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7. Appendix
7.1. Proof of lower approximation error

Theorem 1. Using Algorithm 1 to generate m landmark
points, we can guarantee that the approximation quality
will become better than the traditional Nyström approxi-
mation with initial s landmark points:

‖G− Ḡ‖ ≤ ‖G− G̃‖, (15)

where G̃ and Ḡ are the approximation of G from standard
Nyström and Algorithm 1 respectively.

Proof. Let us first compare our method with standard
Nyström. The generalization to other sampling strategies
based Nyström is straight forward. Let G denote the kernel
matrix form on the n data points, and suppose s landmark
points x1, · · · ,xs are selected uniformly at random from
the data. Let us define the sampling matrix S ∈ Rn×s to
be a zero-one matrix where Sij = 1 if i-th sample in the
dataset is selected as landmark point. C is a n × s matrix
consisting of the corresponding s columns selected from
G and W consists of the kernel matrix formed by these s
landmark points. So by standard Nyström, G̃ = CW+GT ,
C = GS and W = STGS.

Usingm1, · · · ,ms as initial landmark points in Algorithm
1, after fast transforms, we totally have m = sd land-
mark points v1, · · · ,vm, of which the last s points are the
original landmark points and the rest m − s are new land-
mark points. Assume the new kernel matrix GH is the ker-
nel matrix on the union of the original n data points and
m− s new added landmark points. So G is a block in GH .
Similarly we define SH , CH , and WH as sampling ma-
trix, m sampled columns in GH and kernel matrix formed
by m landmark points respectively. So CH = GHSH
and WH = STHGHSH . Let the decomposition of GH be
GH = LTHLH . So

GH = LTHLH = [
L̄T

LT
][ L̄ L ] = [

L̄T L̄ L̄TL
LT L̄ LTL

].

(16)
Since G is a block in GH , the decomposition of G is LTL.

Since CH = GHSH = LTHLHSH and let the singu-
lar value decomposition of LHSH be UHΣHV

T
H , CH =

LTHUHΣHV
T
H . Also we have

WH = STHGHSH = STHL
T
HLHSH = VHΣ2

HV
T
H .

(17)

The Nyström approximation on GH is written as

GH = CHW
+
HC

T
H (18)

= LTHUHΣHV
T
H VHΣ−2H V TH VHΣHU

T
HLH

= LTHUHU
T
HLH .

So we have

GH − CHW+
HC

T
H = LTHLH − LTHUHUTHLH (19)

= (LH − UHUTHLH)T (LH − UHUTHLH).

The Nyström approximation error on the original n data
points or G part is

(GH − CHW+
HC

T
H)G = LTL− LTUHUTHL (20)

= (L− UHUTHL)T (L− UHUTHL).

According to Lemma 1 in (Drineas & Mahoney, 2005), we
have the standard Nyström approximation on G as

G− CW+CT = LTL− LTUUTL (21)

= (L− UUTL)T (L− UUTL).

where LS’s SVD is UΣV T .

Since U is the basis for the range space of LS and UH is
the basis for the range space of LHSH , so range(U) ⊆
range(UH). According to the proposition 8.5 in (Halko
et al., 2011), we have

‖L− UHUTHL‖2 ≤ ‖L− UUTL‖2, (22)

so

‖(GH − CHW+
HC

T
H)G‖ ≤ ‖G− CW+CT ‖, (23)

or

‖G− Ḡ‖ ≤ ‖G− G̃‖. (24)

7.2. Lemma 1

Lemma 1. If the kernel function can be written as (3), as-
sume the maximum distance between the samples and the
original point is a bounded number R, and f, g are differ-
entiable, then

K(a, b)2 −K(c,d)2 ≤ η(‖a− c‖2 + ‖b− d‖2) (25)

for any a, b, c,d ∈ Rd, where

η = 4M4
fL

2
gR

2 + 4M2
fM

2
gL

2
f ,

where Mf = max‖x‖≤R |f(x)|, Mg = max‖u‖≤R |g(u)|,
Lf = max‖x‖≤R |f ′(x)|, Lg = max‖u‖≤R |g′(u)|.
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Proof. For any a, b, c,d ∈ Rd, we have

(K(a, b)−K(c,d))2

=

(
f(a)f(b)g(aT b)− f(c)f(d)g(cTd)

)2

=

(
(f(a)f(b)g(aT b)− f(c)f(d)g(aT b))

+ (f(c)f(d)g(aT b)− f(c)f(d)g(cTd))

)2

≤2

(
g(aT b)(f(a)f(b)− f(c)f(d))

)2

+ 2

(
f(c)f(d)(g(aT b)− g(cTd))

)2

≤2M2
g

(
f(a)f(b)− f(c)f(d)

)2

+ 2M4
f

(
g(aT b)− g(cTd)

)2

.

We can then bound each term by(
f(a)f(b)− f(c)f(d)

)2

≤
(
f(a)f(b)− f(c)f(b) + f(c)f(b)− f(c)f(d)

)2

≤2(f(a)− f(c))2f(b)2 + 2(f(b)− f(d))2f(c)2

≤2M2
f

(
(f(a)− f(c))2 + (f(b)− f(d))2

)
=2M2

f

(
f ′(ξ1)2‖a− c‖2 + f ′(ξ2)2‖b− d‖2

)
≤2M2

fL
2
f (‖a− c‖2 + ‖b− d‖2)

Similarly, we have

(g(aT b)− g(cTd))2

=(g′(ξ)(aT b− cTd))2

≤L2
g(a

T b− cT b+ cT b− cTd)2

=L2
g((a− c)T b+ (b− d)T c)2

≤2L2
g(‖(a− c)T b‖2 + 2‖(b− d)T c‖2)

≤2L2
gR

2(‖a− c‖2 + ‖b− d‖2)

This proves (25).

7.3. Parameters for the experimental results

• All the experiments were conducted on a machine
with an Intel Xeon X5440 2.83GHz CPU and 32G
RAM. We tried to have the best implementation for
each algorithm. Fast-Nys, DC-Pred++, Nys, KNys,
RKS, Fastfood are all implemented in C sharing the

same modules. LDKL is the highly optimized C++
implementation published along with the original pa-
per (Jose et al., 2013).

• The degree for the polynomial kernel and homoge-
neous kernel is set to be 3.

• We do data normalization with mean to be 0 and vari-
ance to be 1 before running our algorithms.

• When working on fast prediction experiments, we first
form the low-rank approximation for the kernel matrix
and apply liblinear to perform the classification.

• For fast prediction parameters(γ is the width param-
eters for Gaussian kernel and C is the regularization
term in Liblinear SVM):

– cifar: γ = 2−10,C = 64;
– mnist: γ = 2−10,C = 128;
– a9a: C = 32;

• For kernel approximation:

– magic: γ = 0.01

– ijcnn: γ = 0.01

– webspam: γ = 1

• When working on prediction, we use random samples
as the initial landmarks for Fast-Nys. The number of
initial landmarks ranges from 2 to 10.

• When using kmeans Nyström, we randomly sample
10000 data samples to perform clustering.

• For LDKL, for a fair comparison, we disable the SSD
operation.

• We use an alternating minimization algorithm to find
the seeds in our algorithm. The algorithm usually con-
verges to a reasonably good solution in 10 iterations,
so we fix the number of iterations to be 10 for all the
experiments. For example, on MNIST dataset with
k=10, the initial objective function value (using ran-
dom samples) is 1750260, after 10 iterations it drops
to 90041, and the converged solution has objective
function value 89872.

7.4. Comparison with other kernel approximation
methods

We show the comparison between fast-Nys with leverage
score (Gittens & Mahoney, 2013b) and entropy based land-
mark points (Brabanter et al., 2010) in Nyström approxima-
tion and random feature (Rahimi & Recht, 2007).
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(a) MNIST, Gaussian (b) CIFAR, Gaussian
Figure 5. Low-rank kernel approximation results. x-axis is the time and y axis shows the relative kernel approximation error. Methods
with approximation error above the top of y-axis are not shown. (a) compares Fast-Nys with sampling landmark points based on
leverage score (Gittens & Mahoney, 2013a). Since this method needs to compute the entire kernel, it is much slower than our method.
(b) compares Fast-Nys with entropy based landmark points based Nyström approximation (Brabanter et al., 2010) and random feature
(Rahimi & Recht, 2008). We can also observe Fast-Nys achieves much lower approximation error than these two methods.


