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Abstract

The problem of learning a sparse model is con-
ceptually interpreted as the process of identify-
ing active features/samples and then optimizing
the model over them. Recently introduced safe
screening allows us to identify a part of non-
active features/samples. So far, safe screening
has been individually studied either for feature
screening or for sample screening. In this paper,
we introduce a new approach for safely screen-
ing features and samples simultaneously by al-
ternatively iterating feature and sample screen-
ing steps. A significant advantage of consid-
ering them simultaneously rather than individ-
ually is that they have a synergy effect in the
sense that the results of the previous safe feature
screening can be exploited for improving the next
safe sample screening performances, and vice-
versa. We first theoretically investigate the syn-
ergy effect, and then illustrate the practical ad-
vantage through intensive numerical experiments
for problems with large numbers of features and
samples.

1. Introduction

In many areas of science and industry, large-scale datasets
with many features and samples are collected and analyzed
for data-driven scientific discovery and decision making.
One promising approach to handle large numbers of fea-
tures and samples is introducing sparsity constraints in sta-
tistical models (Hastie et al., 2015). The most common ap-
proach for inducing feature sparsity, e.g., in a linear least-
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square model fitting, is using sparsity-inducing penalties
such as Lj-norm of the coefficients (Tibshirani, 1996). A
feature sparse model depends only on a subset of features
(called active features), and the rest of the features (called
non-active features) are irrelevant. On the other hand, the
most popular machine learning algorithm that induces sam-
ple sparsity would be the support vector machine (SVM)
(Boser et al., 1992). In the SVM, the large margin princi-
ple enhances sample sparsity in the sense that it depends
only on a subset of samples (called support vectors (SVs)
or active samples) and does not depend on the rest of the
samples (called non-SVs or non-active samples).

The problem of learning a sparse model is conceptually in-
terpreted as the process of identifying active features or
samples and then optimizing the model over them. Re-
cently, a new approach called safe screening has been stud-
ied by several authors. Safe screening enables to identify
a subset of non-active features or samples before or during
the model training process. A nice thing about safe screen-
ing is that it is guaranteed to have no false negatives, i.e.,
safe screening never identify active features or samples as
non-active. It means that, if we train the model by only
using the remaining set of features or samples after safe
screening, the solution is guaranteed to be optimal. The
basic technical idea behind safe screening is to bound the
solution of the problem within a region, and show that some
features or samples cannot be active wherever the optimal
solution is located within the region.

After the seminal work by (El Ghaoui et al., 2012), safe
feature screening (safely screening a part of non-active fea-
tures in sparse feature models such as LASSO) has been
intensively studied in the literature (Xiang etal., 2011;
Wang et al., 2013; Bonnefoy et al., 2014; Liu et al., 2014;
Wang et al., 2014b; Xiang et al., 2014; Fercoq et al., 2015;
Ndiaye et al., 2015). Safe feature screening exploits the
fact that the sparseness of a feature is characterized by a
property of the dual solution, i.e., if the dual solution satis-
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Figure 1. Schematic illustration of the proposed approach. By iterating safe feature screening and safe sample screening, irrelevant
features and samples are safely removed out from the training set. A significant advantage of considering them simultaneously rather
than individually is that they have a synergy effect in the sense that the screening performances (the number of features/samples that can
be safely removed out) are gradually improved by exploiting the results in earlier steps.

fies a certain condition in the dual space, the feature is guar-
anteed to be non-active. Safe feature screening is benefi-
cial especially when the number of features is large. There
are also several studies on safe sample screening (safely
screening a part of non-active samples in sparse sample
models such as the SVM) (Ogawa et al., 2013; Wang et al.,
2014a; Zimmert et al., 2015). The basic idea behind safe
sample screening is that the sparseness of a sample is char-
acterized by a property of the primal solution. If the primal
solution satisfies a certain condition in the primal space, the
sample is guaranteed to be non-active. Safe sample screen-
ing is useful when the number of samples is large.

In this paper, we consider problems where the numbers of
features and samples are both large. In these problems, we
consider a class of learning algorithms that induce both of
feature sparsity and sample sparsity, which we call doubly
sparse modeling. Our main contribution in this paper is
to develop a safe screening method that can identify both
of non-active features and non-active samples simultane-
ously in doubly sparse modeling. Specifically, we pro-
pose a novel method for simultaneously constructing two
regions, one in the dual space and the other in the primal
space. The former is used for safe feature screening, while
the latter is used for safe sample screening.

A significant advantage of considering safe feature screen-
ing and safe sample screening simultaneously rather than
individually is that they have a synergy effect. Specifically,
we show that, after we know that a part of features are non-
active based on safe feature screening, we can potentially
improve the performance of safe sample screening. Our
basic idea behind this property is that, by fixing a part of
the primal variables, the region in the primal space, which
is used for safe sample screening, can be made smaller (we
can also show the converse similarly). These findings sug-
gest that, safe screening performances of features and sam-
ples can be both improved by alternatively repeating them.
Figure 1 is a schematic illustration of the simultaneous safe
screening approach.

Another interesting finding we first introduce in this pa-
per is that, by simultaneously considering regions both in

the dual and the primal spaces, we can also identify fea-
tures and samples that are guaranteed to be active. We call
this technique as safe keeping. While safe screening as-
sures no false negative findings, safe keeping guarantees no
false positive findings of active features/samples. By com-
bining these two techniques, we can better identify active
features/samples. A practical advantage of safe keeping is
that we do not have to consider the safe screening rules any-
more for features and samples which are identified as active
by safe keeping. This is helpful for reducing the compu-
tational costs of safe screening rule evaluations especially
in the context of dynamic safe screening (Bonnefoy et al.,
2014).

Notation: For any natural number n, we define [n] :=
{1,...,n}. For an n x d matrix M, its i-th row and j-
th column are denoted as M;. and M.;, respectively, for
i € [n] and j € [d]. The Ly norm, the Ly norm and
the Lo, norm of a vector v € R™ are respectively writ-

ten as [[vll1 = Xpepm [oxls I0ll2 =y /2 ke [0

and ||v||oo := maxyepm [vx|. For a scalar z, we define
[2]+ := max{0,z}. We write the subdifferential opera-
tor as 0, and remind that the subdifferential of L; norm is
given as dlolls = {g | llgllw < 1970 = [lol}. Fora

function f, we denote its domain as dom f.

2. Preliminaries

In this section, we first describe the problem formulation
in §2.1. Then, we briefly summarize the basic concepts of
safe feature screening and safe sample screening in §2.2
and §2.3, respectively.

2.1. Problem formulation

Consider classification and regression problems with the
number of samples n and the number of features d. The
training set is written as {(z;,y;) }ic[n] Where z; € R?, and
y; € {—1,1} for classification and y; € R for regression.
The n x d input data matrix (design matrix) is denoted as
X = [wy,...,2,)"
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We consider a linear classification and regression function
in the form of f(x) = 2w, and study the problem of
estimating the parameter w € R? by solving a class of reg-
ularized empirical risk minimization problems:

min Py (w) := Mp(w) + % Z gi(m:w)a (D

weRd !
i€[n]

where 1) is a penalty function, ¢; is a loss function for the
i-th sample', and A > 0 is a trade-off parameter for con-
trolling the balance between the penalty and the loss.

In this paper, we study doubly sparse modeling, i.e.,
a pair of penalty and loss function that induces sparsi-
ties both in features and samples. As specific work-
ing examples, we consider L;-penalized smoothed hinge
SV classification and L-penalized smoothed e-insensitive
SV regression. The use of these smoothed loss func-
tions are known to produce almost same solutions as the
original hinge or e-insensitive loss functions (see e.g.,
Shalev-Shwartz & Zhang, 2015). We will discuss other
doubly sparse modeling problem in §5.

Remembering that the original SVMs are trained with
Ly penalty, by combining an additional L;-penalty, our
penalty function ) is written as elastic net penalty:

wlw) 2=l + 2 ol @

where 8 > 0 is a balancing parameter which we omit here-
after by substituting 5 = 1 for notational simplicity. The
smoothed hinge loss and the smoothed e-insensitive loss
are respectively written as

0 (yzszw > 1)v
T w={ 1 —yaTw—1  (afw<1-7), )
%(1 —yxf w)?  (otherwise),
0 (Jzf w — yil<e),
O] wy=Srjw—yil—e—2  (laf w—yi[>e+y), @)

%(L&c:w — yi|— €)? (otherwise),

where v > 0 is a tuning parameter.

Using Fenchel’s duality theorem (see, e.g., Corollary
31.2.1 in (Rockafellar, 1970)), the dual problem of (1) is
written as

mngA(a) = —)\1/}*<)\1nXTOZ>— %Zér(_ai)v &)
i€[n]

where ¥* and ¢* is convex conjugate function of ¢ and /,
respectively. The convex conjugate function of the penalty

! Here, we use individual loss function ¢; for i € [n] because
it implicitly depends on y; (see, e.g., (3) and (4)).

term in (2) is given as ¢* (v) = % Z?Zl([\vﬂ —1]4)2. The
convex conjugate functions of the smoothed hinge loss and
the smoothed c-insensitive loss are respectively written as
0 (i) = a2 + yo for y;o; € [—1,0] and oo otherwise,
and 0} (a;) = Faf 4 yia; + €lay| for a; € [—1,1] and
oo otherwise. We call the problems in (1) and (5) as pri-
mal problem and dual problem, respectively, and denote the
primal optimal solution as w* € R and the dual optimal
solution as a* € R".

2.2. Safe feature screening

The goal of safe feature screening is to identify a part of
non-active features {j € [d| | wj = 0} before or during
the optimization process. Safe feature screening is built on
the following KKT optimality condition (see Theorem 31.3
in (Rockafellar, 1970))

%X%* € OY(w*). (6)
In the case of our specific regularization term (2), the opti-
mality condition (6) is written as

*

we

1 . ——+wi (w} #£0),

g e gl (wj 70) (7
[—1,1] (w} = 0).

The optimality condition (7) indicates that |X,ja*| <
An = w; = 0. The basic idea behind safe feature
screening is to construct a region O,« C R™ in the dual
space so that a* € ©,+, and then compute an upper bound
UB(|X30¢*|) ‘= MaXqco,. X$a|. Using this upper
bound, we can construct a safe feature screening rule in

the form of UB(| X} a*|) < An = w} = 0.

After the seminal work (El Ghaoui et al., 2012), many dif-
ferent approaches for constructing a region ©,+ have been
developed (see §1). Among those, we use an approach in
(Ndiaye et al., 2015). Noting the fact that the convex con-
jugate function £* is y-strongly convex, and henceforth the
dual objective function D) («) is y/n-strongly concave, we
can define a region

Oy :={a| |a —alla < V2nG (0, &) /v,  (B)

where G\ (W, &) = Py(w) — Dy(&) is the duality gap
defined by an arbitrary pair of primal feasible solution w €
domP, and dual feasible solution & € domD). Since the
region O, is a sphere, we can explicitly write the upper
bound as

UB(IXja*)=|Xjal+]X,ll2v/2nGa (0, &) /v

2.3. Safe sample screening

The goal of safe sample screening is to identify a part of
non-active samples {i € [n] | of = 0,£1} before or dur-
ing the optimization process. Here, we slightly abuse the
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word “non-active” in the sense that we call a sample to be
non-active not only when the corresponding « is 0, but
also when it is £1. Although the ¢-th sample can be re-
moved out only when o = 0, we have similar computa-
tional advantages when we can guarantee that o] = £1 be-
cause the size of the optimization problem can be reduced.

Safe sample screening is also built on the KKT optimality
condition

x] wt € 0l (—af). (10)

i

In the case of smoothed hinge loss, the KKT condition (10)
is written when y; = 1 as

[17 00) (at = 0)
i w* € { (—o0,1—7] (af =1) (11)
—yal +1 (aj €(0,1)).

We construct a region ©,- C R? in the primal space
so that w* € O, and then compute a lower bound
LB(z]w*) := minyeco,.x; w and an upper bound
UB(xz{ w*) := maxyeco,.r; w. The optimality con-
dition (11) suggests that LB(z w*) > 1 = af =
0,UB(z]w*) <1-v = «f = 1. Similarly, fory; = —1,
the optimality condition is written as

(~0,~1] (0 =0)
] w* €[y —1,00) (aF =-1) (12)
—yaf =1 (af € (-1,0)),

suggesting that UB(y;z]w*) < -1 = af =
0, LB(y;z] w*) > v—1 = «af = —1. In the case of
smoothed e-insensitive loss, the optimality condition (10)
is written as

[yi — &, yi + ¢ (af =0),
[v + yi +¢€,00) (o =-1),

zjw* € (—o0o,—y+y; —¢] (af =1), (13)
—yai +yite (af € (=1,0)),
—yoi +yi —¢ (a7 €(0,1)).

It indicates that LB(z w*) > y; — e and UB(x] w*) <
yi+e = af =0,LB(xjw*) > v+yi+e = af =
—1L,UB(z]w*) < —y+y;—¢ = aof = 1.

In order to develop a sphere region ©,,+ in the primal space,
we extend the duality GAP-based safe feature screening ap-
proach proposed in (Ndiaye et al., 2015) into safe sample

screening context. The result is summarized in the follow-
ing lemma.

Lemma 1. For any w € domPy and & € domD),

Ww* € Ope = {w | | — w2 < V2GA (@, &)/A}, (14)

Furthermore, using the sphere form region O, in (14),
for any w € domPy and & € domD), a pair of lower and
upper bounds of x;rw* are given as

LB(z] w*) =

K2
UB(xTw*) = ;L;er) + ||zi|2

%

2G (1, &) /A,
2G (W, @) /A

(15a)
(15b)

] b — a2

The proof of Lemma 1 is presented in Appendix.

3. Simultaneous safe screening

We have shown that, for doubly sparse modeling problems,
safe screening rules for both of features and samples can
be constructed respectively. In this paper we further de-
velop the framework in which safe feature screening and
safe sample screening are alternately iterated. A significant
additional benefit of this framework is that the result of the
previous safe feature screening can be exploited for mak-
ing the primal region ©,,« smaller, meaning that the perfor-
mance of the next safe sample screening can be improved,
and vice-versa.

The following two theorems formally state these ideas.
First, Theorem 2 states that we can obtain tighter upper
bound for feature screening by exploiting the result of the
previous safe sample screening.

Theorem 2. Consider a safe feature screening problem
given arbitrary pair of primal and dual feasible solution
w € domPy and & € domD)y. Furthermore, suppose
that the result of the previous safe sample screening step
assures the optimal values o for a subset of the samples
1 €8 C [n]. LetUs := [n]\'S, 7p := /2nG (0, &) /7,
and & be an n-dimensional vector whose element is de-
fined as &; = &; fori € Us and &; = of fori € S.
Then, | X Ea*| is bounded from above by the following up-
per bound:

UB(X.ja* ):=IX ] | +[| X,

l2y/rp—llds—agl3, (16)

and the upper bound in (16) is tighter than or equal to that
in(9), e, UB(|Xa*|) <UB(IX ] a*|).

The proof of Theorem 2 is presented in Appendix. By re-
placing the upper bounds in (9) with that in (16) in the safe
feature screening step, there are more chance for screening
out non-active features.

Next, Theorem 3 states that we can obtain tighter lower and
upper bounds for sample screening by exploiting the result
of the previous safe feature screening.

Theorem 3. Consider a safe sample screening problem
given arbitrary pair of primal and dual feasible solutions
w € domPy and & € domDy. Furthermore, suppose that
the result of the previous safe feature screening step as-
sures that w} = 0 for a subset of the features j € F C [d].
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Let Uy = [d] \ F, rp := /2GA(W, &)/, and @ be a
d-dimensional vector whose element is defined as W; = W;
forj € Uy and w; = 0 for j € F. Then, x;rw* is bounded
from below and above respectively by the following lower
and upper bounds:

LB(x] w*) == a0 — |z, l2y/r3 — l0F|3  (17a)
UB(z] w*) = 2] % + ||lva, l2\/r% — [dF]3 (17b)

and these bounds in (17) are tighter than or equal to those
in(15), i.e., LB(z] w*) > LB(z] w*) and UB(x] w*) <
UB(z]w*).

The proof of Theorem 3 is presented in Appendix. By re-
placing the lower and the upper bounds in (15) with those
in (17) in the safe sample screening step, there are more
chance to be able to screen out non-active samples.

Theorems 2 and 3 suggests that, by alternately iterating fea-
ture screening and sample screening, more and more fea-
tures and samples could be screened out. This iteration
process can be terminated when there are few chances to
be able to screen out additional features and samples. Such
a termination condition can be developed by using the re-
sults in the next section.

4. Safe keeping of active features and samples

Safe screening studies initiated by the seminal work by
(El Ghaoui et al., 2012) enabled us to identify a part of
non-active features/samples before actually solving the op-
timization problem. In other words, safe screening is in-
terpreted as an active set prediction method without false
negative error (an error that truly active features/samples
are predicted as non-active). In this section, we show that,
by exploiting the two regions in the dual and the primal
spaces, we can develop an active set prediction method
without false positive error (an error that truly non-active
features/samples are predicted as active). We call the latter
approach as safe feature/sample keeping.

Safe feature keeping rule can be constructed by using the
region in the primal space. Using ©,~ in (14), we can
get the lower bound of |wj| for j € [d] as LB(|w}]) :=
|@;| —+/2G (W, &) A. Using this lower bound, safe feature
keeping rule is simply formulated as the following theorem.

Theorem 4. For an arbitrary pair of primal feasible solu-
tion w € domPy, and dual feasible solution & € domD),
;| — /2GA(0, &) /A > 0 = w; # 0 for j € [d].
Similarly, safe sample keeping rule can be constructed by

using a region in the dual space. The condition for ] being
active is written as a;f # —1,0, 1. This can be guaranteed

when the condition o € (0,1) or af € (—1,0) holds for
the i-th element of Voo € ©,«. Since O+ is a sphere, safe
sample keeping rule can be simply derived by (8).

Theorem S. For an arbitrary pair of primal feasible solu-
tion w € dom Py and dual feasible solution & € domD),

|6 |—/2nGA (0, &) /v > 0 and |&;[++/2nGy (0, &) /vy <1
= a) #0,%1 fori € [n].

When we use safe screening approaches, there is a trade-off
between the computational costs of evaluating safe screen-
ing rules and the computational time saving by screening
out some features/samples. If we know in advance that
some of the features/samples cannot be non-active by using
safe keeping approaches, we do not have to waste the rule
evaluation costs for those features/samples. Safe screen-
ing rule evaluation costs would be more significant in dy-
namic screening and our simultaneous screening scenarios
because rules are repeatedly evaluated. By combining safe
screening and safe keeping approaches, we can get an in-
formation about how many features/samples are not yet
determined to be active or non-active. This information
can be also used as a stopping criteria of dynamic screen-
ing and our simultaneous screening. We can stop evaluat-
ing safe screening rules when there only remain few fea-
tures/samples that have not been determined to be active or
non-active.

We finally note that, in our particular working problem of
L, smooth SVC and L; smooth SVR, safe keeping is also
possible by using the KKT optimality conditions in (7) for
features, and (11) - (13) for samples. We describe the de-
tails in the Appendix.

S. LP-based simultaneous safe screening

In this section, we consider another empirical risk min-
imization problem that induces sparsities both in fea-
tures and samples. Specifically, we study a problem
with Lq-penalty ¢(w) = ||w|]; and vanilla hinge loss
li(z]w) = [1 — y;z] w]y, which we call LP-based SVM
because it is casted into a linear program (LP). LP-based
SVM has been studied in (Bradley & Mangasarian, 1998;
Zhu et al., 2004), and also in boosting context. LPBoost
(Demiriz et al., 2002) solves LP-based SVM via the col-
umn generation approach of linear programming. Sparse
LPBoost (Hatano & Takimoto, 2009) is similar to simul-
taneous screening in that it iteratively solves LP sub-
problems for features and samples. LP-based SVM induces
feature sparsity due to L;-penalty and sample sparsity due
to the property of hinge loss.b
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Figure 2. Safe screening and keeping rates for classification problems (for real-simand rcvl-test datasets). The three plots in the
left show the individual safe feature/sample screening rates (the middle and the bottom ones are for o; = 0 and aj = +1, respectively).
The three plots in the center show the additional safe screening rates by simultaneously considering feature and sample screenings. The
gray area in these center plots corresponds to the blue area in the corresponding left plot. In these gray area, the individual safe screening
performances are good enough (screening rate > 0.95) and additional screening is unnecessary. The top right and middle right plots
show the safe keeping rates for feature and samples, respectively. The bottom right plot shows the numbers of non-active features and

samples for various values of \.

5.1. Safe feature screening for LP-based SVM

Feature safe screening for LP-based SVM was studied in
the seminal safe feature screening paper by El Ghaoui et al.
(2012). However, the method presented in their paper re-
quires a precise optimal solution of an LP-based SVM with
a different penalty parameter A. This requirement is im-
practical because precise optimal solutions are often dif-
ficult to get numerically. Here, we present a novel safe
feature screening method for LP-based SVM that only re-
quires an arbitrary pair of a primal feasible solution w €
dom P, and a dual feasible solution & € dom D). The pro-
posed safe feature screening method for LP-based SVM is
summarized in the following theorem.

Theorem 6. Consider safe feature screening problem
given an arbitrary pair of a primal feasible solution W €
domPy and a dual feasible solution & € domD). Let
Eq = LyTOAlJ’ Ug = [PA(@)], Z = [yrz1, ... ,Z/nﬂ?n]T €
R™%4 and ij € R", j € [d], be the vector obtained
by sorting Z.; in increasing order. Furthermore, let nz:
and p z:, represent the numbers of negative and positive el-

ements of Z!;, respectively. Then, LB(X ja*) < —An and

UB(X;—'j—oz*) > An = w; =0, where

T %\ .
LB(X]a") =
ly .
Yl Zij+ Wa—19)Z) ) (nz, <lg+1),
ity Zij + (Pa() — ug), Z;qj (nZ{j > ug)

Yoy min{0, Z{;} (otherwise),

T %\ .
UB(X ;a") =
S ity a—1)Z

i=n—lg

nety—1); Pz <lg+ 1),
Z?:n—uqzzlj + (PA(ZZ)) - uq)Zzn—uq—l)j(pZ:/j > uq)7
Z?:l max{0, Zl(j}

The proof of Theorem 6 is presented in Appendix.

(otherwise).

5.2. Safe sample screening for LP-based SVM

Here, we develop a novel safe sample screening method for
LP-based SVM as summarized in the following theorem.

Theorem 7. Consider safe sample screening given an arbi-
trary primal feasible solution w0 € domPy. Let g;,(w) be a
subgradient of vanilla hinge loss {;(x] w) for w € dom P,
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Figure 3. Total computation time for training 100 solutions for various values of A in classification problems.

and define k := N1 + + > i) gZ(w)w. Then,

= +1land LB(z] w*) > +1 = af = +1,
yi = +1and UB(z] w*) < +1 = a} =0,
y; = —land LB(z] w*) > =1 = a} =0,
yi = —land UB(z] w*) < —1 = af = —1,
where
1 n
LB(x;-rw*)::ILrngéc{uk} s.t. i % ;g& )| <up,
1 n
UB(xiTw*)::T%c{uk} s.t. PR % Zz_;g@i ()| <mup

The proof of Theorem 7 is presented in Appendix. Al-
though the lower and the upper bounds are not explic-
itly presented, these optimization problems can be easily
solved because they are just linear programs with one vari-
able o > 0.

As we discussed in §3, by alternatively iterating safe feature
screening in §5.1 and safe sample screening in §5.2, we can
make the regions in the dual and the primal regions step
by step, indicating that the chance of screening out more
features and samples increases >

6. Numerical experiments

We demonstrate the advantage of simultaneous safe screen-
ing through numerical experiments. After we describe the
experimental setups in §6.1, we report the results on safe
screening and keeping rates, and computation time savings

2 The tighter bounds can be obtained by exploiting the previ-
ous safe screening results as we discussed in §3 although we do
not explicitly present those bounds here due to the space limita-
tion.

in §6.2 and §6.2, respectively. Due to the space limitation,
we only show the results on classification problems in the
main text. Other experimental results are presented in Ap-
pendix.

6.1. Experimental setups

Table 1 summarizes the datasets used in the experiments.

We picked up four datasets whose numbers of features

and samples are both large from libsvm dataset reposi-

tory (Chang & Lin, 2011).  Here, we report the results
Table 1. Benchmark datasets used in the experiments.

dataset name | sample size: n_| feature size: d | #(nnz)/ind

real-sim 72,309 20,958 0.002448
rcvl-test 677,399 47,236 0.025639
gisette 6,000 5,000 0.991000
rcvl-train 20,242 47,236 0.001568

#gnnz) indicates the numb?r of non-zero elemepts. .
on Lj-penalized smoothed hinge SV classification. We

set Amax = ||Z"1]|o0, and considered problems with
various values of the penalty parameter \ between Apax
and 10~*\pax. The parameter in the smoothed hinge
loss v is set to be 0.5. The proposed methods can be
used with any optimization solvers as long as they pro-
vide both primal and dual sequences of solutions that con-
verge to the optimal solution. For the experiments, we
used Proximal Stochastic Dual Coordinate Ascent (SDCA)
(Shalev-Shwartz & Zhang, 2015) and Stochastic Primal-
Dual Coordinate (SPDC) (Zhang & Lin, 2015) because
they are state-of-the-art optimization methods for general
large-scale regularized empirical risk minimization prob-
lems. We wrote the code in C++. The code is available on
https://github.com/takeuchi-lab/s3fs. All
the computations were conducted by using a single core of
an Intel Xeon CPU E5-2643 v2 (3.50GHz), 64GB MEM.

6.2. Safe screening and keeping rates

We compared the simultaneous screening rates with indi-
vidual safe screening rates. Figure 2 shows the results.
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In the 3 x 3 subplots, the left plots indicate the individual
screening rates defined as (#(screened features or samples)
[ #(w; = 0ora; = 0ora; = =£1)). The center plots in-
dicate the additional screening rates by the synergy effect
defined as (#(additionally screened features or samples) /
#(wj = 0 oraj = 0or o = *1)). The top plots repre-
sent the results on feature screening, while the middle and
the bottom plots show the results on sample screening (for
each of o = 0 and of = +1). We investigated the screen-
ing rates for various values of A in the horizontal axis and
for various quality of the solutions measured in terms of the
duality gap in the vertical axis. In all the datasets, we ob-
served that it is valuable to consider both feature and sam-
ple screening when the numbers of features and samples
are both large. In addition, we confirmed that there are im-
provements in screening rates by the synergy effect both in
feature and sample screenings especially when duality gap
G (w, @) is large. Note that gray areas in the center plots
corresponds to the blue area in the corresponding left plot,
where the individual safe screening performances are good
enough (screening rate > 0.95) and additional screening is
unnecessary.

The top left and the middle left plots show the rates of fea-
tures and samples, respectively, that are determined to be
active or non-active by using safe keeping and safe screen-
ing approaches, respectively. We see that, by combining
safe keeping and safe screening approaches, a large portion
of features/samples can be determined to be active or non-
active without actually solving the optimization problems.

6.3. Computation time savings

We compared the computational costs of simultaneous
safe screening and individual safe feature/sample screen-
ing with the naive baseline (denoted as “non-screening”).
We compared the computation costs in a realistic model
building scenario. Specifically, we computed a sequence of
solutions at 100 different penalty parameter values evenly
allocated in [10™#\ax, Amax] in the logarithmic scale. In
all the cases, we used warm-start approach, i.e., when we
computed a solution at a new A, we used the solution at the
previous A as the initial starting point of the optimizer. In
addition, whenever possible, we used dynamic safe screen-
ing strategies (Bonnefoy et al., 2014) in which safe screen-
ing rules are evaluated every time the duality gap G, (1, &)
was 0.1 times smaller than before. Here, we exploited
the information obtained by safe keeping as well, i.e., we
did not evaluate safe screening rules for features and sam-
ples which are safely kept as active, and the rate of fea-
tures/samples that are determined to be active or non-active
(see the left top and left middle plots in Figure 2) is used as
the stopping criterion for safe feature rule evaluations.

Figures 3 show the entire computation time for training
100 different solutions. In all the datasets, simultane-
ous safe screening was significantly faster than individual
safe feature/sample screening and non-screening. Figure
4 shows a sequence of computation times for various val-
ues of A for the classification problem on rcvl-test
and real-sim datasets with SPDC optimization solver.
These plots suggest that the computation time savings by
individual safe feature screening was better than individual
safe sample screening when X is large because the feature
screening rates are high when \ is large, while the differ-
ence between the two individual screening approaches gets
smaller as A gets smaller (see Figure 2). Simultaneous safe
screening was consistently faster than individual safe fea-
ture/sample screening and non-screening in all the problem
setups.

12
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Figure 4. Number of optimization steps and computation time
(for real-sim and rcvl-test datasets). Sequences of the
number of passes through the entire dataset and computation time
to convergence for various values of A for classification problems
with SPDC solver are plotted.
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