technique for our purpose is a non-convex reformulation
of the nuclear norm. Assume the rank of X is at most d.
Then Fazel et al. (2001) showed that,

∥X∥∗ = min
U,V,X=UV ⊤

1

2

(
∥U∥2F + ∥V ∥2F

)
, (2.1)

where U ∈ Rn×d and V ∈ Rn×d. The minimum can be
attained at, for example, U = U0S

1
2
0 and V = V0S

1
2
0 where

X = U0S0V
⊤
0 is the singular value decomposition.

In this way, (1.1) can be written as follows:

min
U,V,E

λ1

2

∥∥Z − Y UV ⊤ − E
∥∥2
F
+

1

2
∥U∥2F

+
1

2
∥V ∥2F + λ2 ∥E∥1 .

Note that by this reformulation, updating the entries in X
amounts to sequentially updating the rows of U and V .
Also note that this technique is utilized in Feng et al. (2013)
for online RPCA. Unfortunately, the size of U and V in our
problem are both proportional to n and the dictionary Y is
partially observed in each iteration, making the algorithm
in Feng et al. (2013) not applicable to LRR. Related to on-
line implementation, another challenge is that, all the rows

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

of U are coupled together at this moment as U is left mul-
tiplied by Y in the first term. This makes it difficult to
sequentially update the rows of U .

For the sake of decoupling the rows of U , as part of the crux
of our technique, we introduce an auxiliary variable D =
Y U , whose size is p × d (i.e., independent of the sample
size n). Interestingly, in this way, we are approximating the
term Z −E with DV ⊤, which provides an intuition on the
role of D: Namely, D can be seen as a basis dictionary of
the clean data, with V being the coefficients.

These key observations allow us to derive an equivalent re-
formulation of LRR (1.1):

min
D,U,V,E

λ1

2

∥∥Z − Y UV ⊤ − E
∥∥2
F
+

1

2

(
∥U∥2F + ∥V ∥2F

)
+ λ2 ∥E∥1 , s.t. D = Y U.

By penalizing the constraint in the objective, we obtain a
regularized version of LRR on which our OLRSC is based:

min
D,U,V,E

λ1

2

∥∥Z −DV ⊤ − E
∥∥2
F
+

1

2

(
∥U∥2F + ∥V ∥2F

)
+ λ2 ∥E∥1 +

λ3

2
∥D − Y U∥2F . (2.2)

Remark 1 (Superiority to LRR). There are two advantages
of (2.2) compared to (1.1). First, it is amenable for online
optimization. Second, it is more informative since it ex-
plicitly models the basis of the union of subspaces, hence
a better subspace recovery and clustering (see Section 5).
This actually meets the core idea of (Liu & Li, 2014) but
they assumed Y contains true subspaces.

Remark 2 (Connection to RPCA). Due to our explicit
modeling of the basis, we unify LRR and RPCA as fol-
lows: for LRR, D ≈ Y U (or D = Y U if λ3 tends to infin-
ity) while for RPCA, D = U . That is, ORPCA (Feng et al.,
2013) considers a problem of Y = Ip whose size is inde-
pendent of n, hence can be kept in memory which naturally
resolves Issue 3 and 4. This is why RPCA can be easily im-
plemented in an online fashion while LRR cannot.

Remark 3 (Connection to Dictionary Learning). Gener-
ally speaking, LRR (1.1) can be seen as a coding algorithm,
with the dictionary Y known in advance and X is a desired
structured code while other popular algorithms such as dic-
tionary learning (DL) (Mairal et al., 2010) simultaneously
optimizes the dictionary and the sparse code. Interestingly,
in view of (2.2), the link of LRR and DL becomes more
clear in the sense that the difference lies in the way how
the dictionary is constrained. That is, for LRR we have
D ≈ Y U and U is further regularized by Frobenius norm
whereas for DL, we have ∥di∥2 ≤ 1 for each column of D.

Let zi, yi, ei, ui, and vi be the ith column of matrices Z,

Y , E, U⊤ and V ⊤ respectively and define

ℓ̃(z, D,v, e)
def
=

λ1

2
∥z −Dv − e∥22 +

1

2
∥v∥22 + λ2 ∥e∥1 ,

ℓ(z, D) = min
v,e

ℓ̃(z, D,v,e), (2.3)

h̃(Y,D,U)
def
=

n∑
i=1

1

2
∥ui∥22 +

λ3

2

∥∥∥∥∥D −
n∑

i=1

yiu
⊤
i

∥∥∥∥∥
2

F

,

h(Y,D) = min
U

h̃(Y,D,U). (2.4)

Then (2.2) can be rewritten as:

min
D

min
U,V,E

n∑
i=1

ℓ̃(zi, D,vi, ei) + h̃(Y,D,U), (2.5)

which amounts to minimizing the empirical loss function:

fn(D)
def
=

1

n

n∑
i=1

ℓ(zi, D) +
1

n
h(Y,D). (2.6)

In stochastic optimization, we are interested in analyz-
ing the optimality of the obtained solution with respect to
the expected loss function. To this end, we first derive
the optimal solutions U∗, V ∗ and E∗ that minimize (2.5)
which renders a concrete form of the empirical loss func-
tion fn(D), hence we are able to derive the expected loss.

Given D, we need to compute the optimal solutions U∗,
V ∗ and E∗ to evaluate the objective value of fn(D). What
is of interest here is that, the optimization procedure of U
is totally different from that of V and E. According to
(2.3), when D is given, each v∗

i and e∗i can be solved by
only accessing the ith sample zi. However, the optimal u∗

i

depends on the whole dictionary Y as the second term in
h̃(Y,D,U) couples all the ui’s. Fortunately, we can obtain
a closed form solution for the u∗

i ’s (see Appendix B):

u∗
i =

1

n
D⊤(

1

λ3n
Ip +

1

n
Nn)

−1yi, ∀ i ∈ [n], (2.7)

where Nn =
∑n

i=1 yiy
⊤
i ∈ Rp×p. Thus, we have

h(Y,D) =
1

n2

n∑
i=1

1

2

∥∥∥∥∥D⊤
(

1

λ3n
Ip +

1

n
Nn

)−1

yi

∥∥∥∥∥
2

2

+
λ3

2n2

∥∥∥∥∥
(
1

n
Ip +

λ3

n
Nn

)−1

D

∥∥∥∥∥
2

F

.

Now we derive the expected loss function, which is defined
as the limit of the empirical loss function when n tends to
infinity. If we assume that all the samples are drawn i.i.d.
from some unknown distribution, we have

lim
n→∞

1

n

n∑
i=1

ℓ(zi, D) = Ez[ℓ(z, D)].

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

If we further assume that the smallest singular value of
1
nNn is bounded away from zero (which implies the spec-
trum of N−1

n is bounded from the above), we have

0 ≤ lim
n→∞

1

n
h(Y,D) ≤ lim

n→∞

1

n3

n∑
i=1

C0 = 0.

Here C0 is some constant since D is fixed and yi’s are
bounded. Hence, it follows that limn→∞ h(Y,D)/n = 0.
Finally, the expected loss function is given by

f(D)
def
= lim

n→∞
fn(D) = Ez[ℓ(z, D)]. (2.8)

3. Algorithm
Our OLRSC algorithm is summarized in Algorithm 1. Re-
call that OLRSC is an online implementation to solve (2.6),
which is derived from the regularized version of LRR (2.2).
We optimize the variables in an alternative manner. At the
t-th iteration, when the basis dictionary Dt−1 is given, the
optimal solutions {vt, et} are produced by minimizing the
objective function ℓ̃(zt, Dt−1,v, e) over v and e. We ob-
serve that if e is fixed, we can optimize v in closed form:

v = (D⊤
t−1Dt−1 + Id/λ1)

−1D⊤
t−1(zt − e). (3.1)

Conversely, given v, e is obtained via soft-thresholding:

e = Sλ2/λ1
[zt −Dt−1v]. (3.2)

Thus, we utilize coordinate descent algorithm to optimize
v and e. See Algorithm 2 in Appendix C for details.

To obtain ut, we need to compute an accumulation matrix
Mt−1 =

∑t−1
i=1 yiu

⊤
i where we define M0 = 0. In this

way, ut is given by minimizing

ℓ̃2(yt, Dt−1,Mt−1,u)

def
=

1

2
∥u∥22 +

λ3

2

∥∥Dt−1 −Mt−1 − ytu
⊤∥∥2

F
, (3.3)

for which we have the closed form solution

ut = (∥yt∥
2
2 + 1/λ3)

−1(Dt−1 −Mt−1)
⊤yt. (3.4)

As we discussed in Section 2, the optimal values of vari-
ables vt and et can be “accurately” solved by only access-
ing the t-th sample zt if Dt−1 is given. However, this does
not hold for the variable ut. In fact, even though Dt−1 is
given, the optimal ut depends on the entire dictionary Y ,
see (2.7). In online optimization, we only store the current
atom yt. Thus, in order to obtain desirable estimation for
ut, we have to “approximately” solve ut

1.

1Note that “accurately” and “approximately” here mean that
when only Dt−1, zt and yt are given, whether we can obtain the
same solution {vt,et,ut} as for the batch problem (2.6).

Algorithm 1 Online Low-Rank Subspace Clustering
Require: Z ∈ Rp×n (observed samples), Y ∈ Rp×n, pa-

rameters λ1, λ2 and λ3, random matrix D0 ∈ Rp×d

(initial basis), zero matrix M0, A0 and B0.
Ensure: Optimal basis Dn.

1: for t = 1 to n do
2: Access the t-th sample zt and the t-th atom yt.
3: Compute the coefficient and noise:

{vt, et} = argmin
v,e

ℓ̃(zt, Dt−1,v, e),

ut = argmin
u

ℓ̃2(yt, Dt−1,Mt−1,u).

4: Update the accumulation matrices:

Mt ← Mt−1 + ytu
⊤
t ,

At ← At−1 + vtv
⊤
t ,

Bt ← Bt−1 + (zt − et)v
⊤
t .

5: Update the basis:

Dt = argmin
D

1

t

[1
2
Tr
(
D⊤D(λ1At + λ3Id)

)
− Tr

(
D⊤(λ1Bt + λ3Mt)

)]
.

6: end for

Intuition for ℓ̃2(yt, Dt−1,Mt−1,u). Actually, our strat-
egy can be seen as a one-pass block coordinate descent al-
gorithm for the objective function h̃(Y,Dt−1, U). Assume
we have n atoms in total. We initialize all the u’s with
a zero vector. After accessing the t-th atom yt, we only
update ut while keeping the other u’s. In this way, opti-
mizing h̃(Y,Dt−1, U) amounts to minimizing the function
ℓ̃2(yt, Dt−1,Mt−1,u). So after revealing all the atoms,
each ut is sequentially updated only once.

As soon as {vi, ei,ui}ti=1 are available, we can compute a
new iterate Dt by optimizing the surrogate function

gt(D)
def
=

1

t

(t∑
i=1

ℓ̃(zi, D,vi, ei) +

t∑
i=1

1

2
∥ui∥22

+
λ3

2
∥D −Mt∥2F

)
. (3.5)

Expanding the first term, we find that Dt is given by

Dt = argmin
D

1

t

[1
2
Tr
(
D⊤D(λ1At + λ3Id)

)
− Tr

(
D⊤(λ1Bt + λ3Mt)

)]
= (λ1Bt + λ3Mt)(λ1At + λ3Id)

−1, (3.6)

where At =
∑t

i=1 viv
⊤
i and Bt =

∑t
i=1(zi−ei)v

⊤
i . We

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

point out that the size of At is d×d and that of Bt is p×d,
i.e., independent of sample size.

Memory Cost. It is remarkable that the memory cost of
Algorithm 1 is O(pd). To see this, note that when solving
vt and et, we load the auxiliary variable Dt and a sample
zt into the memory, which costs O(pd). To compute the
optimal ut’s, we need to access Dt and Mt ∈ Rp×d. Al-
though we aim to minimize (3.5), which seems to require
all the past information, we actually only need to record At,
Bt and Mt, whose sizes are at most O(pd) (since d < p).

Computational Efficiency. In addition to memory effi-
ciency, we further elaborate that the the computation in
each iteration is cheap. To compute {vt, et}, one may
utilize the block coordinate method in Richtárik & Takác
(2014) which enjoys linear convergence due to strong con-
vexity. One may also apply the stochastic variance reduced
algorithms which also ensure a geometric rate of conver-
gence (Xiao & Zhang, 2014; Defazio et al., 2014). The
ut is given by simple matrix-vector multiplication, which
costs O(pd). It is easy to see the complexity of Step 4 is
O(pd) and that of Step 5 is O(pd2).

A Fully Online Scheme. Now we have provided a way
to (approximately) optimize the LRR problem (1.1) in on-
line fashion. Usually, researchers in the literature will take
an optional post-processing step to refine the segmentation
accuracy, for example, applying spectral clustering on the
representation matrix X . In this case, one has to collect
all the ui’s and vi’s to compute X = UV ⊤ which again
increases the memory cost to O(n2). Here, we suggest
an alternative scheme which admits O(kd) memory usage
where k is the number of subspaces. The idea is utilizing
the well-known k-means on vi’s. There are two notable
advantages compared to the spectral clustering. First, up-
dating the k-means model can be implemented in online
manner and the computation isO(kd). Second, we observe
that vi is actually a robust feature for the ith sample.

An Alternative Online Implementation. Our strategy
for solving ut is based on an approximate routine which
resolves Issue 4 as well as has a low complexity. Yet, to
tackle Issue 4, another potential way is to avoid the variable
ut

2. Recall that we derive the optimal solution U∗ (pro-
vided that D is given) to (2.2) as follows (see Appendix B):

U∗ = Y ⊤ (λ−1
3 Ip + Y Y ⊤)−1

D.

Plugging it back to (2.2), we obtain

∥U∗∥2F = Tr
(
DD⊤ (Qn − λ3

−1Q2
n

))
,

∥D − Y U∗∥2F =
∥∥D − λ3

−1QnD
∥∥2
F
,

2We’d like to thank the anonymous NIPS 2015 Reviewer for
pointing out this potential solution to the online algorithm. Here
we explain why this alternative can be computationally expensive.

where

Qn =
(
λ3

−1Ip + Y Y ⊤)−1
.

Here, the subscript of Qn denotes the number of atoms
in Y . Note that the size of Qn is p × p. Hence, if we
incrementally compute the accumulation matrix Y Y ⊤ =∑t

i=1 yiy
⊤
i , we can update the variable D in an online

fashion. Namely, at t-th iteration, we re-define the surro-
gate function as follows:

gt(D)
def
=

1

t

[
t∑

i=1

ℓ̃(zi, D,vi, ei) +
λ3

2

∥∥∥∥D − 1

λ3
QtD

∥∥∥∥2
F

+
1

2
Tr

(
DD⊤

(
Qt −

1

λ3
Q2

t

))]
.

Again, by noting the fact that ℓ̃(zi, D,vi, ei) only involves
recording At and Bt, we show that the memory cost is in-
dependent of sample size.

While promising since the above procedure avoids the ap-
proximate computation, the main shortcoming is comput-
ing the inverse of a p × p matrix in each iteration, hence
not efficient. Moreover, as we will show in Theorem 1,
although the ut’s are approximate solutions, we are still
guaranteed the convergence of Dt.

4. Theoretical Analysis
We make three assumptions underlying our analysis.

Assumption 1. The observed data are generated i.i.d. from
some distribution and there exist constants α0 and α1,
such that the conditions 0 < α0 ≤ ∥z∥2 ≤ α1 and
α0 ≤ ∥y∥2 ≤ α1 hold almost surely.

Assumption 2. The smallest singular value of the matrix
Nt =

1
t

∑t
i=1 yiy

⊤
i is lower bounded away from zero.

Assumption 3. The surrogate functions gt(D) are strongly
convex for all t ≥ 0.

Based on these assumptions, we establish the main theoret-
ical result, justifying the validity of Algorithm 1.

Theorem 1. Let {Dt}∞t=1 be the sequence of optimal bases
produced by Algorithm 1. Then, the sequence converges to
a stationary point of f(D) (2.8) when t goes to infinity.

Note that since the reformulation of the nuclear norm (2.1)
is non-convex, we can only guarantee that the solution is
a stationary point in general (Bertsekas, 1999). We also
remark that OLRSC asymptotically fulfills the first order
optimality condition of (1.1). To see this, we follow the
proof technique of Prop.3 in Mardani et al. (2015) and let
X = UV ⊤, W1 = UU⊤, W2 = V V ⊤, M1 = M3 = 0.5I ,
M2 = M4 = 0.5λ1Y

⊤(Y X+E−Z). Due to our uniform
bound (Prop. 7), we justify the optimality condition.

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

More interestingly, as we mentioned in Section 3, the solu-
tion (3.4) is not accurate in the sense that it is not equal to
that of (2.7) given D. Yet, our theorem asserts that this will
not deviate {Dt}t≥0 away from the stationary point. The
intuition underlying such amazing phenomenon is that the
expected loss function (2.8) is only determined by ℓ(z, D)
which does not involve ut. What is of matter for ut and
Mt is their uniform boundedness and concentration to es-
tablish the convergence. Thanks to the carefully chosen
function ℓ̃(z, D,M,u) and the surrogate function gt(D),
we are able to prove the desired property by mathematical
induction which is a crucial step in our proof.

In particular, we have the following lemma that facilitates
our analysis:
Lemma 2. Let {Mt}t≥0 be the sequence of the matrices
produced by Algorithm 1. Then, there exists some universal
constant C0, such that for all t ≥ 0, ∥Mt∥F ≤ C0.

Due to the above lemma, the solution Dt is essentially de-
termined by At/t and Bt/t when t is a very large quan-
tity since Mt/t → 0. We also have a non-asymptotic rate
for the numerical convergence of Dt as ∥Dt −Dt−1∥2 =
O(1/t). See Appendix F for more details and a full proof.

5. Experiments
Before presenting the empirical results, we first introduce
the universal settings used throughout the section.

Algorithms. For the subspace recovery task, we com-
pare our algorithm with ORPCA (Feng et al., 2013),
LRR (Liu et al., 2013) and PCP (Candès et al., 2011). For
the subspace clustering task, we choose ORPCA, LRR and
SSC (Elhamifar & Vidal, 2009) as the competitive base-
lines. Recently, Liu & Li (2014) improved the vanilla LRR
by utilizing some low-rank matrix for Y . We denote this
variant of LRR by LRR2 and accordingly, our algorithm
equipped with such Y is denoted as OLRSC2.

Evaluation Metric. We evaluate the fitness of the re-
covered subspaces D (with each column being normal-
ized) and the ground truth L by the Expressed Variance
(EV) (Xu et al., 2010):

EV(D,L)
def
= Tr(DD⊤LL⊤)/Tr(LL⊤). (5.1)

The value of EV scales between 0 and 1, and a higher value
means better recovery.

The performance of subspace clustering is measured by
clustering accuracy, which also ranges in the interval [0, 1],
and a higher value indicates a more accurate clustering.

Parameters. We set λ1 = 1, λ2 = 1/
√
p and λ3 =

√
t/p,

where t is the iteration counter. These settings are actually
used in ORPCA. We follow the default parameter setting
for the baselines.

5.1. Subspace Recovery

Simulation Data. We use 4 disjoint subspaces {Sk}4k=1 ⊂
Rp, whose bases are denoted by {Lk}4k=1 ∈ Rp×dk . The
clean data matrix Z̄k ∈ Sk is then produced by Z̄k =
LkR

⊤
k , where Rk ∈ Rnk×dk . The entries of Lk’s and Rk’s

are sampled i.i.d. from the normal distribution. Finally, the
observed data matrix Z is generated by Z = Z̄ +E, where
Z̄ is the column-wise concatenation of Z̄k’s followed by a
random permutation, E is the sparse corruption whose ρ
fraction entries are non-zero and follow an i.i.d. uniform
distribution over [−2, 2]. We independently conduct each
experiment 10 times and report the averaged results.

Robustness. We illustrate by simulation results that
OLRSC can effectively recover the underlying subspaces,
confirming that Dt converges to the union of subspaces.
For the two online algorithms OLRSC and ORPCA, We
compute the EV after revealing all the samples. We ex-
amine the performance under different intrinsic dimension
dk’s and corruption ρ. To be more detailed, the dk’s are
varied from 0.01p to 0.1p with a step size 0.01p, and the ρ
is from 0 to 0.5, with a step size 0.05.

Rank / Dimension

C
or

ru
pt

io
n

0.05 0.2 0.35 0.5

0.5

0.4

0.3

0.2

0.1

0
OLRSC

Rank / Dimension
C

or
ru

pt
io

n

0.05 0.2 0.35 0.5

0.5

0.4

0.3

0.2

0.1

0
ORPCA

Rank / Dimension

C
or

ru
pt

io
n

0.05 0.2 0.35 0.5

0.5

0.4

0.3

0.2

0.1

0
LRR

Rank / Dimension

C
or

ru
pt

io
n

0.05 0.2 0.35 0.5

0.5

0.4

0.3

0.2

0.1

0
PCP

Figure 1. Subspace recovery under different intrinsic dimen-
sions and corruptions. Brighter is better. We set p = 100,
nk = 1000 and d = 4dk. LRR and PCP are batch methods.
OLRSC consistently outperforms ORPCA and even improves the
performance of LRR. Compared to PCP, OLRSC is competitive in
most cases and degrades a little for highly corrupted data, possibly
due to the number of samples is not sufficient for its convergence.

The results are presented in Figure 1. The most intriguing
observation is that OLRSC as an online algorithm outper-
forms its batch counterpart LRR! Such improvement may
come from the explicit modeling for the basis, which makes
OLRSC more informative than LRR. To fully understand
the rationale behind this phenomenon is an important di-
rection for future research. Notably, OLRSC consistently
beats ORPCA (an online version of PCP), in that OLRSC
takes into account that the data are produced by a union

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

of small subspaces. While PCP works well for almost all
scenarios, OLRSC degrades a little when addressing diffi-
cult cases (high rank and corruption). This is not surprising
since Theorem 1 is based on asymptotic analysis and hence,
we expect that OLRSC will converge to the true subspace
after acquiring more samples.

Convergence Rate. Now we test on a large dataset to
show that our algorithm usually converges to the true sub-
space faster than ORPCA. We plot the EV curve against
the number of samples in Figure 2. Firstly, when equipped
with a proper matrix Y , OLRSC2 and LRR2 can always
produce an exact recovery of the subspace as PCP does.
When using the dataset itself for Y , OLRSC still converges
to a favorable point after revealing all the samples. Com-
pared to ORPCA, OLRSC is more robust and converges
much faster for hard cases (see, e.g., ρ = 0.5). Again,
we note that in such hard cases, OLRSC outperforms LRR,
which agrees with the observation in Figure 1.

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Number of Samples (x103)

E
V

OLRSC
OLRSC2
ORPCA
LRR
LRR2
PCP

ρ=0.01

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Number of Samples (x103)

E
V

OLRSC
OLRSC2
ORPCA
LRR
LRR2
PCP

ρ=0.3

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Number of Samples (x103)

E
V

OLRSC
OLRSC2
ORPCA
LRR
LRR2
PCP

ρ=0.5

0.01 0.1 0.3 0.5

5

10

15

20

25

30

Corruption ρ

T
im

e
(m

in
)

OLRSC
OLRSC2
ORPCA
LRR
LRR2
PCP

Figure 2. Convergence rate and time complexity. A higher EV
means better subspace recovery. We set p = 1000, nk = 5000,
dk = 25 and d = 100. OLRSC always converges to or outper-
forms the batch counterpart LRR. For hard cases, OLRSC con-
verges much faster than ORPCA. Both PCP and LRR2 achieve
the best EV value. When equipped with the same dictionary
as LRR2, OLRSC2 also well handles the highly corrupted data
(ρ = 0.5). Our methods are more efficient than the competitors
but PCP when ρ is small, possibly because PCP utilizes a highly
optimized C++ toolkit while ours are written in Matlab.

Computational Efficiency. We also illustrate the time
complexity of the algorithms in the last panel of Figure 2.
In short, our algorithms (OLRSC and OLRSC2) admit the
lowest computational complexity for all cases. One may
argue that PCP spends slightly less time than ours for a
small ρ (0.01 and 0.1). However, we remark here that PCP
utilizes a highly optimized C++ toolkit to boost computa-
tion while our algorithms are fully written in Matlab. We
believe that ours will work more efficiently if properly opti-
mized by, e.g., the blas routine. Another important message

conveyed by the figure is that, OLRSC is always being or-
ders of magnitude computationally more efficient than the
batch method LRR, as well as producing comparable or
even better solution.

5.2. Subspace Clustering

Datasets. We examine the performance for subspace clus-
tering on 5 realistic databases shown in Table 1, which can
be downloaded from the LibSVM website. For MNIST, We
randomly select 20000 samples to form MNIST-20K since
we find it time consuming to run the batch methods on the
entire database.

Table 1. Datasets for subspace clustering.

#classes #samples #features

Mushrooms 2 8124 112
DNA 3 3186 180
Protein 3 24,387 357
USPS 10 9298 256
MNIST-20K 10 20,000 784

Standard Clustering Pipeline. In order to focus on the
solution quality of different algorithms, we follow the stan-
dard pipeline which feeds X to a spectral clustering algo-
rithm (Ng et al., 2001). To this end, we collect all the u’s
and v’s produced by OLRSC to form the representation
matrix X = UV ⊤. For ORPCA, we use R0R

⊤
0 as the sim-

ilarity matrix (Liu et al., 2013), where R0 is the row space
of Z0 = L0Σ0R

⊤
0 and Z0 is the clean matrix recovered by

ORPCA. We run our algorithm and ORPCA with 2 epochs
so as to apply backward correction on the coefficients (U
and V in ours and R0 in ORPCA).

Fully Online Pipeline. As we discussed in Section 3, the
(optional) spectral clustering procedure needs the similar-
ity matrix X , making the memory proportional to n2. To
tackle this issue, we proposed a fully online scheme where
the key idea is performing k-means on V . Here, we exam-
ine the efficacy of this variant, which is called OLRSC-F.

The results are recorded in Table 2, where the time cost of
spectral clustering or k-means is not included so we can
focus on comparing the efficiency of the algorithms them-
selves. Also note that we use the dataset itself as the dic-
tionary Y because we find that an alternative choice of Y
does not help much on this task. For OLRSC and ORPCA,
they require an estimation on the true rank. Here, we use
5k as such estimation where k is the number of classes of
a dataset. Our algorithm significantly outperforms the two
state-of-the-art methods LRR and SSC both for accuracy
and efficiency. One may argue that SSC is slightly bet-
ter than OLRSC on Protein. Yet, it spends 1 hour while
OLRSC only costs 25 seconds. Hence, SSC is not practi-
cal. Compared to ORPCA, OLRSC always identifies more

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

Table 2. Clustering accuracy (%) and computational time
(seconds). For each dataset, the first row indicates the accu-
racy and the second row the running time. For all the large-scale
datasets, OLRSC (or OLRSC-F) has the highest clustering accu-
racy. Regarding the running time, our method spends comparable
time as ORPCA (the fastest solver) does while dramatically im-
proves the accuracy. Although SSC is slightly better than SSC on
Protein, it consumes one hour while OLRSC takes 25 seconds.

OLRSC OLRSC-F ORPCA LRR SSC

Mush- 85.09 89.36 65.26 58.44 54.16
rooms 8.78 8.78 8.30 46.82 32 min

DNA 67.11 83.08 53.11 44.01 52.23
2.58 2.58 2.09 23.67 3 min

Protein 43.30 43.94 40.22 40.31 44.27
24.66 24.66 22.90 921.58 65 min

USPS 65.95 70.29 55.70 52.98 47.58
33.93 33.93 27.01 257.25 50 min

MNIST- 57.74 55.50 54.10 55.23 43.91
20K 129 129 121 32 min 7 hours

correct samples as well as consumes comparable running
time. For example, on the USPS dataset, OLRSC achieves
the accuracy of 65.95% while that of ORPCA is 55.7%.
Regarding the running time, OLRSC uses only 7 seconds
more than ORPCA – same order of computational com-
plexity, which agrees with the qualitative analysis in Sec-
tion 3 and the one in Feng et al. (2013).

More interestingly, it shows that the k-means alternative
(OLRSC-F) usually outperforms the spectral clustering
pipeline. This suggests that perhaps for robust subspace
clustering formulations, the simple k-means paradigm suf-
fices to guarantee an appealing result. On the other hand,
we report the running time of spectral clustering and k-
means in Table 3. As expected, since spectral clustering
computes SVD for an n-by-n similarity matrix, it is quite
slow. In fact, it sometimes dominates the running time of
the whole pipeline. In contrast, k-means is extremely fast
and scalable, as it can be implemented in online fashion.

Table 3. Time cost (seconds) of spectral clustering and k-
means. We use the shorthand “Mush” for Mushrooms dataset
and “M-20K” for MNIST-20K for a better view.

Mush DNA Protein USPS M-20K

Spectral 295 18 7567 482 4402
k-means 2 6 5 19 91

5.3. Influence of d

A key ingredient of our formulation is a factorization on
the nuclear norm regularized matrix, which requires an es-
timation on the rank of the X (see (2.1)). Here we examine
the influence of the selection of d (which plays as an upper

0.01 0.1 0.3 0.5
0

0.2

0.4

0.6

0.8

1

Fraction of Corruption ρ

E
V

d = 2
d = 20
d = 40
d ≥ 60

0.01 0.1 0.3 0.5
0

0.2

0.4

0.6

0.8

1

Fraction of Corruption ρ

C
lu

st
er

in
g

A
cc

ur
ac

y

d = 2
d = 20
d = 40
d ≥ 60

Figure 3. Examine the influence of d. We experiment on d =
{2, 20, 40, 60, 80, 100, 120, 140, 160, 180}. The true rank is 40.

bound of the true rank). We report both EV and cluster-
ing accuracy for different d under a range of corruptions.
The simulation data are generated as in Section 5.1 and we
set p = 200, nk = 1000 and dk = 10. Since the four
subspaces are disjoint, the true rank is 40.

From Figure 3, we observe that our algorithm cannot re-
cover the true subspace if d is smaller than the true rank. On
the other hand, when d is sufficiently large (at least larger
than the true rank), our algorithm can perfectly estimate the
subspace. This agrees with the results in Burer & Monteiro
(2005) which says as long as d is large enough, any local
minima is global optima. We also illustrate the influence
of d on subspace clustering. Generally speaking, OLRSC
can consistently identify the cluster of the data points if d
is sufficiently large. Interestingly, different from the sub-
space recovery task, here the requirement for d seems to be
slightly relaxed. In particular, we notice that if we pick d
as 20 (smaller than the true rank), OLRSC still performs
well. Such relaxed requirement of d may benefit from the
fact that the spectral clustering step can correct some wrong
points as suggested by Soltanolkotabi et al. (2014).

6. Conclusion
In this paper, we have proposed an online algorithm termed
OLRSC for subspace clustering, which dramatically re-
duces the memory cost of LRR fromO(n2) toO(pd). One
of the key techniques is an explicit basis modeling, which
essentially renders the model more informative than LRR.
Another important component is a non-convex reformula-
tion of the nuclear norm. Combining these techniques al-
lows OLRSC to simultaneously recover the union of the
subspaces, identify the possible corruptions and perform
subspace clustering. We have also established the theo-
retical guarantee that solutions produced by our algorithm
converge to a stationary point of the expected loss func-
tion. Moreover, we have analyzed the time complexity
and empirically demonstrated that our algorithm is compu-
tationally very efficient compared to competing baselines.
Our extensive experimental study on synthetic and realistic
datasets also illustrates the robustness of OLRSC. In a nut-
shell, OLRSC is an appealing algorithm in all three worlds:
memory cost, computation and robustness.

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

Acknowledgments
J. Shen and P. Li are partially supported by NSF-Bigdata-
1419210, NSF-III-1360971 and AFOSR-FA9550-13-1-
0137. The research of H. Xu is partially supported by
Agency for Science, Technology and Research (A*STAR)
of Singapore through SERC PSF Grant R266000101305.

References
Avron, Haim, Kale, Satyen, Kasiviswanathan,

Shiva Prasad, and Sindhwani, Vikas. Efficient and
practical stochastic subgradient descent for nuclear
norm regularization. In Proceedings of the 29th
International Conference on Machine Learning, 2012.

Bertsekas, Dimitri P. Nonlinear programming. Athena Sci-
entific, 1999.

Bonnans, J. Frédéric and Shapiro, Alexander. Optimiza-
tion problems with perturbations: A guided tour. SIAM
Review, 40(2):228–264, 1998.

Bottou, Léon. Online learning and stochastic approxima-
tions. On-line learning in neural networks, 17(9), 1998.

Burer, Samuel and Monteiro, Renato D. C. Local minima
and convergence in low-rank semidefinite programming.
Mathematical Programming, 103(3):427–444, 2005.

Candès, Emmanuel J. and Recht, Benjamin. Exact ma-
trix completion via convex optimization. Foundations
of Computational Mathematics, 9(6):717–772, 2009.

Candès, Emmanuel J., Li, Xiaodong, Ma, Yi, and Wright,
John. Robust principal component analysis? Journal of
the ACM, 58(3):11, 2011.

Defazio, Aaron, Bach, Francis R., and Lacoste-Julien, Si-
mon. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In
Neural Information Processing Systems, pp. 1646–1654,
2014.

Elhamifar, Ehsan and Vidal, René. Sparse subspace cluster-
ing. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 2790–2797, 2009.

Eriksson, Brian, Balzano, Laura, and Nowak, Robert D.
High-rank matrix completion and subspace clustering
with missing data. CoRR, abs/1112.5629, 2011.

Fazel, Maryam, Hindi, Haitham, and Boyd, Stephen P.
A rank minimization heuristic with application to min-
imum order system approximation. In Proceedings of
the American Control Conference, volume 6, pp. 4734–
4739. IEEE, 2001.

Feng, Jiashi, Xu, Huan, and Yan, Shuicheng. Online robust
PCA via stochastic optimization. In Proceedings of the
27th Annual Conference on Neural Information Process-
ing Systems, pp. 404–412, 2013.

Hsieh, Cho-Jui and Olsen, Peder A. Nuclear norm mini-
mization via active subspace selection. In Proceedings
of the 31st International Conference on Machine Learn-
ing, pp. 575–583, 2014.

Jaggi, Martin and Sulovský, Marek. A simple algorithm for
nuclear norm regularized problems. In Proceedings of
the 27th International Conference on Machine Learning,
pp. 471–478, 2010.

Lin, Zhouchen, Chen, Minming, and Ma, Yi. The aug-
mented lagrange multiplier method for exact recov-
ery of corrupted low-rank matrices. arXiv preprint
arXiv:1009.5055, 2010.

Liu, Guangcan and Li, Ping. Recovery of coherent data
via low-rank dictionary pursuit. In Proceedings of the
28th Annual Conference on Neural Information Process-
ing Systems, pp. 1206–1214, 2014.

Liu, Guangcan, Lin, Zhouchen, Yan, Shuicheng, Sun, Ju,
Yu, Yong, and Ma, Yi. Robust recovery of subspace
structures by low-rank representation. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 35(1):171–184,
2013.

Mairal, Julien, Bach, Francis R., Ponce, Jean, and Sapiro,
Guillermo. Online learning for matrix factorization and
sparse coding. Journal of Machine Learning Research,
11:19–60, 2010.

Mardani, Morteza, Mateos, Gonzalo, and Giannakis, Geor-
gios B. Subspace learning and imputation for streaming
big data matrices and tensors. IEEE Trans. Signal Pro-
cessing, 63(10):2663–2677, 2015.

Ng, Andrew Y., Jordan, Michael I., and Weiss, Yair. On
spectral clustering: Analysis and an algorithm. In Pro-
ceedings of the 15th Annual Conference on Neural Infor-
mation Processing Systems, pp. 849–856, 2001.

Recht, Benjamin, Fazel, Maryam, and Parrilo, Pablo A.
Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review,
52(3):471–501, 2010.

Richtárik, Peter and Takác, Martin. Iteration complexity of
randomized block-coordinate descent methods for min-
imizing a composite function. Mathematical Program-
ming, 144(1-2):1–38, 2014.

Shen, Jie and Li, Ping. Learning structured low-rank repre-
sentation via matrix factorization. In Proceedings of the

Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit

19th International Conference on Artificial Intelligence
and Statistics, pp. 500–509, 2016.

Soltanolkotabi, Mahdi and Candès, Emmanuel J. A geo-
metric analysis of subspace clustering with outliers. The
Annals of Statistics, 40:2195–2238, 2012.

Soltanolkotabi, Mahdi, Elhamifar, Ehsan, and Candès, Em-
manuel J. Robust subspace clustering. The Annals of
Statistics, 42(2):669–699, 2014.

van der Vaart, A.W. Asymptotic statistics. Cambridge Uni-
versity Press, 2000.

Vidal, René. A tutorial on subspace clustering. IEEE Signal
Processing Magazine, 28(2):52–68, 2010.

Wang, Yu-Xiang, Xu, Huan, and Leng, Chenlei. Provable
subspace clustering: When LRR meets SSC. In Proceed-
ings of 27th Annual Conference on Neural Information
Processing Systems, pp. 64–72, 2013.

Xiao, Lin and Zhang, Tong. A proximal stochastic gradi-
ent method with progressive variance reduction. SIAM
Journal on Optimization, 24(4):2057–2075, 2014.

Xu, Huan, Caramanis, Constantine, and Mannor, Shie.
Principal component analysis with contaminated data:
The high dimensional case. In Proceedings of the 23rd
Conference on Learning Theory, pp. 490–502, 2010.

